1
|
Hou J, Zhao X, Tan Q, Wang P, Shi X, Fan Q, Pan D, Wu W. Molecular insights into the binding mechanism of strontium and cesium on phyllosilicates with different expandability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177006. [PMID: 39423888 DOI: 10.1016/j.scitotenv.2024.177006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The environmental fate of strontium (Sr) and cesium (Cs), as the critical radioactive fission products, have raised significant concerns regarding radioactive waste disposal and environmental protection. The current study investigated the distinction in the binding configurations of Sr2+ and Cs+ on various 2:1 phyllosilicate (illite, vermiculite, and montmorillonite) by combining batch adsorption, sequential extraction, and spectroscopic analyses. The results show that strontium adsorption is strongly influenced by pH as well as ionic strength, while there is no significant variability in strontium adsorption by different types of clay minerals. EXAFS analysis confirms the outer complexation of strontium on the planar sites of the clay minerals, i.e., Sr2+ is surrounded by ~8.0 O atoms, RSr-O ≈ 2.6 Å, and that process is mainly realized by ion exchange. In contrast, Cs+ adsorption was markedly influenced by the variety of clay minerals but less by pH and ionic strength, the presence of humic acid (HA) inhibited Cs+ adsorption. The inner-sphere complexation formed mainly at the frayed edge sites on illite, and interlayer sites on vermiculite and montmorillonite, was the dominant mechanism for Cs+ adsorption. In addition, the collapse of the interlayer space of vermiculite induced by Cs+ adsorption on the interlayer sites was responsible for the more stable and irreversible immobilization. The findings in present work highlighted the significance of prevailed mineral in governing environmental migration risk of radionuclides, the revealed adsorption mechanism and binding configuration of Sr2+ and Cs+ on typical phyllosilicates would be referable in constructing a reliable migration model of Sr2+ and Cs+ in natural media.
Collapse
Affiliation(s)
- Junjun Hou
- Frontiers Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiaolan Zhao
- Frontiers Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Qi Tan
- Frontiers Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Peng Wang
- Frontiers Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xinyi Shi
- Frontiers Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Duoqiang Pan
- Frontiers Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Bao T, Wang P, Hu B, Jin Q, Zheng T, Li D. Adsorption and distribution of heavy metals in aquatic environments: The role of colloids and effects of environmental factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134725. [PMID: 38838528 DOI: 10.1016/j.jhazmat.2024.134725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The study investigated the distributions of heavy metals (Cd, Cr, Cu, Mn, and Pb) between dissolved fraction (<0.7 µm) and particles (>0.7 µm) during the adsorption process. The dissolved fraction was further separated into truly dissolved (<3 kDa) and colloidal (3 kDa-0.7 µm) fractions. Significant metal adsorption occurred on the colloids, resulting in their aggregation into particles, which in turn influenced the particle adsorption kinetics. Colloids could either accelerate or inhibit the transformation of metal ions into particulates, depending on their stability. Competitive metals for colloids (Pb and Cr) were more susceptible to the effects of colloids than other elements. DOM was the predominant environmental factor influencing colloid behavior. The XDLVO theory showed that DOM enhanced the negative charge of colloids and made the colloid surface more hydrophilic, inhibiting the aggregation of colloids. DOM resulted in substantial increases in the concentrations of colloidal Pb and Cr from 0.31 μg/L and 4.58 μg/L to 20.52 μg/L and 43.51 μg/L, respectively, whereas the increment for less competitive metals (Cd and Mn) was smaller. These findings suggest that the distribution of heavy metals is influenced not only by adsorption from particles and ions but also by the complex dynamics of colloids.
Collapse
Affiliation(s)
- Tianli Bao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China.
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China.
| | - Qiutong Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| | - Tianming Zheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| |
Collapse
|
3
|
Wei X, Shi X, Yang M, Tan Q, Xu Z, Ma B, Pan D, Wu W. Phosphate and illite colloid pose a synergistic risk of enhanced uranium transport in groundwater: A challenge for phosphate immobilization remediation of uranium contaminated environmental water. WATER RESEARCH 2024; 255:121514. [PMID: 38554633 DOI: 10.1016/j.watres.2024.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The phosphorus-containing reagents have been proposed to remediate the uranium contaminated sites due to the formation of insoluble uranyl phosphate mineralization products. However, the colloids, including both pseudo and intrinsic uranium colloids, could disturb the environmental fate of uranium due to its nonnegligible mobility. In this work, the transport pattern and micro-mechanism of uranium coupled to phosphate and illite colloid (IC) were investigated by combining column experiments and micro-spectroscopic evidences. Results showed that uranium transport was facilitated in granular media by forming the intrinsic uranyl phosphate colloid (such as Na-autunite) when the pH > 3.5 and CNa+ < 10 mM. Meanwhile, the mobility of uranium depended greatly on the typical water chemistry parameters governing the aggregation and deposit of intrinsic uranium colloids. However, the attachment of phosphate on illite granule increased the repulsive force and enhanced the dispersion stability of IC in the IC-U(VI)-phosphate ternary system. The non-preequilibrium transport and retention profiles, HRTEM-mapping, as well as TRLFS spectra revealed that the IC enhanced uranium mobility by forming the ternary IC-uranyl phosphate hybrid, and acted as the coagulation preventing agent for uranyl phosphate particles. This observed facilitation of uranium transport resulted from the formation of intrinsic uranyl phosphate colloids and IC-uranyl phosphate hybrids should be taken into consideration when evaluating the potential risk of uranium migration and optimizing the in-situ mineralization remediation strategy for uranium contaminated environmental water.
Collapse
Affiliation(s)
- Xiaoyan Wei
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China; Laboratory for Waste Management, Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
| | - Xinyi Shi
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Meilin Yang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qi Tan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhen Xu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Bin Ma
- Laboratory for Waste Management, Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Duoqiang Pan
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Wangsuo Wu
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Zhang Y, Wu P, Zhu J, Liao P, Niyuhire E, Fan F, Mao W, Dong L, Zheng R, Li Y. Investigation of the migration of natural organic matter-iron-antimony nano-colloids in acid mine drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170666. [PMID: 38316310 DOI: 10.1016/j.scitotenv.2024.170666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Colloids can potentially affect the efficacy of traditional acid mine drainage (AMD) treatment methods such as precipitation and filtration. However, it is unclear how colloids affect antimony (Sb) migration in AMD, especially when natural organic matter (NOM) is present. To conduct an in-depth investigation on the formation and migration behavior of NOM, iron (Fe), Sb and NOM-Fe-Sb colloids in AMD, experiments were performed under simulated AMD conditions. The results demonstrate significant variations in the formation of NOM-Fe-Sb colloids (1-3-450 nm) as the molar ratio of carbon to iron (C/Fe) increases within acidic conditions (pH = 3). Increasing the C/Fe molar ratio from 0.1 to 1.2 resulted in a decrease in colloid formation but an increase in particulate fraction. The distribution of colloidal Sb, Sb(III), and Fe(III) within the NOM-Fe-Sb colloids decreased from 68 % to 55 %, 72 % to 57 %, and 68 % to 55 %, respectively. Their distribution in the particulate fraction increased from 28 % to 42 %, 21 % to 34 %, and 8 % to 27 %. XRD, FTIR, and SEM-EDS analyses demonstrated that NOM facilitates the formation and crystallization of Fe3O4 and FeSbO4 crystalline phases. The formation of the colloids depended on pH. Our results indicate that NOM-Fe-Sb colloids can form when the pH ≤ 4, and the proportion of colloidal Sb fraction within the NOM-Fe-Sb colloids increased from 9 % to a maximum of 73 %. Column experiments show that the concentration of NOM-Fe-Sb colloids reaches its peak and remains stable at approximately 3.5 pore volumes (PVs), facilitating the migration of Sb in the porous media. At pH ≥ 5, stable NOM-Fe-Sb colloids do not form, and the proportion of colloidal Sb fraction decreases from 7 % to 0 %. This implies that as pH increases, the electrostatic repulsion between colloidal particles weakens, resulting in a reduction in the colloidal fraction and an increase in the particulate fraction. At higher pH values (pH ≥ 5), the repulsive forces between colloidal particles nearly disappear, promoting particle aggregation. The findings of this study provide important scientific evidence for understanding the migration behavior of NOM-Fe-Sb colloids in AMD. As the pH gradually shifts from acidic to near-neutral pH during the remediation process of AMD, these results could be applied to develop new strategies for this purpose.
Collapse
Affiliation(s)
- Yuqin Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Elias Niyuhire
- Ecole Normale Supérieure, Département des Sciences Naturelles, Centre de Recherche en Sciences et de Perfectionnement Professionnel, Boulevard Mwezi Gisabo, B.P.: 6983 Bujumbura, Burundi
| | - Feifei Fan
- Guizhou Institute of Soil and Fertilizer, Guiyang 550006, China
| | - Wenjian Mao
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lisha Dong
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ruyi Zheng
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yi Li
- Guizhou Institute of Technology, Guiyang 550003, China
| |
Collapse
|
5
|
Takács D, Adžić M, Omerović N, Vraneš M, Katona J, Pavlović M. Electrolyte-induced aggregation of zein protein nanoparticles in aqueous dispersions. J Colloid Interface Sci 2024; 656:457-465. [PMID: 38006868 DOI: 10.1016/j.jcis.2023.11.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Ion specific effects on the charging and aggregation features of zein nanoparticles (ZNP) were studied in aqueous suspensions by electrophoretic and time-resolved dynamic light scattering techniques. The influence of mono- and multivalent counterions on the colloidal stability was investigated for positively and negatively charged particles at pH values below and above the isoelectric point, respectively. The sequence of the destabilization power of monovalent salts followed the prediction of the indirect Hofmeister series for positively charged particles, while the direct Hofmeister series for negatively charged ones assumed a hydrophobic character for their surface. The multivalent ions destabilized the oppositely charged ZNPs more effectively and the aggregation process followed the Schulze-Hardy rule. For some multivalent ions, strong adsorption led to charge reversal resulting in restabilization of the suspensions. The experimental critical coagulation concentrations (CCCs) could be well-predicted with the theory developed by Derjaguin, Landau, Verwey and Overbeek indicating that the aggregation processes were mainly driven by electrical double layer repulsion and van der Waals attraction. The ion specific dependence of the CCCs is owing to the modification of the surface charge through ion adsorption at different extents. These results are crucial for drug delivery applications, where inorganic electrolytes are present in ZNP samples.
Collapse
Affiliation(s)
- Dóra Takács
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, 6720 Szeged, Hungary
| | - Maja Adžić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nejra Omerović
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Milan Vraneš
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jaroslav Katona
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pavlović
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia; Department of Physics and John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA-02138 Cambridge, USA.
| |
Collapse
|
6
|
Tang Q, Xu Z, Tan Q, Shi X, Wu W, Pan D. Insight into Impact of Phosphate on the Cotransport and Corelease of Eu(III) with Bentonite Colloids in Saturated Quartz Columns. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132572. [PMID: 37742375 DOI: 10.1016/j.jhazmat.2023.132572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Understanding the fate and transport of radionuclides in porous media reduces the risk of contaminating soils and groundwater systems. While the cotransport of bentonite colloids (BC) with radionuclides in saturated media is well documented, the role of phosphate (P) in the colloid-driven transport of radionuclides in saturated porous media is still unaddressed; in particular, phosphate increases the mobilities of radionuclides in porous media, which should be subjected to an environmental risk assessment and model construction. In this work, the effects of phosphate on the transport and release of Eu(III) in different colloid systems (P-Eu(III), P-BC, P-BC-Eu(III)) was investigated with a fundamental colloid chemistry approach and a range of characterization techniques. The results showed that intrinsic europium colloids with size of 685 nm were formed by precipitation with phosphate, which affected the mobility of Eu(III) due to colloid stability and physical straining. Phosphate enhanced BC and BC-Eu(III) transport, and a high phosphate concentration promoted BC transport by eliminating physical straining and enhancing the electrostatic repulsions. The crystal structure of EuPO4 was not destroyed by the subsequent introduction of BC, which carried EuPO4 for further migration. However, when phosphate, bentonite and Eu(III) coexisted in a colloid suspension, the phosphate promoted Eu(III) transport by preferentially interacting with the BC to form ternary BC-P-Eu(III) pseudo-colloids rather than forming the intrinsic EuPO4 colloids. The synergetic role of P and BC on Eu(III) transport involved a relatively complex process and was not a simply additive effect. The findings in this work highlight the significance of phosphate in controlling the fate and transport of Ln(III)/Am(III) radionuclides in the presence of intrinsic colloids and pseudo-colloids in P-rich colloid-bearing environments.
Collapse
Affiliation(s)
- Qingfeng Tang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhen Xu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China.
| | - Qi Tan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xingyi Shi
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Wangsuo Wu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Duoqiang Pan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Cai F, Ma F, Zhang X, Reimus P, Qi L, Wang Y, Lu D, Thanh HV, Dai Z. Investigating the influence of bentonite colloids on strontium sorption in granite under various hydrogeochemical conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165819. [PMID: 37506897 DOI: 10.1016/j.scitotenv.2023.165819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
The disposal of high-level radioactive waste in deep geological repositories is a critical environmental issue. The presence of bentonite colloids generated in the engineering barrier can significantly impact the transport of radionuclides, but their effect on radionuclide sorption in granite remains poorly understood. This study aimed to investigate the sorption characteristics of strontium (Sr) on granite as well as on the coexistence system of granite and colloids under various hydrogeochemical conditions, through batch experiments. Fourier transform infrared spectroscopy was employed to analyze the sorption forms of Sr on granite before and after sorption. Several hydrogeochemical factors were examined, including contact time, pH, ionic strength, coexisting ions, and bentonite and humic acid colloid concentration. Among these factors, the concentration of bentonite colloids exhibited a significant effect on Sr sorption. Within a specific range of colloid concentration, the sorption of Sr on the solid system increased linearly with the bentonite colloid concentration. pH and ionic strength were also found to play crucial roles in the sorption process. At low pH, Sr sorption primarily occurred through the outer sphere's surface complexation and Na+/H+ ion exchange. However, at high pH, inner sphere surface complexation dominated the process. As the ionic strength increased, electrostatic repulsion gradually increased, resulting in fewer binding sites for particle aggregation and Sr sorption on bentonite colloids. The results also indicate that with increasing pH, the predominant forms of Sr in the solution transitioned from SrHCO3+ and SrCl+ to SrCO3 and SrCl+. This was mainly due to the ion exchange of Ca2+/Mg2+ in plagioclase and biotite, forming SrCO3 precipitation. These findings provide valuable insights into the transport behavior of radionuclides in the subsurface environment of the repository and highlight the importance of considering bentonite colloids and other hydrogeochemical factors when assessing the environmental impact of high-level radioactive waste disposal.
Collapse
Affiliation(s)
- Fangfei Cai
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Funing Ma
- College of Construction Engineering, Jilin University, Changchun 130026, China.
| | - Xiaoying Zhang
- College of Construction Engineering, Jilin University, Changchun 130026, China.
| | - Paul Reimus
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Linlin Qi
- College of Construction Engineering, Jilin University, Changchun 130026, China
| | - Yu Wang
- Institute of Nuclear and New Technology, Tsinghua University, Beijing 100084, China
| | - Di Lu
- Yantai Customs Technology Center, Yantai 264000, China
| | - Hung Vo Thanh
- Laboratory for Computational Mechanics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; MEU Research Unit, Middle East University, Amman, Jordan
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun 130026, China
| |
Collapse
|
8
|
Yuan R, Salam M, Miao X, Yang Y, Li H, Wei Y. Potential disintegration and transport of biochar in the soil-water environment: A case study towards purple soil. ENVIRONMENTAL RESEARCH 2023; 222:115383. [PMID: 36716806 DOI: 10.1016/j.envres.2023.115383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Biochar has been widely applied in soil and water. However, the fate and transport of biochar are not yet fully understood. Here, biochar's disintegration, transport, and the effect of temperature on biochar transport in soil (purple soil)-water systems were investigated. The results showed that the potentially transportable components (PTC) of biochar for corn straw, wheat straw, rice straw, rice husk and wood biochar reached 6.22-7.60%, 5.96-12.29%, 11.77-12.45%, 5.34-6.26% and 5.08-6.14% by mass, respectively. An external force (ultrasound exposure) intensified the physical disintegration, including colloidal and nanoparticles from larger particles, thereby increasing the transport potential. The mass recovery rates of PTC for rice straw biochar after penetrating through soil at 5, 20 and 35 °C reached 44.25%, 32.97% and 10.98%, respectively, which was supported by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory results. Elevated temperatures increased the hydrodynamic average diameter of PTC, and the Zeta potential of PTC and soil at 35 °C were less negative than those at 5 and 20 °C. As a result, biochar's transportability decreases with increasing temperature in the soil-water system, during which the enhanced PTC aggregation and the decreased electrostatic repulsion between biochar and soil particles played a crucial role. The increase in electrical conductivity in the soil-water system may be the main reason for the decrease in electrostatic repulsion at higher temperatures. The findings are helpful for an in-depth understanding of the environmental fate and managing the transport risk of biochar.
Collapse
Affiliation(s)
- Ruoyu Yuan
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaojun Miao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yongchuan Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
9
|
Wei X, Pan D, Tan Q, Shi X, Hou J, Tang Q, Xu Z, Wu W, Ma B. Surface charge property governing co-transport of illite colloids and Eu(III) in saturated porous media. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Co transport of bentonite colloids and Eu(III) transport in saturated heterogeneous porous media. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Golgoli M, Khiadani M, Sen TK, Razmjou A, Johns ML, Zargar M. Synergistic effects of microplastics and organic foulants on the performance of forward osmosis membranes. CHEMOSPHERE 2023; 311:136906. [PMID: 36270521 DOI: 10.1016/j.chemosphere.2022.136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are emerging contaminants that are abundantly present in the influent and effluent of wastewater treatment plants (WWTPs). Forward osmosis (FO) is an advanced treatment technology with potential applications in WWTPs. The presence of MPs in WWTP effluents can contribute to FO fouling and performance deterioration. This study focuses on FO membrane fouling by MPs of different sizes, and the interactional impacts of MPs and Humic acid (HA) (as the most common organic foulant in WWTPs) on FO membrane performance. The synergistic effect of combined MPs and HA fouling is shown to cause higher flux decline for FO membranes than that of HA or MPs alone. Reverse salt flux increased in the presence of MPs, and decreased when HA was present. Further, full flux recovery was obtained for all fouled membranes after hydraulic cleaning. This indicates the efficiency of FO systems for treating wastewater with high fouling potential. This study highlights the necessity of considering MPs in studying fouling behaviour, and for mitigation strategies of membranes used in WWT. The fundamentals created here can be further extended to other membrane-assisted separation processes.
Collapse
Affiliation(s)
- Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Tushar Kanti Sen
- Chemical Engineering Department, King Faisal University, P.O. Box: 380, Al-Ahsa, 31982, Saudi Arabia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| | - Michael L Johns
- Fluid Science & Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia.
| |
Collapse
|
12
|
Zhou D, Liang M, Bao X, Sun T, Huang Y. Effects of soil colloids on the aggregation and degradation of engineered nanoparticles (Ti 3C 2T x MXene). ENVIRONMENTAL RESEARCH 2022; 214:113886. [PMID: 35839912 DOI: 10.1016/j.envres.2022.113886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Soil colloid is a nonnegligible factor when evaluating the environmental risk of engineered nanoparticles (ENPs) in the groundwater. In this study, the environmental fate of an emerging ENP (Ti3C2Tx MXene) in the groundwater was investigated for the first time, which currently poses a severe environmental risk due to its cytotoxicity but has received little attention. The colloidal dispersion stability and degradation kinetics of Ti3C2Tx MXene in the groundwater were evaluated by considering the effects of soil colloids prepared from sodium humate (SH), montmorillonite (MT), and a natural soil (NS) under variable solution chemistry. The results showed that the affinity of soil colloids with Ti3C2Tx followed an SH > MT > NS sequence. Increasing SH concentration led to Ti3C2Tx disaggregation by enhancing the electrical and steric repulsive forces, while MT and NS resulted in hetero-aggregation because of the elevated collision frequency. SH and MT enhanced the critical coagulation concentrations of Ti3C2Tx by 100 and 10 folders, respectively, via surface coating process, while NS slightly reduced due to the bridging effects induced by the soluble cations. The soil colloids promoted Ti3C2Tx degradation compared with their absence and in an SH > MT ≫ NS sequence. SH and MT were through forming Ti-O-C and Si-O-Ti bonds with Ti3C2Tx via their carboxyl and hydroxyl groups, respectively, rendering the Ti3C2Tx surface more reactive and faster degradation. NS showed a weak promotion effect because of its less affinity with Ti3C2Tx and limited organic matter and clay contents with hydroxyl and carboxyl groups. This study demonstrated the unstable environmental behaviors of Ti3C2Tx in the groundwater and mitigated its environmental risk concerns.
Collapse
Affiliation(s)
- Dan Zhou
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Mengmeng Liang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Xingyue Bao
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Tiezhu Sun
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yi Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
13
|
Takács D, Péter T, Vargáné Árok Z, Katana B, Papović S, Gadzuric S, Vraneš M, Szilágyi I. Structure-Stability Relationship in Aqueous Colloids of Latex Particles and Gemini Surfactants. J Phys Chem B 2022; 126:9095-9104. [PMID: 36287607 PMCID: PMC9910321 DOI: 10.1021/acs.jpcb.2c06259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The influence of gemini surfactants (GSs) on the charging and aggregation features of anionic sulfate modified latex (SL) particles was investigated by light scattering techniques in aqueous dispersions. The GSs of short alkyl chains (2-4-2 and 4-4-4) resembled simple inert salts and aggregated the particles by charge screening. The adsorption of GSs of longer alkyl chains (8-4-8, 12-4-12, and 12-6-12) on SL led to charge neutralization and overcharging of the particles, giving rise to destabilization and restabilization of the dispersions, respectively. The comparison of the interfacial behavior of dimeric and the corresponding monomeric surfactants revealed that the former shows a more profound influence on the colloidal stability due to the presence of double positively charged head groups and hydrophobic tails, which is favorable to enhancing both electrostatic and hydrophobic particle-GS and GS-GS interactions at the interface. The different extent of the particle-GS interactions was responsible for the variation of the GS destabilization power, following the 2-4-2 < 4-4-4 < 8-4-8 < 12-4-12 order, while the length of the GS spacer did not affect the adsorption and aggregation processes. The valence of the background salts strongly influenced the stability of the SL-GS dispersions through altering the electrostatic interactions, which was more pronounced for multivalent counterions. These findings indicate that both electrostatic and hydrophobic effects play crucial roles in the adsorption of GSs on oppositely charged particles and in the corresponding aggregation mechanism. The major interparticle forces can be adjusted by changing the structure and concentration of the GSs and inorganic electrolytes present in the systems.
Collapse
Affiliation(s)
- Dóra Takács
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, University
of Szeged, 6720Szeged, Hungary
| | - Tamás Péter
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, University
of Szeged, 6720Szeged, Hungary
| | - Zsófia Vargáné Árok
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, University
of Szeged, 6720Szeged, Hungary
| | - Bojana Katana
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, University
of Szeged, 6720Szeged, Hungary
| | - Snežana Papović
- Department
of Chemistry, Biochemistry and Environmental Protection, Faculty of
Sciences, University of Novi Sad, 21 000Novi Sad, Serbia
| | - Slobodan Gadzuric
- Department
of Chemistry, Biochemistry and Environmental Protection, Faculty of
Sciences, University of Novi Sad, 21 000Novi Sad, Serbia
| | - Milan Vraneš
- Department
of Chemistry, Biochemistry and Environmental Protection, Faculty of
Sciences, University of Novi Sad, 21 000Novi Sad, Serbia
| | - István Szilágyi
- MTA-SZTE
Lendület Biocolloids Research Group, Department of Physical
Chemistry and Materials Science, University
of Szeged, 6720Szeged, Hungary,
| |
Collapse
|
14
|
Study on the release of GMZ bentonite colloids by static multiple light scattering technique. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Xu Z, Pan D, Tang Q, Wei X, Liu C, Li X, Chen X, Wu W. Co-transport and co-release of Eu(III) with bentonite colloids in saturated porous sand columns: Controlling factors and governing mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118842. [PMID: 35031401 DOI: 10.1016/j.envpol.2022.118842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Accurate prediction of the colloid-driven transport of radionuclides in porous media is critical for the long-term safety assessment of radioactive waste disposal repository. However, the co-transport and corelease process of radionuclides with colloids have not been well documented, the intrinsic mechanisms for colloids-driven retention/transport of radionuclides are still pending for further discussion. Thus the controlling factors and governing mechanisms of co-transport and co-release behavior of Eu(III) with bentonite colloids (BC) were discussed and quantified by combining laboratory-scale column experiments, colloid filtration theory and advection dispersion equation model. The results showed that the role of colloids in facilitating or retarding the Eu(III) transport in porous media varied with cations concentration, pH, and humic acid (HA). The transport of Eu(III) was facilitated by the dispersed colloids under the low ionic strength and high pH conditions, while was impeded by the aggregated colloids cluster. The enhancement of Eu(III) transport was not monotonically risen with the increase of colloids concentration, the most optimized colloids concentration in facilitating Eu(III) transport was approximately 150 mg L-1. HA showed significant promotion on both Eu(III) and colloid transport because of not only its strong Eu(III) complexion ability but also the increased dispersion of HA-coated colloid particles. The HA and BC displayed a synergistic effect on Eu(III) transport, the co-transport occurred by forming the ternary BC-HA-Eu(III) hybrid. The transport patterns could be simulated well with a two-site model that used the advection dispersion equation by reflecting the blocking effect. The retarded Eu(III) on the stationary phase was released and remobilized by the introduction of colloids, or by a transient reduction in cation concentration. The findings are essential for predicting the geological fate and the migration risk of radionuclides in the repository environment.
Collapse
Affiliation(s)
- Zhen Xu
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China; School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Duoqiang Pan
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China; School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Qingfeng Tang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Wei
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Chunli Liu
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaolong Li
- China Academy of Engineering Physics, Mianyang, 621000, China
| | - Ximeng Chen
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China; School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China; School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
16
|
Quantitative characterization of non-DLVO factors in the aggregation of black soil colloids. Sci Rep 2022; 12:5064. [PMID: 35332206 PMCID: PMC8948181 DOI: 10.1038/s41598-022-09067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/07/2022] [Indexed: 11/11/2022] Open
Abstract
The variable role and fate of soil colloids under different environmental conditions are derived from their dispersion and aggregation properties. In this work, dynamic and static light scattering were used to characterize the original size, aggregation kinetics of natural black soil colloids (BSCs) and structural features of aggregates in electrolytes with different cations (K+, Mg2+, Ca2+), respectively. For these three cations, the aggregation kinetics followed the trend of Ca2+ > Mg2+ > K+ and the critical coagulation concentration (CCC) followed the sequence: K+ (134.30 mmol L−1) > Mg2+ (13.27 mmol L−1) > Ca2+ (4.19 mmol L−1). The results indicated that the aggregation behavior in different valence cation systems followed the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) model qualitatively. However, the quantitative differences of CCC suggest the existence of ion-specific effects. The effective ionic charge coefficient 1.31, 2.20, and 2.78 of K+, Mg2+ and Ca2+ were proposed to consider of all the non-DLVO factors, which were obtained by forming a relationship based on mathematic between the electrostatic repulsion and the van der Waals attractive interaction at the CCC. The non-classical polarization of cations in a strong soil electric field is a primary mechanism of cation effects on soil colloid interactions, causing the difference in colloid interaction energy and further affecting soil colloid aggregation. This result is crucial for enriching the theory of charged colloidal interactions.
Collapse
|
17
|
Rong H, Li M, He L, Zhang M, Hsieh L, Wang S, Han P, Tong M. Transport and deposition behaviors of microplastics in porous media: Co-impacts of N fertilizers and humic acid. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127787. [PMID: 34848067 DOI: 10.1016/j.jhazmat.2021.127787] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the interaction of fertilizers with microplastics (MPs) and porous media, fertilization process would influence MPs transport and distributions in soil. The co-impacts of N fertilizers (both inorganic and organic N fertilizers) and humic substance on MPs transport/retention behaviors in porous media were examined in 10 mM KCl solutions at pH 6. NH4Cl and CO(NH2)2 were employed as inorganic and organic N fertilizers, respectively, while humic acid (HA) was used as model humic substance. We found that for all three sized MPs (0.2, 1 and 2 µm) without HA, both types of N fertilizers decreased their transport/increased their retention in porous media (both quartz sand and soil). N fertilizers adsorbed onto surfaces of MPs and sand/soil, lowering the electrostatic repulsion between MPs and porous media, thus contributed to the enhanced MPs deposition. MPs with N fertilizers in solutions more tightly attached onto porous media and thus were more difficult to be re-mobilized by low ionic strength solution elution. Via steric repulsion and increasing electrostatic repulsion between MPs and porous media due to adsorption onto their surfaces, HA could increase MPs transport with N fertilizers in solutions.
Collapse
Affiliation(s)
- Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Lichun Hsieh
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
18
|
Chen Z, Wang S, Hou H, Chen K, Gao P, Zhang Z, Jin Q, Pan D, Guo Z, Wu W. China's progress in radionuclide migration study over the past decade (2010-2021): Sorption, transport and radioactive colloid. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Liu C, Xu Q, Xu Y, Wang B, Long H, Fang S, Zhou D. Characterization of adsorption behaviors of U(VI) on bentonite colloids: batch experiments, kinetic evaluation and thermodynamic analysis. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08123-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Xu Z, Niu Z, Tang Q, Wei X, Chen X, Pan D, Wu W. Adsorption characteristics of Eu(III) on colloidal bentonite particles in aqueous solution: impact of colloid concentration, pH, foreign ions, and temperature. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07976-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Ma Z, Xue R, Li JS, Zhao Y, Xue Q, Chen Z, Wang Q, Poon CS. Use of thermally modified waste concrete powder for removal of Pb (II) from wastewater: Effects and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116776. [PMID: 33640816 DOI: 10.1016/j.envpol.2021.116776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Exploring effective uses of waste concrete powder (WCP), produced from recycling of construction & demolition waste is beneficial to the environment and sustainable development. In this study, WCP was first treated thermally to enhance the ability to remove Pb (II) from aqueous solutions. The experimental results revealed that the thermal treatment could enhance adsorption capacity due to modification of calcium bonding and pore structure of WCP. Preparation parameters such as temperature, particle size, and water-cement ratio were investigated to obtain the optimal operational conditions. Batch adsorption experiments were performed to explore influence factors of pH (1.00-6.00), ionic strength (0.05-2 mol/L), dosage (2-50 g/L), and temperature (25-45 °C). The pseudo-second-order kinetics model could adequately describe the adsorption process, and the Langmuir model was capable to predict the isotherm data well in the low concentration region (C0 < 500 mg/L). The maximum uptake capacity for Pb (II) calculated by Langmuir model at 25, 35 and 45 °C were 46.02, 38.58 and 30.01 mg/g respectively, and the removal rate of Pb (II) was 92.96% at a dosage of 50 g/L (C0 = 1000 mg/L). Precipitation, ion exchange, and surface complexation were identified to be the main mechanisms of Pb (II) adsorption through microscopic investigation by SEM-EDX, XRD, FTIR, XPS, and BET inspections. The study confirms that the WCP after thermal modification, can be selected as a promising adsorbent for the high performance and eco-friendliness.
Collapse
Affiliation(s)
- Zihan Ma
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Road, Xuzhou, 221116, Jiangsu, PR China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Runze Xue
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Road, Xuzhou, 221116, Jiangsu, PR China
| | - Jiang-Shan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China.
| | - Yaqin Zhao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Road, Xuzhou, 221116, Jiangsu, PR China.
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China
| | - Zhen Chen
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qiming Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong University, Hung Hom, Kowloon, Hong Kong, China
| | - Chi Sun Poon
- IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|