1
|
He L, Zhu G. Regulation and application of quorum sensing on anaerobic digestion system. CHEMOSPHERE 2024; 363:142983. [PMID: 39089336 DOI: 10.1016/j.chemosphere.2024.142983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Quorum sensing (QS) plays an important role in the social behavior of microbial communities. Anaerobic digestion (AD) is a biological process using anaerobic microorganisms to degrade organic macromolecules into small molecules for biogas and biofertilizer production. In AD, the QS signaling molecule N-acyl homoserine lactones (AHLs) induces bacterial metabolism, improving AD process efficiency. However, there are fewer systematic reports about QS regulation of microbial behavior in AD. In this report, the effects of signaling molecules on extracellular polymer secretion, biofilm formation, granulation of granular sludge and bacterial metabolism in AD were investigated in detail. At present, the regulation behavior of QS on AD is a group phenomenon, and there are few in-depth studies on the regulation pathway. Therefore, we conducted an in-depth analysis of the pure culture system, granular sludge and reactor in the AD. Then we pointed out that the future application potential of QS in the AD may be combined with quorum quenching (QQ) and omics technology, which is of great significance for the future application of AD.
Collapse
Affiliation(s)
- Liyan He
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Gefu Zhu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China.
| |
Collapse
|
2
|
Zhu R, Chen Y, Huang Y, Tang Z, Li H, Gu L. Improving anaerobic digestion performance after severe acidification: Unveiling the impacts of Fe 3O 4-bentonite composites in co-digestion of waste activated sludge and food waste. BIORESOURCE TECHNOLOGY 2024; 402:130775. [PMID: 38701984 DOI: 10.1016/j.biortech.2024.130775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Acidification recovery in anaerobic digestion of food waste is challenging. This study explored its in-situ recovery using a co-substrate of food waste and waste activated sludge. Fe3O4 and bentonite were used as conductor and carrier, respectively, to enhance AD performance under severe acidification. The application of Fe3O4-bentonite resulted in a 152% increase in cumulative methane in the Fe3O4-bentonite 10 digester, demonstrating its effectiveness in restoring the acidified AD system. In acidified systems, bentonite enhanced the diversity and richness of microbial communities due to its buffering capacity. The excessive non-conductive polysaccharides excreted by bacteria in extracellular polymeric substances reduced the possibility of electron transfer by Fe3O4. However, in the synergistic application of Fe3O4 and bentonite, this resistance was alleviated, increasing the possibility of direct interspecies electron transfer, and accelerating the consumption of volatile fatty acids. This approach of integrating carrier and conductive materials is significant for in-situ restoration of acidified systems.
Collapse
Affiliation(s)
- Ruilin Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Yongdong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Yangrui Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenzhen Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Huaizheng Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China.
| |
Collapse
|
3
|
Jiang T, Li X, Yang J, Wang L, Wang W, Zhang L, Wang B. Potential of free nitrous acid (FNA) for sludge treatment and resource recovery from waste activated sludge: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121170. [PMID: 38749134 DOI: 10.1016/j.jenvman.2024.121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
The escalating production of waste activated sludge (WAS) presents significant challenges to wastewater treatment plants (WWTPs). Free nitrous acid (FNA), known for its biocidal effect, has gained a growing focus on sludge dewatering, sludge reduction, and resource recovery from WAS due to its eco-friendly and cost-effective properties. Nevertheless, there have been no attempts made to systematically summarize or critically analyze the application of FNA in enhancing treatment and resource utilization of sludge. In this paper, we provided an overview of the current understanding regarding the application potential and influencing factors of FNA in sludge treatment, with a specific focus on enhancing sludge dewatering efficiency and reducing volume. To foster resource development from sludge, various techniques based on FNA have recently been proposed, which were comprehensively reviewed with the corresponding mechanisms meticulously discussed. The results showed that the chemical oxidation and interaction with microorganisms of FNA played the core role in improving resource utilization. Furthermore, current challenges and future prospects of the FNA-based applications were outlined. It is expected that this review can refine the theoretical framework of FNA-based processes, providing a theoretical foundation and technical guidance for the large-scale demonstration of FNA.
Collapse
Affiliation(s)
- Tan Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaodi Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiayi Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lu Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wen Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
4
|
Wang X, Gong Y, Sun C, Wang Z, Sun Y, Yu Q, Zhang Y. New insights into inhibition of high Fe(III) content on anaerobic digestion of waste-activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170147. [PMID: 38242486 DOI: 10.1016/j.scitotenv.2024.170147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The impacts of the increased iron in the waste-activated sludge (WAS) on its anaerobic digestion were investigated. It was found that low Fe(III) content (< 750 mg/L) promoted WAS anaerobic digestion, while the continual increase of Fe(III) inhibited CH4 production and total chemical oxygen demand (TCOD) removal. As the Fe(III) content increased to 1470 mg/L, methane production has been slightly inhibited about 5 % compared with the group containing 35 mg/L Fe(III). Particularly, as Fe(III) concentration was up to 2900 mg/L, CH4 production, and TCOD removal decreased by 43.6 % and 37.5 %, respectively, compared with the group with 35 mg/L Fe(III). Furthermore, the percentage of CO2 of the group with 2900 mg/L Fe(III) decreased by 52.8 % compared with the group containing 35 mg/L Fe(III). It indicated that Fe(II) generated by the dissimilatory iron reduction might cause CO2 consumption, which was confirmed by X-ray diffraction that siderite (FeCO3) was generated in the group with 2900 mg/L Fe(III). Further study revealed that Fe(III) promoted the WAS solubilization and hydrolysis, but inhibited acidification and methane production. The methanogenesis test with H2/CO2 as a substrate showed that CO2 consumption weakened hydrogenotrophic methanogenesis and then increased H2 partial pressure, further causing VFA accumulation. Microbial community analysis indicated that the abundance of hydrogen-utilizing methanogens decreased with the high Fe(III) content. Our study suggested that the increase of Fe(III) in sludge might inhibit methanogenesis by consuming or precipitating CO2. To achieve maximum bioenergy conversion, the iron content should be controlled to lower than 750 mg/L. The study may provide new insights into the mechanistic understanding of the inhibition of high Fe(III) content on the anaerobic digestion of WAS.
Collapse
Affiliation(s)
- Xuepeng Wang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yijing Gong
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Cheng Sun
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Zhenxin Wang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Ye Sun
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Qilin Yu
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China.
| | - Yaobin Zhang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| |
Collapse
|
5
|
Luong TT, Nguyen THT, Nguyen TD, Le VT, Pham THT, Ho TT, Nguyen NL. Degradation of Triazole Fungicides by Plant Growth-Promoting Bacteria from Contaminated Agricultural Soil. J Microbiol Biotechnol 2024; 34:56-64. [PMID: 37940179 PMCID: PMC10840487 DOI: 10.4014/jmb.2308.08037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
The widespread application of triazole fungicides (TFs) in agricultural practices can result in the considerable accumulation of active compound residues in the soil and a subsequent negative impact on the soil microbiota and crop health. In this study, we isolated three TF-degrading bacterial strains from contaminated agricultural soils and identified them as Klebsiella sp., Pseudomonas sp., and Citrobacter sp. based on analysis of morphological characteristics and 16S rRNA gene sequences. The strains used three common TFs, namely hexaconazole, difenoconazole, and propiconazole, as their only sources of carbon and energy for growth in a liquid mineral salt medium, with high concentrations (~ 500 mg/l) of each TF. In addition to the ability to degrade fungicides, the isolates also exhibited plant growth-promoting characteristics, such as nitrogen fixation, indole acetic acid production, phosphate dissolution, and cellulose degradation. The synergistic combination of three bacterial isolates significantly improved plant growth and development with an increased survival rate (57%), and achieved TF degradation ranging from 85.83 to 96.59% at a concentration of approximately 50 mg/kg of each TF within 45 days in the soil-plant system. Based on these findings, the three strains and their microbial consortium show promise for application in biofertilizers, to improve soil health and facilitate optimal plant growth.
Collapse
Affiliation(s)
- Thi Tham Luong
- Da Lat Nuclear Research Institute, 01 Nguyen Tu Luc, Da Lat 66106, Lam Dong, Vietnam
| | - Thi Hong Tham Nguyen
- Da Lat Nuclear Research Institute, 01 Nguyen Tu Luc, Da Lat 66106, Lam Dong, Vietnam
| | - Tien Dat Nguyen
- Da Lat Nuclear Research Institute, 01 Nguyen Tu Luc, Da Lat 66106, Lam Dong, Vietnam
| | - Van Toan Le
- Da Lat Nuclear Research Institute, 01 Nguyen Tu Luc, Da Lat 66106, Lam Dong, Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam
- Biotechnology Department, College of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam
- Biotechnology Department, College of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
| | - Ngoc-Loi Nguyen
- Institute of Oceanology, Polish Academy of Sciences, Powstancow Warszawy 55, Sopot 81-712, Poland
| |
Collapse
|
6
|
Cheng J, Su X, Liu M, Lu Z, Xu J, He Y. Simultaneous regulation of biocathodic γ-HCH dechlorination and CH 4 production by tailoring the structure and function of biofilms based on quorum sensing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122357. [PMID: 37567403 DOI: 10.1016/j.envpol.2023.122357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Dechlorination of chlorinated organic pollutants and methanogenesis are attractive biocathode reductions in microbial electrolysis cells (MECs). Quorum sensing (QS) is applied to regulate microbial communications. However, how acyl-homoserine lactones (AHLs)-dependent QS organize the assembly of the biocathode microbial community, and then regulate multiple biocathode reductions remains unclear. By applying N-butanoyl homoserine lactone (C4-HSL), N-hexanoyl homoserine lactone (C6-HSL) and 3-oxo-hexanoyl homoserine lactone (3OC6-HSL) in γ-hexachlorocyclohexane (γ-HCH) contaminated MECs, this study investigated the changes of biofilm microbial structure and function and the mechanisms of AHLs-QS on γ-HCH dechlorination and CH4 production. Exogenous C4-HSL and 3OC6-HSL increased cytochrome c production and enriched dechlorinators, electroactive bacteria but not methanogens to accelerate γ-HCH dechlorination and inhibit CH4 production. C6-HSL facilitated dechlorination and CH4 production by enhancing biofilm electroactivity and increasing membrane transportation. Besides, exogenous C6-HSL restored the electron transfer capacity that was damaged by the concurrent addition of acylase, an endogenous AHL quencher. From the perspective of microbial assembly, this study sheds insights into and provides an efficient strategy to selectively accelerate dechlorination and CH4 production by harnessing microbial structure based on QS systems to meet various environmental demands.
Collapse
Affiliation(s)
- Jie Cheng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xin Su
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI, 48201, United States.
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Chakraborty S, Bashir Y, Sirotiya V, Ahirwar A, Das S, Vinayak V. Role of bacterial quorum sensing and quenching mechanism in the efficient operation of microbial electrochemical technologies: A state-of-the-art review. Heliyon 2023; 9:e16205. [PMID: 37215776 PMCID: PMC10199210 DOI: 10.1016/j.heliyon.2023.e16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Microbial electrochemical technologies (METs) are a group of innovative technologies that produce valuables like bioelectricity and biofuels with the simultaneous treatment of wastewater from microorganisms known as electroactive microorganisms. The electroactive microorganisms are capable of transferring electrons to the anode of a MET through various metabolic pathways such as direct (via cytochrome or pili) or indirect (through transporters) transfer. Though this technology is promising, the inferior yield of valuables and the high cost of reactor fabrication are presently impeding the large-scale application of this technology. Therefore, to overcome these major bottlenecks, a lot of research has been dedicated to the application of bacterial signalling, for instance, quorum sensing (QS) and quorum quenching (QQ) mechanisms in METs to improve its efficacy in order to achieve a higher power density and to make it more cost-effective. The QS circuit in bacteria produces auto-inducer signal molecules, which enhances the biofilm-forming ability and regulates the bacterial attachment on the electrode of METs. On the other hand, the QQ circuit can effectively function as an antifouling agent for the membranes used in METs and microbial membrane bioreactors, which is imperative for their stable long-term operation. This state-of-the-art review thus distinctly describes in detail the interaction between the QQ and QS systems in bacteria employed in METs to generate value-added by-products, antifouling strategies, and the recent applications of the signalling mechanisms in METs to improve their yield. Further, the article also throws some light on the recent advancements and the challenges faced while incorporating QS and QQ mechanisms in various types of METs. Thus, this review article will help budding researchers in upscaling METs with the integration of the QS signalling mechanism in METs.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Yasser Bashir
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| |
Collapse
|
8
|
Guo X, Lai CY, Hartmann EM, Zhao HP. Heterotrophic denitrification: An overlooked factor that contributes to nitrogen removal in n-DAMO mixed culture. ENVIRONMENTAL RESEARCH 2023; 216:114802. [PMID: 36375502 DOI: 10.1016/j.envres.2022.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been recognized as a sustainable process for simultaneous removal of nitrogen and methane. The metabolisms of denitrifying anaerobic methanotrophs, including Candidatus Methanoperedens and Candidatus Methylomirabilis, have been well studied. However, potential roles of heterotrophs co-existing with these anaerobic methanotrophs are generally overlooked. In this study, we pulse-fed methane and nitrate into an anaerobic laboratory sequencing batch bioreactor and enriched a mixed culture with stable nitrate removal rate (NRR) of ∼28 mg NO3--N L-1 d-1. Microbial community analysis indicates abundant heterotrophs, e.g., Arenimonas (5.3%-18.9%) and Fimbriimonadales ATM1 (6.4%), were enriched together with denitrifying anaerobic methanotrophs Ca. Methanoperedens (10.8%-13.2%) and Ca. Methylomirabilis (27.4%-34.3%). The results of metagenomics and batch tests suggested that the denitrifying anaerobic methanotrophs were capable of generating methane-derived intermediates (i.e., formate and acetate), which were employed by non-methanotrophic heterotrophs for denitrification and biomass growth. These findings offer new insights into the roles of heterotrophs in n-DAMO mixed culture, which may help to optimize n-DAMO process for nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Xu Guo
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, IL, 60208, USA
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Yang C, Zhao Y, Cao W, Xing M, Xu X, Wang Z, Sun J. Metagenomic analysis reveals antibiotic resistance genes and virulence factors in the saline-alkali soils from the Yellow River Delta, China. ENVIRONMENTAL RESEARCH 2022; 214:113823. [PMID: 35839905 DOI: 10.1016/j.envres.2022.113823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The propagation of antibiotic resistance genes (ARGs) and virulence factors (VFs) in the saline-alkali soils and associated environmental factors remains unknown. In this study, soil samples from the Yellow River Delta, China with four salinity gradients were characterized by their physiochemical properties, and shotgun metagenomic sequencing was used to identify the ARGs and VFs carried by microorganisms. Soil salinization significantly reduced the relative abundances of Solirubrobacterales, Propionibacteriales, and Micrococcales, and quorum sensing in microorganisms. The number of ARGs and VFs significantly decreased in medium and high saline-alkali soils as compared with that in non-saline-alkali soil, however, the ARGs of Bacitracin, and the VFs of iron uptake system, adherence, and stress protein increased significantly in saline-alkali soils. Spearman analysis showed that the ARGs of fluoroquinolone, tetracycline, aminoglycoside, beta-lactam, and tigecycline were positively correlated with soil pH. Similarly, we observed an increased contribution to the ARGs and VFs by taxa belonging to Solirubrobacterales and Gemmatimonadales, respectively. The control plot was mainly improved from saline-alkali land through application of animal manure, which tended to contain large amounts of ARGs and VFs in this study. Further studies are needed to observe ARGs and VFs in the saline-alkali land for multiple years and speculate the potential risks caused by varied ARGs and VFs to the soil ecosystem and human health.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yanhua Zhao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Wei Cao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Mengxin Xing
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiaoyan Xu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Juan Sun
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
10
|
Zhou M, Zeng C, Liu G, Luo H, Zhang R. Enhanced CO 2 reduction and acetate synthesis in autotrophic biocathode by N-Hexanoyl-L-homoserine lactone (C6HSL)-based quorum-sensing regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155724. [PMID: 35523344 DOI: 10.1016/j.scitotenv.2022.155724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to investigate the ecological role of quorum-sensing signaling molecule on the autotrophic biocathode for CO2 reduction and acetate synthesis. As a typical quorum-sensing signaling molecule, N-Hexanoyl-L-homoserine lactone (C6HSL) was used to regulate the construction of cathode biofilm. Results showed that the maximum acetate production from CO2 reduction improved by 94.8%, and the maximum Faraday efficiency of the microbial electrosynthesis system enhanced by 71.7%, with the regulation of C6HSL. Electrochemical analyses indicated that higher electrochemical activity and lower charge resistance of biocathode were obtained with C6HSL than without C6HSL. Confocal laser scanning microscopy and electron inhibitor experiment suggested that exogenous C6HSL increased living biomass in the biofilm and facilitated the electron transfer pathway related to NADH dehydrogenase-CoQ and proton motive force. With the C6HSL regulation, the relative abundance of hydrogen producers (e.g., Desulfovibrio and Desulfomicrobium) increased, contributing to the improved performance of autotrophic biocathode.
Collapse
Affiliation(s)
- Meizhou Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Cuiping Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Jiang C, Wang X, Wang H, Xu S, Zhang W, Meng Q, Zhuang X. Achieving Partial Nitritation by Treating Sludge With Free Nitrous Acid: The Potential Role of Quorum Sensing. Front Microbiol 2022; 13:897566. [PMID: 35572707 PMCID: PMC9095614 DOI: 10.3389/fmicb.2022.897566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Partial nitritation is increasingly regarded as a promising biological nitrogen removal process owing to lower energy consumption and better nitrogen removal performance compared to the traditional nitrification process, especially for the treatment of low carbon wastewater. Regulating microbial community structure and function in sewage treatment systems, which are mainly determined by quorum sensing (QS), by free nitrous acid (FNA) to establish a partial nitritation process is an efficient and stable method. Plenty of research papers reported that QS systems ubiquitously existed in ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB), and various novel nitrogen removal processes based on partial nitritation were successfully established using FNA. Although the probability that partial nitritation process might be achieved by the regulation of FNA on microbial community structure and function through the QS system was widely recognized and discussed, the potential role of QS in partial nitritation achievement by FNA and the regulation mechanism of FNA on QS system have not been reviewed. This article systematically reviewed the potential role of QS in the establishment of partial nitritation using FNA to regulate activated sludge flora based on the summary and analysis of the published literature for the first time, and future research directions were also proposed.
Collapse
Affiliation(s)
- Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Huacai Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,The Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- Shenzhen Shenshui Water Resources Consulting Co., Ltd., Shenzhen, China
| | - Qingjie Meng
- Shenzhen Shenshui Water Resources Consulting Co., Ltd., Shenzhen, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Cheng XL, Xu Q, Sun JD, Li CR, Yang QW, Li B, Zhang XY, Zhou J, Yong XY. Quorum sensing signals improve the power performance and chlortetracycline degradation efficiency of mixed-culture electroactive biofilms. iScience 2022; 25:104299. [PMID: 35573194 PMCID: PMC9097700 DOI: 10.1016/j.isci.2022.104299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/16/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Electroactive biofilms (EABs) play an important role in bioelectrochemical systems due to their abilities to generate electrons and perform extracellular electron transfer (EET). Here, we investigated the effects of quorum sensing (QS) signals on power output, chlortetracycline degradation, and structure of EABs in MFCs treating antibiotic wastewater. The voltage output of MFCs with C4-HSL and PQS increased by 21.57% and 13.73%, respectively, compared with that without QS signals. The chlortetracycline degradation efficiency in closed-circuit MFCs with C4-HSL and PQS increased by 56.53% and 50.04%, respectively, which resulted from the thicker biofilms, higher biomass, and stronger activities. Additionally, QS signals induced the heterogeneous distribution of EPS for a balance between self-protection and EET under environmental pressure. Geobacter prevailed by the addition of QS signals to resist high chlortetracycline concentration. Our results provided a broader understanding on regulating EABs within electrode interface to improve their performance for environmental remediation and clean energy development. The voltage output of MFCs was enhanced with the addition of QS signals QS signals increased the bioelectrochemical degradation efficiency of CTC EABs exhibited heterogeneity in composition and interaction by the QS signals QS signals induced a balance between self-protection and EET of EABs
Collapse
|
13
|
Microbial Consortia Are Needed to Degrade Soil Pollutants. Microorganisms 2022; 10:microorganisms10020261. [PMID: 35208716 PMCID: PMC8874626 DOI: 10.3390/microorganisms10020261] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
Soil pollution is one of the most serious environmental problems globally due to the weak self-purification ability, long degradation time, and high cost of cleaning soil pollution. The pollutants in the soil can be transported into the human body through water or dust, causing adverse effects on human health. The latest research has shown that the clean-up of soil pollutants through microbial consortium is a very promising method. This review provides an in-depth discussion on the efficient removal, bio-adsorption, or carbonated precipitation of organic and inorganic pollutants by the microbial consortium, including PAHs, BPS, BPF, crude oil, pyrene, DBP, DOP, TPHP, PHs, butane, DON, TC, Mn, and Cd. In view of the good degradation ability of the consortium compared to single strains, six different synergistic mechanisms and corresponding microorganisms are summarized. The microbial consortium obtains such activities through enhancing synergistic degradation, reducing the accumulation of intermediate products, generating the crude enzyme, and self-regulating, etc. Furthermore, the degradation efficiency of pollutants can be greatly improved by adding chemical materials such as the surfactants Tween 20, Tween 80, and SDS. This review provides insightful information regarding the application of microbial consortia for soil pollutant removal.
Collapse
|
14
|
He ZW, Liu WZ, Tang CC, Liang B, Zhou AJ, Chen F, Ren YX, Wang AJ. Responses of anaerobic digestion of waste activated sludge to long-term stress of benzalkonium chlorides: Insights to extracellular polymeric substances and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148957. [PMID: 34274658 DOI: 10.1016/j.scitotenv.2021.148957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Quaternary ammonium compounds have gained widespread attention due to their extensive enrichment in waste activated sludge (WAS) and potentially adverse effect to anaerobes. This study selected benzalkonium chlorides (BACs) as model to reveal the responses of anaerobic digestion of WAS to long-term stress of BACs. Results showed that the solubilization enhancement of WAS contributed by BACs was the acceleration of cell lysis, rather than the disruption of extracellular polymeric substances, and the accumulation improvement of short chain fatty acids (SCFAs) attributed to hydrolysis improvement and methanogenesis inhibition at either medium -or high level of BACs. In addition, a low level had no significant effect on the production of methane compared to control, with averages of 0.059 and 0.055 m3/(m3·d), respectively, whereas a medium level reduced methane production to 20% of control, and a high level almost completely inhibited methanogenesis. Correspondingly, BACs could shift microbial communities related to SCFAs and methane productions. For the bacterial community, a high level of BACs led to abundance reductions of Firmicutes, Bacteroidetes, Acidobacteria and Chloroflexi, but Synergistetes was increased to 10.5%, which was almost not detected either in control or at a low level of BACs. And for dominant archaeal community, they tended to be shifted from acetotrophic to hydrogenotrophic methanogens with BACs increasing from low to high level. These findings provided some new insights for the role of BACs in anaerobic digestion, as well as resource recovery from WAS.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wen-Zong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bin Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
15
|
Wang Z, Liu X, Ni SQ, Zhuang X, Lee T. Nano zero-valent iron improves anammox activity by promoting the activity of quorum sensing system. WATER RESEARCH 2021; 202:117491. [PMID: 34358911 DOI: 10.1016/j.watres.2021.117491] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 05/15/2023]
Abstract
The addition of nano zero-valent iron (nZVI) has been proven to improve the efficiency of the anammox process, however, the mechnism is not clear. Here, the effect of nZVI on anammox microbial community was studied by metagenomic sequencing methods. It was found that 50 mg/L nZVI indeed promoted the removal of NH4+ and NO2- of the anammox reactor and significantly improved the relative abundance of AnAOB (Ca. Brocadia) from 42.1% to 52.5%. What's more, 50 mg/L nZVI increased the abundance of c-di-GMP synthesized protein from 148 rpmr to 252 rpmr in the microbial community and decreased the abundance of c-di-GMP degradation protein from 238 rpmr to 204 rpmr, which indirectly led to the enrichment of c-di-GMP in the microbial community. The enrichment of c-di-GMP reduced the motility of microorganisms in the reactor and promoted the secretion of extracellular polymers by bacteria, which is beneficial to the formation of sludge particles in the anammox reactor. In conclusion, this research clarified the mechanism of nZVI promoting the anammox process and provided theoretical guidance for the engineering application of anammox.
Collapse
Affiliation(s)
- Zhibin Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China; Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, 518052 China
| | - Xiaolin Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China; Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, 518052 China.
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Pusan 609-735, Republic of Korea
| |
Collapse
|