1
|
Tan M, Wang Y, Ji Y, Mei R, Zhao X, Song J, You J, Chen L, Wang X. Inflammatory bowel disease alters in vivo distribution of orally administrated nanoparticles: Revealing via SERS tag labeling technique. Talanta 2024; 275:126172. [PMID: 38692050 DOI: 10.1016/j.talanta.2024.126172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Nanoparticles (NPs) could be uptake orally and exposed to digestive tract through various sources such as particulate pollutant, nanomedicine and food additive. Inflammatory bowel disease (IBD), as a global disease, induced disruption of the intestinal mucosal barrier and thus altered in vivo distribution of NPs as a possible consequence. However, related information was relatively scarce. Herein, in vivo distribution of typical silica (SiO2) and titania (TiO2) NPs was investigated in healthy and IBD models at cell and animal levels via a surface-enhanced Raman scattering (SERS) tag labeling technique. The labeled NPs were composed of gold SERS tag core and SiO2 (or TiO2) shell, demonstrating sensitive and characteristic SERS signals ideal to trace the NPs in vivo. Cell SERS mapping revealed that protein corona from IBD intestinal fluid decreased uptake of NPs by lipopolysaccharide-induced RAW264.7 cells compared with normal intestinal fluid protein corona. SERS signal detection combined with inductively coupled plasma mass spectrometry (ICP-MS) analysis of mouse tissues (heart, liver, spleen, lung and kidney) indicated that both NPs tended to accumulate in lung specifically after oral administration for IBD mouse (6 out of 20 mice for SiO2 and 4 out of 16 mice for TiO2 were detected in lung). Comparatively, no NP signals were detected in all tissues from healthy mice. These findings suggested that there might be a greater risk associated with the oral uptake of NPs in IBD patients due to altered in vivo distribution of NPs.
Collapse
Affiliation(s)
- Mingyue Tan
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yunxia Ji
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Song
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Jiang M, Zhang GH, Yu Y, Zhao YH, Liu J, Zeng Q, Feng MY, Ye F, Xiong DS, Wang L, Zhang YN, Yu L, Wei JJ, He LB, Zhi W, Du XR, Li NJ, Han CL, Yan HQ, Zhou ZT, Miao YB, Wang W, Liu WX. De novo design of a nanoregulator for the dynamic restoration of ovarian tissue in cryopreservation and transplantation. J Nanobiotechnology 2024; 22:330. [PMID: 38862987 PMCID: PMC11167790 DOI: 10.1186/s12951-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Collapse
Affiliation(s)
- Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Guo-Hui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuan Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu-Hong Zhao
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Meng-Yue Feng
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Dong-Sheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ya-Nan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ling Yu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Jia-Jing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li-Bing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Xin-Rong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ning-Jing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang-Li Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - He-Qiu Yan
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Zhuo-Ting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wen Wang
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wei-Xin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China.
| |
Collapse
|
3
|
Wang C, Huang C, Cao Y. Epigallocatechin gallate alleviated the in vivo toxicity of ZnO nanoparticles to mouse intestine. J Appl Toxicol 2024; 44:686-698. [PMID: 38095138 DOI: 10.1002/jat.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 04/16/2024]
Abstract
To evaluate the oral toxicity of nanoparticles (NPs), it is necessary to consider the interactions between NPs and nutrient molecules. Recently, we reported that epigallocatechin gallate (EGCG), a healthy component in green tea, alleviated the toxicity of ZnO NPs to 3D Caco-2 spheroids in vitro. The present study investigated the combined effects of EGCG and ZnO NPs to mice in vivo. Mice were administrated with 35 or 105 mg/kg bodyweight ZnO NPs with or without the presence of 80 mg/kg bodyweight EGCG via gastric route, once a day, for 21 days, and the influences of EGCG on the toxicity of ZnO NPs to intestine were investigated. We found that EGCG altered the colloidal properties of ZnO NPs both in water and artificial intestine juice. As expected, ZnO NPs induced toxicological effects, such as decreased bodyweight, higher Chiu's scores, and ultrastructural changes in intestine, whereas EGCG alleviated these effects. Combined exposure to EGCG and ZnO NPs also changed trace element levels in mouse intestine. For example, the levels of Ti, Co, and Ni were only significantly elevated after co-exposure to EGCG and ZnO NPs, and Fe levels were only significantly decreased by ZnO NPs. Western blot analysis suggested that tight junction (TJ) and endoplasmic reticulum (ER) proteins were elevated by ZnO NPs, but EGCG inhibited this trend. Combined, these data suggested that gastric exposure to ZnO NPs induced intestinal damage, trace element imbalance, and TJ/ER protein expression in mouse intestine, whereas EGCG alleviated these effects of ZnO NPs.
Collapse
Affiliation(s)
- Canyang Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
4
|
Grodzicki W, Dziendzikowska K, Gromadzka-Ostrowska J, Wilczak J, Oczkowski M, Kopiasz Ł, Sapierzyński R, Kruszewski M, Grzelak A. In Vivo Pro-Inflammatory Effects of Silver Nanoparticles on the Colon Depend on Time and Route of Exposure. Int J Mol Sci 2024; 25:4879. [PMID: 38732098 PMCID: PMC11084194 DOI: 10.3390/ijms25094879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Nanosilver is a popular nanomaterial, the potential influence of which on humans is of serious concern. Herein, we exposed male Wistar rats to two regimens: a repeated oral dose of 30 mg/kg bw silver nanoparticles (AgNPs) over 28 days and a single-dose injection of 5 mg/kg bw of AgNPs. At three different time points, we assessed antioxidant defense, oxidative stress and inflammatory parameters in the colon, as well as toxicity markers in the liver and plasma. Both experimental scenarios showed increased oxidative stress and inflammation in the colon. Oral administration seemed to be linked to increased reactive oxygen species generation and lipid peroxidation, while the effects induced by the intravenous exposure were probably mediated by silver ions released from the AgNPs. Repeated oral exposure had a more detrimental effect than the single-dose injection. In conclusion, both administration routes had a similar impact on the colon, although the underlying mechanisms are likely different.
Collapse
Affiliation(s)
- Wojciech Grodzicki
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland;
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Agnieszka Grzelak
- Cytometry Lab, Department Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
5
|
Zhang Y, Cheng Y, Zhao W, Song F, Cao Y. Effects of Halloysite Nanotubes and Multi-walled Carbon Nanotubes on Kruppel-like Factor 15-Mediated Downstream Events in Mouse Hearts After Intravenous Injection. Cardiovasc Toxicol 2024; 24:408-421. [PMID: 38411850 DOI: 10.1007/s12012-024-09844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Halloysite nanotubes (HNTs) are nanomaterials (NMs) derived from natural clays and have been considered as biocompatible NMs for biomedical uses. However, the cardiovascular toxicity of HNTs has not been thoroughly investigated. In this study, we compared the cardiotoxicity of HNTs and multi-walled carbon nanotubes (MWCNTs), focusing on the changes in Kruppel-like factor (KLF)-mediated signaling pathways. Mice were intravenously injected with 50 µg NMs, once a day, for 5 days, and then mouse hearts were removed for experiments. While HNTs or MWCNTs did not induce obvious pathological changes, RNA-sequencing data suggested the alterations of KLF gene expression. We further confirmed an increase of Klf15 positive cells, accompanied by changes in Klf15-related gene ontology (GO) terms. We noticed that most of the changed GO terms are related with the regulation of gene expression, and we confirmed that the NMs increased myoneurin (Mynn) but decreased snail family transcriptional repressor 1 (Snai1), two transcription factors (TFs) related with Klf15. Besides, the changed GO terms also include metal ion binding and positive regulation of glucose import, and we verified an increase of phosphoenolpyruvate carboxykinase 1 (Pck1) and insulin receptor (Insr). However, HNTs and MWCNTs only showed minimal impact on cell death signaling pathways, and no increase in apoptotic sites was observed after NM treatment. We concluded that intravenous administration of HNTs and MWCNTs activated a protective TF, namely Klf15 in mouse aortas, to alter gene expression and signaling pathways related with metal ion binding and glucose import.
Collapse
Affiliation(s)
- Yimin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yujia Cheng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
6
|
Huang X, Li C, Wei T, Zou L, Liu N, Bai C, Yao Y, Wang Z, Li B, Qiao D, Niu Y, Wang X, Tang M. Influence of silver doping on pro-inflammatory and pro-fibrogenic effects of nano-titanium dioxide in murine lung. ENVIRONMENTAL TOXICOLOGY 2024; 39:1388-1401. [PMID: 37986241 DOI: 10.1002/tox.24045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Silver is usually loaded on nano-titanium dioxide (TiO2 ) through photodeposition method to enhance visible-light catalytic functions for environment purification. However, little is known about how the toxicity changes after silver doping and how the physicochemical properties of loaded components affect nanocomposite toxicity. In this study, Ag-TiO2 with different sizes and contents of silver particles were obtained by controlling photodeposition time (PDT) and silver addition amount. Pro-inflammatory and pro-fibrogenic responses of these photocatalysts were evaluated in male C57BL/6J murine lung. As a result, silver was well assembled on TiO2 , promoting visible-light catalytic activity. Notably, the size of silver particles increased with PDT. Meanwhile, toxicity results showed that pure TiO2 (P25) mainly caused neutrophil infiltration, while 2 wt/wt% silver-loaded TiO2 recruited more types of inflammatory cells in the lung. Both of them caused the increase of proinflammatory cytokines while decreasing the anti-inflammatory cytokine in bronchoalveolar lavage fluid. However, 2 wt/wt% silver doping also accelerated the lung pro-fibrogenic response of photocatalysts in the subacute phase from evidence of collagen deposition and hydroxyproline concentrations. Mechanistically, the overactivation of TGFBR2 receptors in TGF-β/smads pathways by silver-loaded TiO2 rather than pure TiO2 may be the reason why silver-loaded TiO2 can promote pro-fibrogenic effect response. Intriguingly, the increased toxicity caused by silver doping can be rescued by increasing the size of the loaded silver or decreasing the silver amount. These results may be important for the new understanding of the toxicity of TiO2 -based photocatalysts.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Congcong Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Binjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Dong Qiao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Bianchi MG, Chiu M, Taurino G, Bergamaschi E, Turroni F, Mancabelli L, Longhi G, Ventura M, Bussolati O. Amorphous silica nanoparticles and the human gut microbiota: a relationship with multiple implications. J Nanobiotechnology 2024; 22:45. [PMID: 38291460 PMCID: PMC10826219 DOI: 10.1186/s12951-024-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.
Collapse
Affiliation(s)
- Massimiliano G Bianchi
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy.
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| | - Martina Chiu
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Sciences and Paediatrics, University of Turin, Turin, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| |
Collapse
|
8
|
Huang X, Li C, Wei T, Liu N, Yao Y, Wang Z, Hu Y, Fang Q, Guan S, Xue Y, Wu T, Zhang T, Tang M. Oropharyngeal aspirated Ag/TiO 2 nanohybrids: Transformation, distribution and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168309. [PMID: 37944607 DOI: 10.1016/j.scitotenv.2023.168309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The wide application of Ag-loaded TiO2 nanohybrids photocatalysts on environment and energy increases the lung exposure risk to humans. Ag/TiO2 nanohybrids inhalation can cause pulmonary toxicity, and there are concerns about whether the loaded silver can be released and cause toxic effects on extrapulmonary organs. Therefore, in this study, the possible biotransformation, biodistribution, and toxicity of oropharyngeal aspirated Ag/TiO2 nanohybrids were investigated first time in vitro and in vivo to answer this question. Firstly, the results of biotransformation showed that the ultrafine silver nanoparticles (~3.5 nm, 2 w/w%) loaded on the surface of nano-TiO2 (~25 nm) could agglomerate and release in Gamble's solution, and the hydrodynamic diameter of the nanohybrids agglomerates increased from about 200 nm to 1 μm. Furthermore, after exposure 10 mg/kg Ag/TiO2 nanohybrids to C57BL/6 J male mice by oropharyngeal aspiration weekly, the biodistribution results showed that the released silver could result in blood, liver, and brain distribution within 28 d. Finally, body weight, organ coefficient, blood biochemical indicators of liver and kidney function, and pathological images demonstrated that although silver could release and lead to extrapulmonary organ distribution, it did not cause obvious extrapulmonary organ damage. The original lung was still the main toxicity and accumulation target organ of Ag/TiO2 nanohybrids, which mainly manifested as the pro-inflammatory and pro-fibrotic effects that should be focused on in the future. Therefore, this study is of great significance in evaluating the safety of Ag-loaded TiO2 nanoparticles and predicting their toxic mechanisms.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Congcong Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuanyuan Hu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Qing Fang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
9
|
Mohkam M, Sadraeian M, Lauto A, Gholami A, Nabavizadeh SH, Esmaeilzadeh H, Alyasin S. Exploring the potential and safety of quantum dots in allergy diagnostics. MICROSYSTEMS & NANOENGINEERING 2023; 9:145. [PMID: 38025887 PMCID: PMC10656439 DOI: 10.1038/s41378-023-00608-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023]
Abstract
Biomedical investigations in nanotherapeutics and nanomedicine have recently intensified in pursuit of new therapies with improved efficacy. Quantum dots (QDs) are promising nanomaterials that possess a wide array of advantageous properties, including electronic properties, optical properties, and engineered biocompatibility under physiological conditions. Due to these characteristics, QDs are mainly used for biomedical labeling and theranostic (therapeutic-diagnostic) agents. QDs can be functionalized with ligands to facilitate their interaction with the immune system, specific IgE, and effector cell receptors. However, undesirable side effects such as hypersensitivity and toxicity may occur, requiring further assessment. This review systematically summarizes the potential uses of QDs in the allergy field. An overview of the definition and development of QDs is provided, along with the applications of QDs in allergy studies, including the detection of allergen-specific IgE (sIgE), food allergens, and sIgE in cellular tests. The potential treatment of allergies with QDs is also described, highlighting the toxicity and biocompatibility of these nanodevices. Finally, we discuss the current findings on the immunotoxicity of QDs. Several favorable points regarding the use of QDs for allergy diagnosis and treatment are noted.
Collapse
Affiliation(s)
- Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Antonio Lauto
- School of Science, University of Western Sydney, Campbelltown, NSW 2560 Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560 Australia
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hesamodin Nabavizadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Esmaeilzadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Liu G, Bao L, Chen C, Xu J, Cui X. The implication of mesenteric functions and the biological effects of nanomaterials on the mesentery. NANOSCALE 2023; 15:12868-12879. [PMID: 37492026 DOI: 10.1039/d3nr02494f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A growing number of nanomaterials are being broadly used in food-related fields as well as therapeutics. Oral exposure to these widespread nanomaterials is inevitable, with the intestine being a major target organ. Upon encountering the intestine, these nanoparticles can cross the intestinal barrier, either bypassing cells or via endocytosis pathways to enter the adjacent mesentery. The intricate structure of the mesentery and its entanglement with the abdominal digestive organs determine the final fate of nanomaterials in the human body. Importantly, mesentery-governed dynamic processes determine the distribution and subsequent biological effects of nanomaterials that cross the intestine, thus there is a need to understand how nanomaterials interact with the mesentery. This review presents the recent progress in understanding the mesenteric structure and function and highlights the importance of the mesentery in health and disease, with a focus on providing new insights and research directions around the biological effects of nanomaterials on the mesentery. A thorough comprehension of the interactions between nanomaterials and the mesentery will facilitate the design of safer nanomaterial-containing products and the development of more effective nanomedicines to combat intestinal disorders.
Collapse
Affiliation(s)
- Guanyu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
11
|
Wu D, Zhou H, Hu Z, Ai F, Du W, Yin Y, Guo H. Multiple effects of ZnO nanoparticles on goldfish (Carassius auratus): Skin mucus, gut microbiota and stable isotope composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121651. [PMID: 37062409 DOI: 10.1016/j.envpol.2023.121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
The skin and the gut are direct target tissues for nanoparticles, yet attention to effects of metal-based nanoparticles (MNPs) on these two and the discrepancy in these effects remain inadequate. Here, effects of ZnO nanoparticles (nZnO) on skin mucus and gut microbiota of goldfish (Carassius auratus) were investigated, as well as further elements turnover and metabolic variations. After 14 days of exposure, considerable variations in levels of biomarkers (protein, glucose, lysozyme and immunoglobulin M) in skin mucus demonstrated significant stress responses to nZnO. nZnO exposure significantly reduced the abundance of Cetobacterium in the gut while increased that of multiple pathogens, and further leading to down-regulation of pathways such as carbohydrate metabolism, translation, and replication and repair. Decreased δ15N values indicated declined N turnover in vivo, further demonstrating the negative effect of nZnO on metabolism in the organism. Integration analysis of each biomarker using the biomarker response index version 2 (IBRv2) revealed concentration-dependent effects of nZnO on skin mucus, while effects on physiology in vivo was not, demonstrating the discrepancy in the toxicity pathways and toxic effects of nZnO on different tissues. This work improved our understanding about the comprehensive toxicity of nZnO on aquatic organism.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hailing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zixuan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Wei T, Zhang T, Tang M. An overview of quantum dots-induced immunotoxicity and the underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119865. [PMID: 35944776 DOI: 10.1016/j.envpol.2022.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs) have bright luminescence and excellent photostability. New synthesis techniques and strategies also enhance QDs properties for specific applications. With the continuous expansion of the applications, QDs-mediated immunotoxicity has become a major concern. The immune system has been confirmed to be an important target organ of QDs and is sensitive to QDs. Herein, review immunotoxic effects caused by QDs and the underlying mechanisms. Firstly, QDs exposure-induced modulation in immune cell maturation and differentiation is summarized, especially pre-exposed dendritic cells (DCs) and their regulatory roles in adaptive immunity. Cytokines are usually recognized as biomarkers of immunotoxicity, therefore, variation of cytokines mediated by QDs is also highlighted. Moreover, the activation of the complement system induced by QDs is discussed. Accumulated results have suggested that QDs disrupt the immune response by regulating intracellular oxidative stress (reactive oxygen species) levels, autophagy formation, and expressions of pro-inflammatory mediators. Furthermore, several signalling pathways play a key role in the disruption. Finally, some difficulties worthy of further consideration are proposed. Because there are still challenges in biomedical and clinical applications, this review hopes to provide information that could be useful in exploring the mechanisms associated with QD-induced immunotoxicity.
Collapse
Affiliation(s)
- Tingting Wei
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
13
|
Xie L, Li Q, Liao Y, Huang Z, Liu Y, Liu C, Shi L, Li Q, Yuan M. Toxicity Analysis of Mesoporous Polydopamine on Intestinal Tissue and Microflora. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196461. [PMID: 36234997 PMCID: PMC9571127 DOI: 10.3390/molecules27196461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
As a promising therapy, photothermal therapy (PTT) converts near-infrared (NIR) light into heat through efficient photothermal agents (PTAs), causing a rapid increase in local temperature. Considering the importance of PTAs in the clinical application of PTT, the safety of PTAs should be carefully evaluated before their widespread use. As a promising PTA, mesoporous polydopamine (MPDA) was studied for its clinical applications for tumor photothermal therapy and drug delivery. Given the important role that intestinal microflora plays in health, the impacts of MPDA on the intestine and on intestinal microflora were systematically evaluated in this study. Through biological and animal experiments, it was found that MPDA exhibited excellent biocompatibility, in vitro and in vivo. Moreover, 16S rRNA analysis demonstrated that there was no obvious difference in the composition and classification of intestinal microflora between different drug delivery groups and the control group. The results provided new evidence that MPDA was safe to use in large doses via different drug delivery means, and this lays the foundation for further clinical applications.
Collapse
Affiliation(s)
- Luoyijun Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Qiyan Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Yingying Liao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Zihua Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Yulin Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Chutong Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Leilei Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518017, China
| |
Collapse
|
14
|
Liu C, Wang Y, Liu D, Yang T, Tang Z. Analysis of Research Status and Development Trend of Nanotoxicology of Liliaceae Medicinal Plants. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9777817. [PMID: 35909474 PMCID: PMC9334102 DOI: 10.1155/2022/9777817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
The research status and development trend of nanotoxicology of Liliaceae medicinal plants were analyzed. In the research, the toxicology of Liliaceae medicinal plants was investigated by the preparation method of silver nanoparticles. By means of spectral curve experiment, the present situation of nanotoxicology of Liliaceae medicinal plants was analyzed, and then its subsequent development trend was analyzed. In this process, Liliaceae medicinal plants could be used effectively, which could create great economic benefits. In the application of the above scheme, the toxicological degradation of Liliaceae medicinal plants could be controlled at about 96%. The high-dose silver nanoparticles could reach 100 μM, and the silver nitrate could reach 10 or 30 μM.
Collapse
Affiliation(s)
- ChaoQun Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Yinquan Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730030, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co Constructed by Gansu Province & MOE of PRC, Lanzhou 730030, China
| | - DongLing Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tao Yang
- Key Laboratory of Microbial Resources Exploitation and Application Lanzhou, 730000, China
- Institute of Biology Gansu Academy of Sciences, Lanzhou 730000, China
| | - ZhanWen Tang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730030, China
| |
Collapse
|
15
|
Cao Y. Nutrient molecule corona: An update for nanomaterial-food component interactions. Toxicology 2022; 476:153253. [PMID: 35811011 DOI: 10.1016/j.tox.2022.153253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
The adsorption of biological molecules to nanomaterials (NMs) will significantly impact NMs' behavior in complex microenvironments. Previously we proposed the need to consider the interactions between food components and NMs for the evaluation of oral toxicity of NMs. This review updated this concept as nutrient molecule corona, that the adsorption of nutrient molecules alters the uptake of nutrient molecules and/or NMs, as well as the signaling pathways to induce a combined toxicity due to the biologically active nature of nutrient molecules. Even with the presence of protein corona, nutrient molecules may still bind to NMs to change the identities of NMs in vivo. Furthermore, this review proposed the binding of excessive nutrient molecules to NMs to induce a combined toxicity under pathological conditions such as metabolic diseases. The structures of nutrient molecules and physicochemical properties of NMs determine nutrient molecule corona formation, and these aspects should be considered to limit the unwanted effects brought by nutrient molecule corona. In conclusion, similar to other biological molecule corona, the formation of nutrient molecule corona due to the presence of food components or excessive nutrient molecules in pathophysiological microenvironments will alter the behaviors of NMs.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
16
|
Vieira IRS, de Carvalho APAD, Conte-Junior CA. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3673-3716. [PMID: 35713102 DOI: 10.1111/1541-4337.12990] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
Inorganic nanoparticles (NPs) and natural antioxidant compounds are an emerging trend in the food industry. Incorporating these substances in biobased and biodegradable matrices as polysaccharides (e.g., starch, cellulose, and chitosan) and proteins has highlighted the potential in active food packaging applications due to more significant antimicrobial, antioxidant, UV blocking, oxygen scavenging, water vapor permeability effects, and low environmental impact. In recent years, the migration of metal NPs and metal oxides in food contact packaging and their toxicological potential have raised concerns about the safety of the nanomaterials. In this review, we provide a comprehensive overview of the main biobased and biodegradable polymer nanocomposites, inorganic NPs, natural antioxidants, and their potential use in active food packaging. The intrinsic properties of NPs and natural antioxidant actives in packaging materials are evaluated to extend shelf-life, safety, and food quality. Toxicological and safety aspects of inorganic NPs are highlighted to understand the current controversy on applying some nanomaterials in food packaging. The synergism of inorganic NPs and plant-derived natural antioxidant actives (e.g., vitamins, polyphenols, and carotenoids) and essential oils (EOs) potentiated the antibacterial and antioxidant properties of biodegradable nanocomposite films. Biodegradable packaging films based on green NPs-this is biosynthesized from plant extracts-showed suitable mechanical and barrier properties and had a lower environmental impact and offered efficient food protection. Furthermore, AgNPs and TiO2 NPs released metal ions from packaging into contents insufficiently to cause harm to human cells, which could be helpful to understanding critical gaps and provide progress in the packaging field.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Anna Paula Azevedo de de Carvalho
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil.,Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Interactions between Nanoparticles and Intestine. Int J Mol Sci 2022; 23:ijms23084339. [PMID: 35457155 PMCID: PMC9024817 DOI: 10.3390/ijms23084339] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The use of nanoparticles (NPs) has surely grown in recent years due to their versatility, with a spectrum of applications that range from nanomedicine to the food industry. Recent research focuses on the development of NPs for the oral administration route rather than the intravenous one, placing the interactions between NPs and the intestine at the centre of the attention. This allows the NPs functionalization to exploit the different characteristics of the digestive tract, such as the different pH, the intestinal mucus layer, or the intestinal absorption capacity. On the other hand, these same characteristics can represent a problem for their complexity, also considering the potential interactions with the food matrix or the microbiota. This review intends to give a comprehensive look into three main branches of NPs delivery through the oral route: the functionalization of NPs drug carriers for systemic targets, with the case of insulin carriers as an example; NPs for the delivery of drugs locally active in the intestine, for the treatment of inflammatory bowel diseases and colon cancer; finally, the potential concerns and side effects of the accidental and uncontrolled exposure to NPs employed as food additives, with focus on E171 (titanium dioxide) and E174 (silver NPs).
Collapse
|
18
|
Wu T, Wang X, Chen M, Zhang X, Zhang J, Cheng J, Kong L, Tang M. Respiratory exposure to graphene quantum dots causes fibrotic effects on lung, liver and kidney of mice. Food Chem Toxicol 2022; 163:112971. [PMID: 35358666 DOI: 10.1016/j.fct.2022.112971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Graphene quantum dots (GQDs), as a novel graphene-based nanoparticle, presented a bright prospect in fields of biomedicine due to their excellent optical property. However, the biosafety assessment of GQDs is far behind their rapid development, which could restrict their wilder applications. This study focused on the potential adverse effects of two kinds of promising GQDs, i.e. nitrogen-doping graphene quantum dots (N-GQDs) and amino-modified graphene quantum dot (A-GQDs) on primary target organs of GNMs, including lung, liver and kidney. The intranasal instillation used here was to imitate the respiratory exposure of GQDs that is a commonly exposure route of GQDs in the environment. Although no severe damages associated with general health occurred in mice treated with GQDs, the fibrosis evidenced by statistically significant increases in the area of collagen I and TGF-ß1 and p-Smad3 expressions were observed in the lung, liver and kidney tissues. Interestingly, the fibrotic effect induced by GQDs could be effectively alleviated by a ferroptosis-specific inhibitor, which demonstrated a close relationship of fibrosis and ferroptosis. This study not only provides new insights on the toxicity mechanisms of GQDs, but also offers some efficient ways to control toxicity of GQDs, like dosage threshold and small molecular drugs.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| | - Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Xiaomeng Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Jixiang Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Jin Cheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| |
Collapse
|
19
|
Cao W, Gu M, Wang S, Huang C, Xie Y, Cao Y. Effects of epigallocatechin gallate on the stability, dissolution and toxicology of ZnO nanoparticles. Food Chem 2022; 371:131383. [PMID: 34808776 DOI: 10.1016/j.foodchem.2021.131383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 01/17/2023]
Abstract
Previously we reported the cytoprotective effects of polyphenols rich in hydroxyl groups against ZnO nanoparticles (NPs). This study used RNA-sequencing to evaluate the toxicity of ZnO NPs and epigallocatechin gallate (EGCG) to 3D Caco-2 spheroids. EGCG altered the colloidal stability of ZnO NPs, shown as the changes of atomic force microscopic height, solubility in cell culture medium, and hydrodynamic sizes. EGCG almost completely reversed ZnO NP-induced cytotoxicity, and consistently, alleviated ZnO NP-induced gene ontology (GO) terms and genes related with apoptosis. EGCG also modestly decreased intracellular Zn ions and changed GO terms and genes related with endocytosis/exocytosis in ZnO NP-exposed spheroids. Meanwhile, EGCG changed ZnO NP-induced alteration of GO terms and genes related with the functions of mitochondria, endoplasmic reticulum and lysosomes. We concluded that EGCG alleviated the cytotoxicity of ZnO NPs to 3D Caco-2 spheroids by altering NPs' colloidal properties and the pathways related with internalization and organelle dysfunction.
Collapse
Affiliation(s)
- Wandi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Manyu Gu
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shuyi Wang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China.
| |
Collapse
|
20
|
Kermanizadeh A, Jacobsen NR, Mroczko A, Brown D, Stone V. Acute hazard assessment of silver nanoparticles following intratracheal instillation, oral and intravenous injection exposures. Nanotoxicology 2022; 15:1295-1311. [PMID: 35015612 DOI: 10.1080/17435390.2021.2020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With ever-increasing production and use of nanoparticles (NPs), there is a necessity to evaluate the probability of consequential adverse effects in individuals exposed to these particles. It is now understood that a proportion of NPs can translocate from primary sites of exposure to a range of secondary organs, with the liver, kidneys and spleen being some of the most important. In this study, we carried out a comprehensive toxicological profiling (inflammation, changes in serum biochemistry, oxidative stress, acute phase response and histopathology) of Ag NP induced adverse effects in the three organs of interest following acute exposure of the materials at identical doses via intravenous (IV), intratracheal (IT) instillation and oral administration. The data clearly demonstrated that bioaccumulation and toxicity of the particles were most significant following the IV route of exposure, followed by IT. However, oral exposure to the NPs did not result in any changes that could be interpreted as toxicity in any of the organs of interest within the confines of this investigation. The finding of this study clearly indicates the importance of the route of exposure in secondary organ hazard assessment for NPs. Finally, we identify Connexin 32 (Cx32) as a novel biomarker of NP-mediated hepatic damage which is quantifiable both (in vitro) and in vivo following exposure of physiologically relevant doses.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Human Sciences Research Centre, University of Derby, Derby, United Kingdom
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Agnieszka Mroczko
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom
| | - David Brown
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom
| | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Liu S, Zhao Y, Liu Y, Tang Y, Xu X, Wang M, Tao X, Xu H. Pre-exposure to TiO2-NPs aggravates alcohol-related liver injury by inducing intestinal barrier damage in mice. Toxicol Sci 2021; 185:28-37. [PMID: 34718815 DOI: 10.1093/toxsci/kfab127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The wide application of TiO2 nanoparticles (NPs) and the increase in opportunities for its release into the environment undoubtedly compound the potential of these materials to harm people. Research on the effects of pre-exposure to TiO2-NPs on disease development is scarce. The purpose of this work was to assess whether pre-exposure to TiO2-NPs (20 mg/kg and 200 mg/kg) for 28 days aggravates the development of alcohol-related liver injury in mice. Results showed that oral administration of 200 mg/kg TiO2-NPs induced only modest changes in liver function parameters, but could induce intestinal inflammation and destroy the integrity of intestinal barrier. After the subsequent alcohol intervention, pre-exposure to TiO2-NPs (200 mg/kg) was found to aggravate alcohol-related liver injury, including significantly increases in serum Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Total glycerol (TG), and Total cholesterol (TC), as well as steatosis and inflammation in the liver. Further investigation revealed that alcohol could increase intestinal permeability and reduce the expression of tight junction proteins in mice pre-exposed high dosage of TiO2-NPs, thereby inducing the transfer of more lipopolysaccharides (LPS) into the liver, ultimately triggering more severe liver inflammation. This study emphasizes that pre-exposed of TiO2-NPs (high doses of up to 200 mg/kg) can potentially promote the development of alcoholic liver diseases. Furthermore, this study provides new insights into evaluating the safety of NPs.
Collapse
Affiliation(s)
- Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yingxia Liu
- Center of Analysis and Testing, Nanchang University, Nanchang, 330047, P. R. China
| | - Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaowei Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| |
Collapse
|