1
|
Vered G, Nordland O, Gozlan I, Shenkar N. Occurrence of plastic additives in coral-reef invertebrates on natural and plastic substrates. MARINE POLLUTION BULLETIN 2024; 208:116935. [PMID: 39278179 DOI: 10.1016/j.marpolbul.2024.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Numerous studies have investigated the occurrence of plastic additives in marine biota. Yet, their main vector of transfer into organisms tissues remains unknown. We explored seven common additives in benthic coral reef invertebrates residing on natural/plastic substrates in a protected marine reserve versus an unprotected reef to ascertain whether additives transfer by substrate leaching. Samples of three coral-reef species were extracted and analyzed by GCMS and HPLC. Of the seven chemical additives investigated, dibenzylamine and bis(2-ethylhexyl) phthalate were detected. No significant association was found between additives and substrate type, possibly because these plastics have been submerged for years, and the majority of additives within them have leached. The marine reserve had fewer samples with additives, highlighting the importance of active management. Understanding the transfer vectors of plastic additives into biota is essential for assessing the risk they pose and devising effective management tools for protecting coral reefs.
Collapse
Affiliation(s)
- Gal Vered
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Interuniversity Institute for Marine Sciences (IUI), Eilat, Israel.
| | - Olivia Nordland
- The Water Research Center, School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Igal Gozlan
- The Water Research Center, School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Jang M, Lee M, Chung S, Park SA, Park H, Jeon H, Jegal J, Park SB, Oh DX, Shin G, Kim HJ. Ecotoxicity assessment of additives in commercial biodegradable plastic products: Implications for sustainability and environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172903. [PMID: 38697526 DOI: 10.1016/j.scitotenv.2024.172903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/11/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Biodegradable plastics have gained popularity as environmentally friendly alternatives to conventional petroleum-based plastics, which face recycling and degradation challenges. Although the biodegradability of these plastics has been established, research on their ecotoxicity remains limited. Biodegradable plastics may still contain conventional additives, including toxic and non-degradable substances, to maintain their functionality during production and processing. Despite degrading the polymer matrix, these additives can persist in the environment and potentially harm ecosystems and humans. Therefore, this study aimed to assess the potential ecotoxicity of biodegradable plastics by analyzing the phthalate esters (PAEs) leaching out from biodegradable plastics through soil leachate. Sixteen commercial biodegradable plastic products were qualitatively and quantitatively analyzed using gas chromatography-mass spectrometry to determine the types and amounts of PAE used in the products and evaluate their ecotoxicity. Among the various PAEs analyzed, non-regulated dioctyl isophthalate (DOIP) was the most frequently detected (ranging from 40 to 212 μg g-1). Although the DOIP is considered one of PAE alternatives, the detected amount of it revealed evident ecotoxicity, especially in the aquatic environment. Other additives, including antioxidants, lubricants, surfactants, slip agents, and adhesives, were also qualitatively detected in commercial products. This is the first study to quantify the amounts of PAEs leached from biodegradable plastics through water mimicking PAE leaching out from biodegradable plastics to soil leachate when landfilled and evaluate their potential ecotoxicity. Despite their potential toxicity, commercial biodegradable plastics are currently marketed and promoted as environmentally friendly materials, which could lead to indiscriminate public consumption. Therefore, in addition to improving biodegradable plastics, developing eco-friendly additives is significant. Future studies should investigate the leaching kinetics in soil leachate over time and toxicity of biodegradable plastics after landfill disposal.
Collapse
Affiliation(s)
- Min Jang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seonghyn Chung
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Huijeong Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
3
|
Cao XD, Jien SH, Yang CW, Lin YH, Liao CS. Innovative Microbial Immobilization Strategy for Di- n-Butyl Phthalate Biodegradation Using Biochar-Calcium Alginate-Waterborne Polyurethane Composites. Microorganisms 2024; 12:1265. [PMID: 39065034 PMCID: PMC11278806 DOI: 10.3390/microorganisms12071265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Di-n-butyl phthalate (DBP) is a prevalent phthalate ester widely used as a plasticizer, leading to its widespread presence in various environmental matrices. This study presents an innovative microbial immobilization strategy utilizing biochar, calcium alginate (alginate-Ca, (C12H14CaO12)n), and waterborne polyurethane (WPU) composites to enhance the biodegradation efficiency of DBP. The results revealed that rice husk biochar, pyrolyzed at 300 °C, exhibits relatively safer and more stable physical and chemical properties, making it an effective immobilization matrix. Additionally, the optimal cultural conditions for Bacillus aquimaris in DBP biodegradation were identified as incubation at 30 °C and pH 7, with the supplementation of 0.15 g of yeast extract, 0.0625 g of glucose, and 1 CMC of Triton X-100. Algal biotoxicity results indicated a significant decrease in biotoxicity, as evidenced by an increase in chlorophyll a content in Chlorella vulgaris following DBP removal from the culture medium. Finally, microbial community analysis demonstrated that encapsulating B. aquimaris within alginate-Ca and WPU layers not only enhanced DBP degradation, but also prevented ecological competition from indigenous microorganisms. This novel approach showcases the potential of agricultural waste utilization and microbial immobilization techniques for the remediation of DBP-contaminated environments.
Collapse
Affiliation(s)
- Xuan-Di Cao
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 840203, Taiwan;
| | - Shih-Hao Jien
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei 111002, Taiwan;
| | - Yi-Hsuan Lin
- Environmental Engineering Research Center, Sinotech Engineering Consultants Inc., Taipei 114065, Taiwan;
| | - Chien-Sen Liao
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung 824005, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
4
|
Utami DA, Reuning L, Schwark L, Friedrichs G, Dittmer L, Nurhidayati AU, Al Fauzan A, Cahyarini SY. Plastiglomerates from uncontrolled burning of plastic waste on Indonesian beaches contain high contents of organic pollutants. Sci Rep 2023; 13:10383. [PMID: 37369801 DOI: 10.1038/s41598-023-37594-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports on plastiglomerate and other new forms of plastic pollution in the tropical marine continent of Indonesia. Twenty-five samples were collected from an island beach in the Java Sea where plastiglomerate, plasticrusts, and pyroplastic were formed by the uncontrolled burning of plastic waste. The most common plastic types were polyethylene and polypropylene (PE/PP), as shown by ATR-FTIR spectroscopy. However, acrylates/polyurethane/varnish (PU) and a copolymer of styrene and acrylonitrile were found as well. This suggests that plastiglomerates can form from a wider variety of plastic polymers than previously reported. FTIR analysis also indicates thermo-oxidative weathering, making the charred plastic more brittle and susceptible to microplastic formation. A subset of the samples was analyzed for associated chemical contaminants. One plastiglomerate with a PU matrix showed high concentrations of phthalates. All samples had high concentrations of polycyclic aromatic hydrocarbons (PAHs), likely due to the burning of the plastic in open fires. The burning leads to a change in the physical and chemical properties of the plastics contained in the plastiglomerates. Plastiglomerate and plastic waste of similar origin are therefore often more weathered and contaminated with organic pollutants than their parent polymers. The highest PAH concentration was found in a plastitar sample. Plastitar is defined as an agglomerate of tar and plastics that adheres to coastal rocks. In contrast, our study documents a more mobile, clastic plastitar type. This clastic plastitar could pose an additional ecological risk because of its mobility. These new types of plastic pollution could be an important vector for chemical contamination of nearby coastal habitats such as coral reefs, seagrass meadows, and mangroves.
Collapse
Affiliation(s)
- Dwi Amanda Utami
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia.
- Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10, 24118, Kiel, Germany.
| | - Lars Reuning
- Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10, 24118, Kiel, Germany
| | - Lorenz Schwark
- Institute of Geosciences, Kiel University, Ludewig-Meyn-Str. 10, 24118, Kiel, Germany
| | - Gernot Friedrichs
- Institute of Physical Chemistry, Kiel University, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Ludwig Dittmer
- Institute of Physical Chemistry, Kiel University, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Ayu Utami Nurhidayati
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia
| | - Ahmad Al Fauzan
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia
- Oceanography Study Program, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Sri Yudawati Cahyarini
- Research Center for Climate and Atmosphere, National Research and Innovation Agency Republic of Indonesia, Jl. Cisitu Sangkuriang, Bandung, 40135, Indonesia
| |
Collapse
|
5
|
Dos Santos GS, de Souza TL, Teixeira TR, Brandão JPC, Santana KA, Barreto LHS, Cunha SDS, Dos Santos DCMB, Caffrey CR, Pereira NS, de Freitas Santos Júnior A. Seaweeds and Corals from the Brazilian Coast: Review on Biotechnological Potential and Environmental Aspects. Molecules 2023; 28:molecules28114285. [PMID: 37298760 DOI: 10.3390/molecules28114285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Brazil has a megadiversity that includes marine species that are distributed along 800 km of shoreline. This biodiversity status holds promising biotechnological potential. Marine organisms are important sources of novel chemical species, with applications in the pharmaceutical, cosmetic, chemical, and nutraceutical fields. However, ecological pressures derived from anthropogenic actions, including the bioaccumulation of potentially toxic elements and microplastics, impact promising species. This review describes the current status of the biotechnological and environmental aspects of seaweeds and corals from the Brazilian coast, including publications from the last 5 years (from January 2018 to December 2022). The search was conducted in the main public databases (PubChem, PubMed, Science Direct, and Google Scholar) and in the Espacenet database (European Patent Office-EPO) and the Brazilian National Property Institute (INPI). Bioprospecting studies were reported for seventy-one seaweed species and fifteen corals, but few targeted the isolation of compounds. The antioxidant potential was the most investigated biological activity. Despite being potential sources of macro- and microelements, there is a literature gap regarding the presence of potentially toxic elements and other emergent contaminants, such as microplastics, in seaweeds and corals from the Brazilian coast.
Collapse
Affiliation(s)
| | - Thais Luz de Souza
- Department of Analytical Chemistry, Chemistry Institute, Federal University of Bahia, Salvador 40170-115, BA, Brazil
| | - Thaiz Rodrigues Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Keila Almeida Santana
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | | | - Samantha de Souza Cunha
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | | | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Natan Silva Pereira
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| | - Aníbal de Freitas Santos Júnior
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
- Department of Exact and Earths Sciences, State University of Bahia, Salvador 41150-000, BA, Brazil
| |
Collapse
|
6
|
Xu L, Chen H, Han X, Yu K, Wang Y, Du B, Zeng L. First report on per- and polyfluoroalkyl substances (PFASs) in coral communities from the Northern South China sea: Occurrence, seasonal variation, and interspecies differences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120214. [PMID: 36150619 DOI: 10.1016/j.envpol.2022.120214] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
In this study, the contamination levels and seasonal variation of 22 PFASs were investigated in coastal reef-building corals (n = 68) from the northern South China Sea (SCS) during wet and dry seasons. Perfluorohexane sulfonate (PFHxS) was the predominant PFASs in all coral samples, representing 43% of the total PFAS. Long-chain PFASs, as well as PFAS alternatives, were frequently detected above the MQL (>88%) but showed relatively low concentrations compared to short-chain PFASs in most species and seasons. Seasonal variation of PFAS concentrations were observed in branching corals, indicating that the accumulation of PFASs may be associated with coral morphological structures. Interspecies differences in PFAS levels agree well with different bioaccumulation potentials among coral species. Redundancy analysis (RDA) showed that seasonal factor and coral genus could partly influence PFAS concentrations in coral tissues. In summary, our study firstly reported the occurrence of PFASs in coral communities from the SCS and highlights the necessity for future investigations on more toxicity data for coral communities.
Collapse
Affiliation(s)
- Lijia Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
7
|
Vered G, Shenkar N. Limited effects of environmentally-relevant concentrations in seawater of dibutyl phthalate, dimethyl phthalate, bisphenol A, and 4-nonylphenol on the reproductive products of coral-reef organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120285. [PMID: 36179999 DOI: 10.1016/j.envpol.2022.120285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Plastic additives (PAs) are chemical compounds incorporated into the plastic during the manufacturing process. Phthalate acid esters, bisphenols, and nonylphenols are all PAs found in marine environments and associated with endocrine-disrupting processes. However, our knowledge regarding the impact of endocrine-disrupting PAs on coral-reef organisms is limited. As reef population structure is directly linked to reproduction and larval settlement processes, interference with hormonal systems can impact coral-reef community structure, particularly if the effects of PAs differ among species. In the current study we exposed the reproductive products of four tropical coral-reef invertebrates to environmentally-relevant concentrations of four prevalent PAs in seawater: dibutyl phthalate (DBP), dimethyl phthalate, (DMP), 4-nonylphenol (4-NP), and bisphenol A (BPA), as well as to 103 higher laboratory concentrations of these PAs. Our results revealed that apart from the significant negative effect of the 1 μg/L of 4-NP on the settlement of the soft coral Rhytisma fulvum, none of the other tested materials demonstrated a significant effect on the exposed organisms at environmentally-relevant concentrations in seawater. The 4-NP high laboratory concentration (1000 μg/L), however, had significant negative effects on all the examined species. The high laboratory BPA concentration (1000 μg/L) significantly reduced fertilization success in the solitary ascidian Herdmaniamomus, up to its complete failure to reproduce. Moreover, the high laboratory DMP concentration (100 μg/L) had a significant negative effect on planulae settlement of the stony coral Stylophora pistillata. Our findings demonstrate the negative and selective effects of PAs on the development and reproduction of coral-reef organisms; and, specifically, the significant effect found following exposure to 4-NP. Consequently, if we aim to fully understand the impact of these contaminants on this endangered ecosystem, we suggest that the actual concentrations within the living organism tissues should be tested in order to produce relevant risk assessments for brooding-coral species.
Collapse
Affiliation(s)
- Gal Vered
- The School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Interuniversity Institute for Marine Sciences (IUI), Eilat, Israel
| | - Noa Shenkar
- The School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Zhang C, Zhou J, Ma T, Guo W, Wei D, Tan Y, Deng Y. Advances in application of sensors for determination of phthalate esters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Isa V, Saliu F, Bises C, Vencato S, Raguso C, Montano S, Lasagni M, Lavorano S, Clemenza M, Galli P. Phthalates bioconcentration in the soft corals: Inter- and intra- species differences and ecological aspects. CHEMOSPHERE 2022; 297:134247. [PMID: 35259364 DOI: 10.1016/j.chemosphere.2022.134247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The bioconcentration of dimethyl phthalate (DMP) diethyl phthalate (DEP) dibutyl phthalate (DBP) butyl benzyl phthalate (BBzP), di-(2-ethy hexyl) phthalates (DEHP), mono-butyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-(2-ethy hexyl) phthalate (MEHP) in the soft corals Coelogorgia palmosa, Sinularia sp., Sarcophyton glaucum, and Lobophytum sp. was investigated. Specimens were cultured in a microcosm environment built-up at the Genova Aquarium and analyses were carried out by in vivo SPME-LC-MS/MS. The distributions of the phthalates among the four surveyed species resulted significantly different. Calculated bioconcentration factors (BCFs) showed values spanning over two orders of magnitude, from a minimum of log10 BCFDEP = 1.0 in Sarcophyton glaucum to a maximum of log10 BCFDBP = 3,9 calculated for Coelogorgia palmosa. Moreover, the calculated BCFs of the long chain phthalates resulted up to three orders of magnitude lower than theoretically predicted (from logKow), whereas BCF of short chain phthalates resulted higher. This, together with the detection of phthalic acid monoesters, suggests the presence of species-specific different metabolic transformation among the surveyed soft coral species that involve DEHP.
Collapse
Affiliation(s)
- Valerio Isa
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126, Milano, Italy.
| | - Chiara Bises
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Sara Vencato
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Clarissa Raguso
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Simone Montano
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Republic of, Maldives
| | - Marina Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128, Genoa, Italy
| | | | - Paolo Galli
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126, Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Republic of, Maldives
| |
Collapse
|
10
|
Bednarz VN, Choyke S, Marangoni LFB, Otto EI, Béraud E, Metian M, Tolosa I, Ferrier-Pagès C. Acute exposure to perfluorooctane sulfonate exacerbates heat-induced oxidative stress in a tropical coral species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119054. [PMID: 35219792 DOI: 10.1016/j.envpol.2022.119054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is among the most commonly per- and poly-fluoroalkyl substances (PFAS) found in environmental samples. Nevertheless, the effect of this legacy persistent organic contaminant has never been investigated on corals to date. Corals are the keystone organisms of coral reef ecosystems and sensitive to rising ocean temperatures, but it is not understood how the combination of elevated temperature and PFOS exposure will affect them. Therefore, the aims of the present study were (1) to evaluate the time-dependent bioconcentration and depuration of PFOS in the scleractinian coral Stylophora pistillata using a range of PFOS exposure concentrations, and (2) to assess the individual and combined effects of PFOS exposure and elevated seawater temperature on key physiological parameters of the corals. Our results show that the coral S. pistillata rapidly bioconcentrates PFOS from the seawater and eliminates it 14 days after ceasing the exposure. We also observed an antagonistic effect between elevated temperature and PFOS exposure. Indeed, a significantly reduced PFOS bioconcentration was observed at high temperature, likely due to a loss of symbionts and a higher removal of mucus compared to ambient temperature. Finally, concentrations of PFOS consistent with ranges observed in surface waters were non-lethal to corals, in the absence of other stressors. However, PFOS increased lipid peroxidation in coral tissue, which is an indicator of oxidative stress and enhanced the thermal stress-induced impairment of coral physiology. This study provides valuable insights into the combined effects of PFOS exposure and ocean warming for coral's physiology. PFOS is usually the most prevalent but not the only PFAS defected in reef waters, and thus it will be also important to monitor PFAS mixture concentrations in the oceans and to study their combined effects on aquatic wildlife.
Collapse
Affiliation(s)
- V N Bednarz
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC-98000, Monaco, Monaco.
| | - S Choyke
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Monaco, Monaco
| | - L F B Marangoni
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC-98000, Monaco, Monaco; Smithsonian Tropical Research Institute, Smithsonian Institution, Ciudad de Panama, 0843-03092, Panama
| | - E I Otto
- Palau International Coral Reef Center, 1 M-Dock Road, P.O. Box 7086, Koror, 96940, Palau
| | - E Béraud
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC-98000, Monaco, Monaco
| | - M Metian
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Monaco, Monaco
| | - I Tolosa
- International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Monaco, Monaco
| | - C Ferrier-Pagès
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC-98000, Monaco, Monaco
| |
Collapse
|