1
|
Wang WY, Ni JY, Huang SH, Cui QW, Wang YQ, Gu ZQ, Li YF. Hyposalinity stress reduces mussel byssus secretion but does not cause detachment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172561. [PMID: 38641104 DOI: 10.1016/j.scitotenv.2024.172561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Environmental stressors such as salinity fluctuations can significantly impact the ecological dynamics of mussel beds. The present study evaluated the influence of hyposalinity stress on the detachment and survival of attached mussels by simulating a mussel farming model in a laboratory setting. Byssus production and mechanical properties of thread in response to varying salinity levels were assessed, and histological sections of the mussel foot were analyzed to identify the changes in the byssus secretory gland area. The results showed that hyposalinity stress (20 and 15 psu) led to a significant decrease in mussel byssus secretion, delayed initiation of new byssus production, and reduced plaque adhesion strength and breaking force of byssal threads compared to the control (30 psu) (p < 0.05). The complete suppression of byssal thread secretion in mussels under salinity conditions of 10 and 5 psu, leading to lethality, indicates the presence of a blockade in byssus secretion when mussels are subjected to significant physiological stressors. Histological analysis further demonstrated a decrease in the percentage of foot secretory gland areas in mussels exposed to low salinities. However, contrary to expectations, the study found that mussels did not exhibit marked detachment from ropes in response to the reduced salinity levels during one week of exposure. Hyposalinity stress exposure reduced the byssal secretion capacity and the mechanical properties of threads, which could be a cause for the detachment of suspension-cultured mussels. These results highlight the vulnerability of mussels to hyposalinity stress, which significantly affects their byssus mechanical performance.
Collapse
Affiliation(s)
- Wen-Yi Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ji-Yue Ni
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Shi-Hui Huang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Qian-Wen Cui
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yu-Qing Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhong-Qi Gu
- Shengsi County Aquaculture Service Center, Zhoushan, China.
| | - Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Meira A, Byers JE, Sousa R. A global synthesis of predation on bivalves. Biol Rev Camb Philos Soc 2024; 99:1015-1057. [PMID: 38294132 DOI: 10.1111/brv.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Predation is a dominant structuring force in ecological communities. In aquatic environments, predation on bivalves has long been an important focal interaction for ecological study because bivalves have central roles as ecosystem engineers, basal components of food webs, and commercial commodities. Studies of bivalves are common, not only because of bivalves' central roles, but also due to the relative ease of studying predatory effects on this taxonomic group. To understand patterns in the interactions of bivalves and their predators we synthesised data from 52 years of peer-reviewed studies on bivalve predation. Using a systematic search, we compiled 1334 studies from 75 countries, comprising 61 bivalve families (N = 2259), dominated by Mytilidae (29% of bivalves), Veneridae (14%), Ostreidae (8%), Unionidae (7%), and Dreissenidae and Tellinidae (6% each). A total of 2036 predators were studied, with crustaceans the most studied predator group (34% of predators), followed by fishes (24%), molluscs (17%), echinoderms (10%) and birds (6%). The majority of studies (86%) were conducted in marine systems, in part driven by the high commercial value of marine bivalves. Studies in freshwater ecosystems were dominated by non-native bivalves and non-native predator species, which probably reflects the important role of biological invasions affecting freshwater biodiversity. In fact, while 81% of the studied marine bivalve species were native, only 50% of the freshwater species were native to the system. In terms of approach, most studies used predation trials, visual analysis of digested contents and exclusion experiments to assess the effects of predation. These studies reflect that many factors influence bivalve predation depending on the species studied, including (i) species traits (e.g. behaviour, morphology, defence mechanisms), (ii) other biotic interactions (e.g. presence of competitors, parasites or diseases), and (iii) environmental context (e.g. temperature, current velocity, beach exposure, habitat complexity). There is a lack of research on the effects of bivalve predation at the population and community and ecosystem levels (only 7% and 0.5% of studies respectively examined impacts at these levels). At the population level, the available studies demonstrate that predation can decrease bivalve density through consumption or the reduction of recruitment. At the community and ecosystem level, predation can trigger effects that cascade through trophic levels or effects that alter the ecological functions bivalves perform. Given the conservation and commercial importance of many bivalve species, studies of predation should be pursued in the context of global change, particularly climate change, acidification and biological invasions.
Collapse
Affiliation(s)
- Alexandra Meira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St, Athens, GA, 30602, USA
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
3
|
Liu X, Huang L, Lim L, Fazhan H, Tan K. The impact of elevated temperature on the macro-nutrients of commercially important marine bivalves: the implication of ocean warming. Crit Rev Food Sci Nutr 2024:1-8. [PMID: 38294719 DOI: 10.1080/10408398.2023.2301432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Bivalves are nutritious animal protein source for humans, rich in high quality proteins, lipids, and carbohydrates. Many studies have shown that ocean warming has detrimental effects on the nutritional quality of bivalves. Although a number of studies are available on the effect of ocean warming on the nutritional value of bivalves, this information is not well organized. In this context, the current study provides a critical review of the effects of ocean warming on the nutritional quality of commercially important edible marine bivalves. In general, ocean warming has caused a reduction in the total lipid and carbohydrate content of bivalves, especially those bivalves inhabiting temperate regions. As for protein, there is no general trend in the effects of ocean warming on the protein reserves of bivalves. In addition, the specific effects of elevated temperature on the macro-nutrients of bivalves highly depend on the tissues, sex and developmental stages of bivalves, as well as seasonal factors. This review not only fills in the knowledge gap regarding the effects of elevated temperature on the macro-nutrients of commercially important marine bivalves but also provides guidance for the establishment of bivalve aquaculture and fisheries management plans to mitigate the impact of climate change.
Collapse
Affiliation(s)
- Xiaoxia Liu
- College of Economics and Management, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leiheng Huang
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leongseng Lim
- Borneo Marine Research Institute, University Malaysia Sabah, Sabah, Malaysia
| | - Hanafiah Fazhan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
4
|
Benítez S, Lagos NA, Duarte C, Cid MJ, Navarro JM. Effects of ocean acidification and warming on physiological and behavioural responses of an herbivore snail to waterborne predator cues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122798. [PMID: 37879553 DOI: 10.1016/j.envpol.2023.122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Ocean Acidification (OA) and Ocean Warming (OW) represent major climate stressors that may disrupt species interactions. However, despite the knowledge about the impacts of OA and OW on the performance of individual species, it is still unclear how biological interactions can be modified by the combined effects of these stressors. Consequently, in this study, we assess the effects of changes in temperature (12 °C and 20 °C) and pCO2 (500 and 1600 μatm) levels in seawater, along with the presence/absence of waterborne cues from the predator crab Homalaspis plana on the physiological and behavioural performance of the snail Tegula atra. Snail consumption rate was positively affected by OW and negatively by predator cues whereas absorption efficiency (AE) was positively affected by OW without interactions among these stressors. Oxygen uptake of snails reared in OW conditions was greater than those in control conditions, but only at control pCO2 levels. When pCO2 level was also raised, the positive effect of warmer temperature on oxygen uptake was reduced. While biomass was negatively affected by OW, OA and predator cues, without interactions. In the presence of predator cues the self-righting times of snails were significantly slower in individuals reared at OW conditions. Additionally, OA and OW conditions do not affect the prey hunting, efficiency (consumption) and preference, and claw strength of the predatory crab. These results indicate that OA and OW affect physiological and behavioral traits of snails but no the predatory behavior of crab. This environmentally-induced decoupling of co-evolutionary predator-prey dynamics may have important consequences on the structure and stability of coastal communities and ecosystems under the influence of climate change.
Collapse
Affiliation(s)
- S Benítez
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile.
| | - N A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Instituto Milenio en Socio-Ecología Costera, (SECOS), Santiago, Chile
| | - C Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - M José Cid
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - J M Navarro
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
5
|
Benítez S, Navarro JM, Mardones D, Villanueva PA, Ramirez-Kushel F, Torres R, Lagos NA. Direct and indirect impacts of ocean acidification and warming on algae-herbivore interactions in intertidal habitats. MARINE POLLUTION BULLETIN 2023; 195:115549. [PMID: 37729690 DOI: 10.1016/j.marpolbul.2023.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Anthropogenically induced global climate change has caused profound impacts in the world ocean. Climate change related stressors, like ocean acidification (OA) and warming (OW) can affect physiological performance of marine species. However, studies evaluating the impacts of these stressors on algae-herbivore interactions have been much more scarce. We approached this issue by assessing the combined impacts of OA and OW on the physiological energetics of the herbivorous snail Tegula atra, and whether this snail is affected indirectly by changes in biochemical composition of the kelp Lessonia spicata, in response to OA and OW. Our results show that OA and OW induce changes in kelp biochemical composition and palatability (organic matter, phenolic content), which in turn affect snails' feeding behaviour and energy balance. Nutritional quality of food plays a key role on grazers' physiological energetics and can define the stability of trophic interactions in rapidly changing environments such as intertidal communities.
Collapse
Affiliation(s)
- Samanta Benítez
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile.
| | - Jorge M Navarro
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Daniela Mardones
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Paola A Villanueva
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Acuicultura, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Felipe Ramirez-Kushel
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| |
Collapse
|
6
|
Ennas C, Pasquini V, Abyaba H, Addis P, Sarà G, Pusceddu A. Sea cucumbers bioturbation potential outcomes on marine benthic trophic status under different temperature regimes. Sci Rep 2023; 13:11558. [PMID: 37464005 DOI: 10.1038/s41598-023-38543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Eutrophication affects coastal oceans worldwide, modifies primary production and sediment biogeochemistry and, overall, is progressively compromising marine ecosystems' integrity. Because of their known bioturbation ability, sea cucumbers are supposed to be candidates for mitigating benthic eutrophication. To provide insights on this, we investigated differences in organic matter quantity and biochemical composition (as proxies of benthic trophic status) of sediments and feces of the sea cucumber Holothuria tubulosa acclimated in mesocosms at temperatures comprised between natural conditions (14-26 °C) and an extreme of 29 °C (representing the highest anomaly under heat waves in the Mediterrranean Sea). Organic matter features differed significantly between sediments characterized by different trophic statuses and the holothuroid's feces, though with some exceptions. Feces resulted almost always organically enriched when compared with the ambient sediments, though with variable differences in composition in sediments characterized by different initial trophic status. Our results point out that sea cucumbers maintain their bioreactor capacity at all experimental temperatures including the (anomalous) highest one, irrespectively of the available food, suggesting that they could be profitably utilized to mitigate benthic eutrophication also in a warmer Mediterranean Sea.
Collapse
Affiliation(s)
- Claudia Ennas
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Degli Studi Di Cagliari, 09126, Cagliari, Italy
| | - Viviana Pasquini
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Degli Studi Di Cagliari, 09126, Cagliari, Italy
| | - Hiba Abyaba
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Degli Studi Di Cagliari, 09126, Cagliari, Italy
- Scuola Universitaria Superiore IUSS Pavia, 27100, Pavia, Italy
| | - Pierantonio Addis
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Degli Studi Di Cagliari, 09126, Cagliari, Italy
| | - Gianluca Sarà
- Dipartimento di Scienze Della Terra e del Mare, Università Degli Studi di Palermo, 90123, Palermo, Italy
| | - Antonio Pusceddu
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Degli Studi Di Cagliari, 09126, Cagliari, Italy.
| |
Collapse
|
7
|
Greatorex R, Knights AM. Differential effects of ocean acidification and warming on biological functioning of a predator and prey species may alter future trophic interactions. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105903. [PMID: 36841179 DOI: 10.1016/j.marenvres.2023.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Independently, ocean warming (OW) and acidification (OA) from increased anthropogenic atmospheric carbon dioxide are argued to be two of the greatest threats to marine organisms. Increasingly, their interaction (ocean acidification and warming, OAW) is shown to have wide-ranging consequences to biological functioning, population and community structure, species interactions and ecosystem service provision. Here, using a multi-trophic experiment, we tested the effects of future OAW scenarios on two widespread intertidal species, the blue mussel Mytilus edulis and its predator Nucella lapillus. Results indicate negative consequences of OAW on the growth, feeding and metabolic rate of M. edulis and heightened predation risk. In contrast, Nucella growth and metabolism was unaffected and feeding increased under OAW but declined under OW suggesting OA may offset warming consequences. Should this differential response between the two species to OAW, and specifically greater physiological costs to the prey than its predator come to fruition in the nature, fundamental change in ecosystem structure and functioning could be expected as trophic interactions become disrupted.
Collapse
Affiliation(s)
- Rebecca Greatorex
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Antony M Knights
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
8
|
Benítez S, Figueroa Á, Lagos NA, Silva AX, Duarte C, Vargas CA, Lardies MA, Cárdenas L. Differential gene expression analysis in the scallop Argopecten purpuratus exposed to altered pH and temperature conditions in an upwelling-influenced farming area. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101046. [PMID: 36495831 DOI: 10.1016/j.cbd.2022.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Increased carbon dioxide in the atmosphere and its absorption across the ocean surface will alter natural variations in pH and temperature levels, occurring in coastal upwelling ecosystems. The scallop Argopecten purpuratus, one of the most economically important species farmed in northern Chile, has been shown to be vulnerable to these environmental drivers. However, the regulatory responses at the gene-level of scallops to these climate stressors remain almost unknown. Consequently, we used an orthogonal experimental design and RNAseq approach to analyze the acute effects of variability in pH and temperature on gene expression in the muscle tissue of A. purpuratus. In respect to control conditions (pH ~ 8.0/ 14 °C), the influence of low pH (~ 7.7) and temperature (14 °C) induced the activation of several genes associated with apoptotic signaling pathways and protein localization to plasma membrane. Elevated temperature (18 °C) and pH (~8.0) conditions increased the expression of transcripts associated with the activation of muscle contraction, regulation, and sarcomere organization effects on muscle tissue. In scallops exposed to low pH and elevated temperature, the genes expressed were differentially associated with the oxidation-reduction process, signal translation, and positive regulation of GTPase activity. These results indicated that the differentially expressed genes under the experimental conditions tested are mainly related to the mitigation of cellular damage and homeostasis control. Our results add knowledge about the function of the adductor muscle in response to stressors in scallops. Furthermore, these results could help in the identification of molecular biomarkers of stress necessary to be integrated into the aquaculture programs for the mitigation of climate change.
Collapse
Affiliation(s)
- Samanta Benítez
- Programa de Doctorado en Biología Marina, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Álvaro Figueroa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Instituto Milenio de Socio-Ecología Costera (SECOS), Santiago, Chile
| | - Andrea X Silva
- AUSTRAL-omics, Vicerrectoría de Investigación, Desarrollo y Creación Artística, Universidad Austral de Chile, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian A Vargas
- Instituto Milenio de Socio-Ecología Costera (SECOS), Santiago, Chile; Laboratorio de Ecosistemas Costeros y Cambio Ambiental Global (ECCALab), Facultad de Ciencias Ambientales & Centro EULA Chile, Universidad de Concepción, Concepción, Chile
| | - Marco A Lardies
- Instituto Milenio de Socio-Ecología Costera (SECOS), Santiago, Chile; Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibañez, Santiago, Chile
| | - Leyla Cárdenas
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| |
Collapse
|
9
|
Manríquez PH, González CP, Jara ME, Watson SA, Torres R, Domenici P, Duarte C. Combined effects of climate change stressors and predators with contrasting feeding-digestion strategies on a mussel species. MARINE POLLUTION BULLETIN 2023; 187:114554. [PMID: 36621303 DOI: 10.1016/j.marpolbul.2022.114554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
We investigated the combined effects of Ocean Warming (OW), Acidification (OA) and predator cues (Non-Consumptive Effects; NCEs) of two predators with contrasting feeding-digestion strategies on the mussel Perumytilus purpuratus. We considered starfish-NCEs (partially external digestion) and snail-NCEs (internal digestion). Mussels were exposed for 13 weeks to cross-factored OA (~500 and ~1400 μatm, pCO2) and OW (~15 and ~20 °C) conditions, in the presence/absence of NCEs from one or both predators. Mussels exposed to both NCEs exhibited smaller length and buoyant weight growth than those under control or snail-NCEs conditions. Mussels exposed to starfish-NCEs exhibited smaller wet mass than control mussels. OW and starfish-NCEs in isolation or combined with snail-NCEs increased mussel oxygen consumption. Byssal biogenesis was affected by the three-factors interaction. Clearance rates were affected by the OW × OA interaction. We suggest that mainly starfish-NCEs, in isolation or interacting with OA or/and OW, can threat mussel traits and the associated community.
Collapse
Affiliation(s)
- Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile.
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - María Elisa Jara
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Sue-Ann Watson
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, Queensland 4810, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile; Centro de Investigación, Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile
| | - Paolo Domenici
- CNR-IBF Istituto di Biofisica, Pisa, Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124 Pisa, Italy; CNR-IAS Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino, Oristano, Italy
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Chile
| |
Collapse
|
10
|
Uguen M, Nicastro KR, Zardi GI, Gaudron SM, Spilmont N, Akoueson F, Duflos G, Seuront L. Microplastic leachates disrupt the chemotactic and chemokinetic behaviours of an ecosystem engineer (Mytilus edulis). CHEMOSPHERE 2022; 306:135425. [PMID: 35809744 DOI: 10.1016/j.chemosphere.2022.135425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The massive contamination of the environment by plastics is an increasing global scientific and societal concern. Knowing whether and how these pollutants affect the behaviour of keystone species is essential to identify environmental risks effectively. Here, we focus on the effect of plastic leachates on the behavioural response of the common blue mussel Mytilus edulis, an ecosystem engineer responsible for the creation of biogenic structures that modify the environment and provide numerous ecosystem functions and services. Specifically, we assess the effect of virgin polypropylene beads on mussels' chemotactic (i.e. a directional movement in response to a chemical stimulus) and chemokinetic (i.e. a non-directional change in movement properties such as speed, distance travelled or turning frequency in response to a chemical stimulus) responses to different chemical cues (i.e. conspecifics, injured conspecifics and a predator, the crab Hemigrapsus sanguineus). In the presence of predator cues, individual mussels reduced both their gross distance and speed, changes interpreted here as an avoidance behaviour. When exposed to polypropylene leachates, mussels moved less compared to control conditions, regardless of the cues tested. Additionally, in presence of crab cues with plastic leachates, mussels significantly changed the direction of movement suggesting a leachate-induced loss of their negative chemotaxis response. Taken together, our results indicate that the behavioural response of M. edulis is cue-specific and that its anti-predator behaviour as well as its mobility are impaired when exposed to microplastic leachates, potentially affecting the functioning of the ecosystem that the species supports.
Collapse
Affiliation(s)
- Marine Uguen
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France.
| | - Katy R Nicastro
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; CCMAR-Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Sylvie M Gaudron
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France; Sorbonne Université, UFR 927, F-75005, Paris, France
| | - Nicolas Spilmont
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France
| | - Fleurine Akoueson
- ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200, Boulogne-sur-Mer, France; Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, EA 7394, Institut Charles Viollette, USC ANSES, INRAe, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Uni. Liège, F-62200, Boulogne-sur-Mer, France
| | - Guillaume Duflos
- ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200, Boulogne-sur-Mer, France
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200, Boulogne-sur-Mer, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
11
|
Newcomb LA, Cannistra AF, Carrington E. Divergent Effects of Ocean Warming On Byssal Attachment in Two Congener Mussel Species. Integr Comp Biol 2022; 62:icac111. [PMID: 35793561 DOI: 10.1093/icb/icac111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Organisms rely on the integrity of the structural materials they produce to maintain a broad range of processes, such as acquiring food, resisting predators or withstanding extreme environmental forces. The production and maintenance of these biomaterials, which are often modulated by environmental conditions, can therefore have important consequences for fitness in changing climates. One well-known example of such a biomaterial is mussel byssus, an array of collagen-like fibers (byssal threads) that tethers a bivalve mollusk securely to benthic marine substrates. Byssus strength directly influences mortality from dislodgement, predation or competition and depends on the quantity and quality of byssal threads produced. We compared the temperature sensitivity of byssal attachment strength of two mussel species common to the west coast of North America, Mytilus trossulus and M. galloprovincialis, when exposed to seawater temperatures ranging from 10 to 24˚C in the laboratory. We found the two species attached equally strong in seawater ≤ 18˚C, but higher temperatures caused byssal thread production rate and quality (break force and extensibility) to be greatly reduced in M. trossulus and increased in M. galloprovincialis, leading to a 2 to 10-fold difference in overall byssus strength between the two species. Using this threshold value (18˚C), we mapped habitat for each species along the west coast of North America based on annual patterns in sea surface temperature. Estimated ranges are consistent with the current distribution of the two species and suggest a potential mechanism by which ocean warming could facilitate the northern expansion of M. galloprovincialis and displacement of native M. trossulus populations.
Collapse
Affiliation(s)
- L A Newcomb
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
- Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| | - A F Cannistra
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - E Carrington
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
- Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| |
Collapse
|
12
|
Manríquez PH, Jara ME, González CP, Jeno K, Domenici P, Watson SA, Duarte C, Brokordt K. Multiple-stressor effects of ocean acidification, warming and predation risk cues on the early ontogeny of a rocky-shore keystone gastropod. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:118918. [PMID: 35227850 DOI: 10.1016/j.envpol.2022.118918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
To understand how climate change stressors might affect marine organisms and support adequate projections it is important to know how multiple stressors may be modulated by the presence of other species. We evaluated the direct effects of ocean warming (OW) and ocean acidification (OA) together with non-consumptive effects (NCEs) of the predatory crab Acanthocyclus hassleri on early ontogeny fitness-related traits of the commercially important rocky-shore keystone gastropod Concholepas concholepas. We measured the response of nine traits to these stressors at either the organismal level (survival, growth, feeding rates, tenacity, metabolic rate, calcification rate) or sub-organismal level (nutritional status, ATP-supplying capacity, stress condition). C. concholepas survival was not affected by any of the stressors. Feeding rates were not affected by OW or OA; however, they were reduced in the presence of crab NCEs compared with control conditions. Horizontal tenacity was affected by the OA × NCEs interaction; in the presence of NCEs, OA reduced tenacity. The routine metabolic rate, measured by oxygen consumption, increased significantly with OW. Nutritional status assessment determined that carbohydrate content was not affected by any of the stressors. However, protein content was affected by the OA × NCEs interaction; in the absence of NCEs, OA reduced protein levels. ATP-supplying capacity, measured by citrate synthase (CS) activity, and cellular stress condition (HSP70 expression) were reduced by OA, with reduction in CS activity found particularly at the high temperature. Our results indicate C. concholepas traits are affected by OA and OW and the effects are modulated by predator risk (NCEs). We conclude that some C. concholepas traits are resilient to climate stressors (survival, growth, horizontal tenacity and nutritional status) but others are affected by OW (metabolic rate), OA (ATP-supplying capacity, stress condition), and NCEs (feeding rate). The results suggest that these negative effects can adversely affect the associated community.
Collapse
Affiliation(s)
- Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile.
| | - María Elisa Jara
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Katherine Jeno
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias de Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Paolo Domenici
- CNR-IBF Istituto di Biofisica, Pisa, Italy; CNR-IAS Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino, Oristano, Italy
| | - Sue-Ann Watson
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, Queensland, 4810, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Chile; Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Chile
| | - Katherina Brokordt
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias de Mar, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
13
|
Riedemann-Saldivia B, Büchner-Miranda JA, Salas-Yanquin LP, Valdivia N, Catalán AM, Scrosati RA, Chaparro OR. Non-consumptive effects of a predatory snail (Acanthina monodon) on a dominant habitat-forming mussel species (Perumytilus purpuratus). MARINE ENVIRONMENTAL RESEARCH 2022; 175:105573. [PMID: 35134640 DOI: 10.1016/j.marenvres.2022.105573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Predators can influence prey through direct consumption as well as through non-consumptive effects (NCEs). NCEs usually occur mediated by behavioral changes in the prey upon detection of predator cues. Such changes may involve reduction of feeding with a variety of physiological consequences. We evaluated NCEs from an intertidal predatory snail (Acanthina monodon) on a dominant habitat-forming mussel species (Perumytilus purpuratus) from the southeastern Pacific coast. We tested whether A. monodon exerts negative NCEs on clearance rate, oxygen consumption rate, biodeposit production, and between-valve gap size in P. purpuratus. We found that waterborne predator cues triggered a decrease in these variables except biodeposit production. However, the organic content of the biodeposits increased in the presence of predator cues. The snail's physical contact with the mussels strengthened the negative NCEs on between-valve gap size. Since P. purpuratus is a dominant filter-feeder and foundation species in rocky intertidal habitats, predator NCEs on this species might indirectly influence ecosystem-level processes and community structure.
Collapse
Affiliation(s)
| | | | - Luis P Salas-Yanquin
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, 5090000, Valdivia, Chile; Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL), 5090000, Valdivia, Chile
| | - Alexis M Catalán
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Ricardo A Scrosati
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada
| | - Oscar R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, 5090000, Valdivia, Chile.
| |
Collapse
|
14
|
Jahnsen-Guzmán N, Lagos NA, Quijón PA, Manríquez PH, Lardies MA, Fernández C, Reyes M, Zapata J, García-Huidobro MR, Labra FA, Duarte C. Ocean acidification alters anti-predator responses in a competitive dominant intertidal mussel. CHEMOSPHERE 2022; 288:132410. [PMID: 34600016 DOI: 10.1016/j.chemosphere.2021.132410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Widespread intertidal mussels are exposed to a variety of natural and anthropogenic stressors. Even so, our understanding of the combined influence of stressors such as predation risk and ocean acidification (OA) on these species remains limited. This study examined the response of the purple mussel (Perumytilus purpuratus), a species distributed along Pacific southeastern rocky shores, to the effects of predation risk and OA. Using a laboratory 2 × 2 cross design, purple mussels were either devoid or exposed to predator cues from the muricid snail Acanthina monodon, while simultaneously exposing them to current (500 ppm) or projected OA conditions (1500 ppm). The response of purple mussels to these factors was assessed using growth, calcification, clearance, and metabolic rates, in addition to byssus production. After 60 d, the presence of predator cues reduced mussel growth in width and length, and in the latter case, OA enhanced this response making the effects of predator cues more severe. Calcification rates were driven by the interaction between the two stressors, whereas clearance rates increased only in response to OA, likely explaining some of the growth results. Mussel byssus production also increased with pCO2 but interacted with predation risk: in the absence of predator cues, byssus production increased with OA. These results suggest that projected levels of OA may alter and in some cases prevail over the natural response of purple mussels to predation risk. Considering the role played by this mussel as a dominant competitor and ecosystem engineer in rocky shores, these results have community-wide implications.
Collapse
Affiliation(s)
- Nicole Jahnsen-Guzmán
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejercito 146, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Marco A Lardies
- Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | | | - Miguel Reyes
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejercito 146, Santiago, Chile
| | - Javier Zapata
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejercito 146, Santiago, Chile; Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Roberto García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejercito 146, Santiago, Chile
| | - Fabio A Labra
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejercito 146, Santiago, Chile; Facultad de Ciencias, Doctorado en Conservación y Gestión de la Biodiversidad, Universidad Santo Tomás, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
15
|
Duarte C, Jahnsen-Guzmán N, Quijón PA, Manríquez PH, Lardies MA, Fernández C, Reyes M, Zapata J, García-Huidobro MR, Lagos NA. Morphological, physiological and behavioral responses of an intertidal snail, Acanthina monodon (Pallas), to projected ocean acidification and cooling water conditions in upwelling ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118481. [PMID: 34763014 DOI: 10.1016/j.envpol.2021.118481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification (OA) is expected to rise towards the end of the 21st century altering the life history traits in marine organisms. Upwelling systems will not escape OA, but unlike other areas of the ocean, cooling effects are expected to intensify in these systems. Regardless, studies evaluating the combined effects of OA and cooling remain scarce. We addressed this gap using a mesocosm system, where we exposed juveniles of the intertidal muricid snail Acanthina monodon to current and projected pCO2 (500 vs. 1500 ppm) and temperature (15 vs. 10 °C) from the southeast Pacific upwelling system. After 9 weeks of experimental exposure to those conditions, we conducted three estimations of growth (wet weight, shell length and shell peristomal length), in addition to measuring calcification, metabolic and feeding rates and the ability of these organisms to return to the normal upright position after being overturned (self-righting). Growth, feeding and calcification rates increased in projected cooling conditions (10 °C) but were unaffected by pCO2 or the interaction between pCO2 and temperature. Instead, metabolic rates were driven by pCO2, but a significant interaction with temperature suggests that in cooler conditions, metabolic rates will increase when associated with high pCO2 levels. Snail self-righting times were not affected across treatments. These results suggest that colder temperatures projected for this area would drive this species growth, feeding and calcification, and consequently, some of its population biology and productivity. However, the snails may need to compensate for the increase in metabolic rates under the effects of ocean acidification. Although A. monodon ability to adjust to individual or combined stressors will likely account for some of the changes described here, our results point to a complex dynamic to take place in intertidal habitats associated with upwelling systems.
Collapse
Affiliation(s)
- Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicole Jahnsen-Guzmán
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Marco A Lardies
- Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | | | - Miguel Reyes
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejercito 146, Santiago, Chile
| | - Javier Zapata
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejercito 146, Santiago, Chile; Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Roberto García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejercito 146, Santiago, Chile
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejercito 146, Santiago, Chile
| |
Collapse
|
16
|
Muñoz-Moya E, García-Herrera CM, Lagos NA, Abarca-Ortega AF, Checa AG, Harper EM. Evaluation of remodeling and geometry on the biomechanical properties of nacreous bivalve shells. Sci Rep 2022; 12:710. [PMID: 35027596 PMCID: PMC8758743 DOI: 10.1038/s41598-021-04414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Mollusks have developed a broad diversity of shelled structures to protect against challenges imposed by biological interactions(e.g., predation) and constraints (e.g., [Formula: see text]-induced ocean acidification and wave-forces). Although the study of shell biomechanical properties with nacreous microstructure has provided understanding about the role of shell integrity and functionality on mollusk performance and survival, there are no studies, to our knowledge, that delve into the variability of these properties during the mollusk ontogeny, between both shells of bivalves or across the shell length. In this study, using as a model the intertidal mussel Perumytilus purpuratus to obtain, for the first time, the mechanical properties of its shells with nacreous microstructure; we perform uniaxial compression tests oriented in three orthogonal axes corresponding to the orthotropic directions of the shell material behavior (thickness, longitudinal, and transversal). Thus, we evaluated whether the shell material's stress and strain strength and elastic modulus showed differences in mechanical behavior in mussels of different sizes, between valves, and across the shell length. Our results showed that the biomechanical properties of the material building the P. purpuratus shells are symmetrical in both valves and homogeneous across the shell length. However, uniaxial compression tests performed across the shell thickness showed that biomechanical performance depends on the shell size (aging); and that mechanical properties such as the elastic modulus, maximum stress, and strain become degraded during ontogeny. SEM observations evidenced that compression induced a tortuous fracture with a delamination effect on the aragonite mineralogical structure of the shell. Findings suggest that P. purpuratus may become vulnerable to durophagous predators and wave forces in older stages, with implications in mussel beds ecology and biodiversity of intertidal habitats.
Collapse
Affiliation(s)
- Estefano Muñoz-Moya
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
| | - Claudio M García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile.
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Av. Ejército Libertador 146, Santiago de Chile, Chile
| | - Aldo F Abarca-Ortega
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile (USACH), Av. Bernardo O'Higgins 3363, Santiago de Chile, Chile
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Spain
| | - Antonio G Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071, Granada, Spain
| | - Elizabeth M Harper
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| |
Collapse
|