1
|
Khoo SC, Zhang N, Luang-In V, Goh MS, Sonne C, Ma NL. Exploring environmental exposomes and the gut-brain nexus: Unveiling the impact of pesticide exposure. ENVIRONMENTAL RESEARCH 2024; 250:118441. [PMID: 38350544 DOI: 10.1016/j.envres.2024.118441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nan Zhang
- Synerk Biotech, BioBay, Suzhou, 215000, China; Neuroscience Program, Department of Neurology, Houston Methodist Research Institute, TX, 77030, USA; Department of Neurology, Weill Cornell Medicine, New York, 10065, USA
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantharawichai, Mahasarakham, 44150, Thailand
| | - Meng Shien Goh
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Danish Centre for Environment and Energy (DCE), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Nyuk Ling Ma
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
2
|
Pszczolińska K, Barchańska H, Lalek D. Comprehensive multiresidue chromatographic methods for monitoring pesticides in agricultural areas and corresponding plant protection zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123422. [PMID: 38272170 DOI: 10.1016/j.envpol.2024.123422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
This article reports a comprehensive analytical method for the identification and quantification of a broad range of pesticides in green plant crops. The sample preparation method for pesticides involved an optimization of the QuEChERS-based extraction protocol, with sample mass, volume of added water, and the type of cleanup sorbent as variables. A sorbent combination based on ENVI-Carb and ChloroFiltr was examined. A highly efficient method was developed for the purification of plant extracts with 900 mg MgSO4, 150 mg PSA, and 15 mg ENVI-Carb at the d-SPE stage, combined with gas chromatography and liquid tandem mass spectrometry for the determination of 197 pesticides in crop plants containing chlorophyll. The method was validated in accordance with the requirements of international guidelines SANTE/11312/2021. The method was applied to quantify pesticide residues in 29 pairs of green crop plants and plants from the corresponding crop protection zone to verify whether the zones are effective barriers to prevent pesticides from penetrating outside agricultural areas. The number and types of agrochemical preparations were chosen by farmers. In total, more than 60 one- and several-component pesticide formulations were applied to the crops included in the study. The pesticide residues were detected in 21 crop samples and 3 samples from protection zones. Epoxiconazole, an active substance that was banned for use in 2021, was found in a spring barley sample. Based on the conducted research, the effectiveness of the protection zones has been clearly demonstrated, and it has been proven that environmental migration of pesticides and unauthorized agricultural practices pose a risk to ecosystems.
Collapse
Affiliation(s)
- Klaudia Pszczolińska
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153, Sośnicowice, Gliwicka 29, Poland.
| | - Hanna Barchańska
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - Dominika Lalek
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153, Sośnicowice, Gliwicka 29, Poland.
| |
Collapse
|
3
|
McGinley J, Healy MG, Scannell S, Ryan PC, Harmon O'Driscoll J, Mellander PE, Morrison L, Siggins A. Field assessment of coconut-based activated carbon systems for the treatment of herbicide contamination. CHEMOSPHERE 2024; 349:140823. [PMID: 38042422 DOI: 10.1016/j.chemosphere.2023.140823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/25/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Once released into the environment, herbicides can move through soil or surface water to streams and groundwater. Filters containing adsorbent media placed in fields may be an effective solution to herbicide loss in the environment. However, to date, no study has investigated the use of adsorbent materials in intervention systems at field-scale, nor has any study investigated their optimal configuration. Therefore, the aim of this paper was to examine the efficacy of low-cost, coconut-based activated carbon (CAC) intervention systems, placed in streams and tributaries, for herbicide removal. Two configurations of interventions were investigated in two agricultural catchments and one urban area in Ireland: (1) filter bags and (2) filter bags fitted into polyethylene pipes. Herbicide sampling was conducted using Chemcatcher® passive sampling devices in order to identify trends in herbicide exceedances at the sites, and to quantifiably assess, compare, and contrast the efficiency of the two intervention configurations. While the Chemcatcher® passive sampling devices are capable of analysing eighteen different acid herbicides, only six different acid herbicides (2,4-D, clopyralid, fluroxypyr, MCPA, mecoprop and triclopyr) were ever detected within the three catchment areas, which were also the only acid herbicides used therein. The CAC was capable of complete herbicide removal, when the water flow was slow (0.5-1 m3 s-1), and the interventions spanned the width and depth of the waterway. Overall, the reduction in herbicide concentrations was better for the filter pipes than for the filter bags, with a 48% reduction in detections and a 37% reduction in exceedances across all the sampling sites for the filter pipe interventions compared to a 13% reduction in the number of detections and a 24% reduction in exceedances across all sampling sites for the filter bag interventions (p < 0.05). This study demonstrates, for the first time, that CAC may be an effective in situ remediation strategy to manage herbicide exceedances close to the source, thereby reducing the impact on environmental and public health.
Collapse
Affiliation(s)
- John McGinley
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Mark G Healy
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Shane Scannell
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Paraic C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jenny Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - Per-Erik Mellander
- Agricultural Catchments Programme, Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - Liam Morrison
- Ryan Institute, University of Galway, Ireland; Earth and Ocean Sciences, Earth and Life Sciences, School of Natural Sciences, University of Galway, Ireland
| | - Alma Siggins
- Ryan Institute, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland.
| |
Collapse
|
4
|
Xu X, Zhou M, Xie K, Zhang S, Ji X, Sun Y, Li Q, Dong Z. Mitigation of avermectin exposure-induced brain tissue damage in carp by quercetin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1171-1185. [PMID: 37831371 DOI: 10.1007/s10695-023-01249-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Avermectin is widely used as an important insecticide in agricultural production, but it also shows strong toxicity to non-target organisms. Quercetin is a natural flavonoid that is widely used due to its good anti-inflammatory and antioxidant effects. We believe that quercetin may have a potential therapeutic effect on avermectin poisoning. This experiment was proposed to observe the effect of quercetin on the toxic response to avermectin by observing the toxic response caused by avermectin in the brain of carp. In this project, 60 carp were studied as control group (Control), quercetin administration group (QUE), avermectin exposure group (AVM) and quercetin treatment avermectin exposure group (QUE + AVM) with different interventions to study the effect of quercetin on avermectin. The carp brain tissues were stained and simultaneously analyzed for blood-brain barrier (BBB), oxidative stress indicators, inflammatory factors, and apoptosis using qPCR technique. The results of the study indicate that avermectin exhibits a neurotoxic mechanism of action in fish by decreasing the transcript levels of tight junction protein-related genes, which in turn leads to the rupture of the BBB in the carp brain tissue. Avermectin induced apoptosis in carp brain tissue by increasing oxidative stress response and promoting inflammatory cell infiltration. Quercetin could reduce the accumulation of reactive oxygen species (ROS) in the brain tissue of carp caused by avermectin exposure toxicity, maintain redox homeostasis, reduce inflammatory response, and protect brain tissue cells from apoptosis. The present study confirmed the therapeutic and protective effects of quercetin on neurotoxicity in carp caused by avermectin exposure.
Collapse
Affiliation(s)
- Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kunmei Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qiulu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
5
|
Singh NK, Sanghvi G, Yadav M, Padhiyar H, Christian J, Singh V. Fate of pesticides in agricultural runoff treatment systems: Occurrence, impacts and technological progress. ENVIRONMENTAL RESEARCH 2023; 237:117100. [PMID: 37689336 DOI: 10.1016/j.envres.2023.117100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The levels of pesticides in air, water, and soil are gradually increasing due to its inappropriate management. In particular, agricultural runoff inflicts the damages on the ecosystem and human health at massive scale. Present study summarizes 70 studies in which investigations on removal or treatment of pesticides/insecticides/herbicides are reported. A bibliometric analysis was also done to understand the recent research trends through the analysis of 2218 publications. The specific objectives of this study are as follows: i) to inventorize the characteristics details of agriculture runoff and analyzing the occurrence and impacts of pesticides, ii) analyzing the role and interaction of pesticides in different environmental segments, iii) investigating the fate of pesticides in agriculture runoff treatment systems, iv) summarizing the experiences and findings of most commonly technology deployed for pesticides remediation in agriculture runoff including target pesticide(s), specifications, configuration of technological intervention. Among the reported technologies for pesticide treatment in agriculture runoff, constructed wetland was at the top followed by algal or photobioreactor. Among various advanced oxidation processes, photo Fenton method is mainly used for pesticides remediation such as triazine, methyl parathion, fenuron and diuron. Algal bioreactors are extensively used for a wide range of pesticides treatment including 2,4-Dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, alachlor, diuron, chlorpyrifos, endosulfan, and imidacloprid; especially at lower hydraulic retention time of 2-6 h. This study highlights that hybrid approaches can offers potential opportunities for effective removal of pesticides in a more viable manner.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Manish Yadav
- Central Mine Planning Design and Institute, Bhubaneswar, 751013, Odisha, India
| | | | - Johnson Christian
- Environmental Audit Cell, Dr. R. D. Gardi Education Campus Rajkot, 360110, Gujarat India
| | - Vijai Singh
- Department of Biosciences, School of School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| |
Collapse
|
6
|
Rangel-Peña UJ, Zárate-Hernández LA, Camacho-Mendoza RL, Gómez-Castro CZ, González-Montiel S, Pescador-Rojas M, Meneses-Viveros A, Cruz-Borbolla J. Conceptual DFT, machine learning and molecular docking as tools for predicting LD 50 toxicity of organothiophosphates. J Mol Model 2023; 29:217. [PMID: 37380915 DOI: 10.1007/s00894-023-05630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
CONTEXT Several descriptors from conceptual density functional theory (cDFT) and the quantum theory of atoms in molecules (QTAIM) were utilized in Random Forest (RF), LASSO, Ridge, Elastic Net (EN), and Support Vector Machines (SVM) methods to predict the toxicity (LD50) of sixty-two organothiophosphate compounds. The A-RF-G1 and A-RF-G2 models were obtained using the RF method, yielding statistically significant parameters with good performance, as indicated by R2 values for the training set (R2Train) and R2 values for the test set (R2Test), around 0.90. METHODS The molecular structure of all organothiophosphates was optimized via the range-separated hybrid functional ωB97XD with the 6-311 + + G** basis set. Seven hundred and eighty-seven descriptors have been processed using a variety of machine learning algorithms: RF LASSO, Ridge, EN and SVM to generate a predictive model. The properties were obtained with Multiwfn, AIMALL and VMD programs. Docking simulations were performed by using AutoDock 4.2 and LigPlot + programs. All the calculations in this work are carried out in Gaussian 16 program package.
Collapse
Affiliation(s)
- Uriel J Rangel-Peña
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México
| | - Luis A Zárate-Hernández
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México
| | - Rosa L Camacho-Mendoza
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México
| | - Carlos Z Gómez-Castro
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México
| | - Simplicio González-Montiel
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México
| | | | - Amilcar Meneses-Viveros
- Departamento de Computación, CINVESTAV-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, Ciudad de Mexico, 07360, México
| | - Julián Cruz-Borbolla
- Area Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P. 42184, Mineral de La Reforma, Hidalgo, México.
| |
Collapse
|
7
|
McGinley J, Healy MG, Ryan PC, O'Driscoll H, Mellander PE, Morrison L, Siggins A. Impact of historical legacy pesticides on achieving legislative goals in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162312. [PMID: 36805066 DOI: 10.1016/j.scitotenv.2023.162312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are widely used in agriculture to optimise food production. However, the movement of pesticides into water bodies negatively impacts aquatic environments. The European Union (EU) aims to make food systems fair, healthy and environmentally friendly through its current Farm to Fork strategy. As part of this strategy, the EU plans to reduce the overall use and risk of chemical pesticides by 50 % by 2030. The attainment of this target may be compromised by the prevalence of legacy pesticides arising from historical applications to land, which can persist in the environment for several decades. The current EU Farm to Fork policy overlooks the potential challenges of legacy pesticides and requirements for their remediation. In this review, the current knowledge regarding pesticide use in Europe, as well as pathways of pesticide movement to waterways, are investigated. The issues of legacy pesticides, including exceedances, are examined, and existing and emerging methods of pesticide remediation, particularly of legacy pesticides, are discussed. The fact that some legacy pesticides can be detected in water samples, more than twenty-five years after they were prohibited, highlights the need for improved EU strategies and policies aimed at targeting legacy pesticides in order to meet future targets.
Collapse
Affiliation(s)
- J McGinley
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - M G Healy
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - P C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - P-E Mellander
- Agricultural Catchments Programme, Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - L Morrison
- Ryan Institute, University of Galway, Ireland; Earth and Ocean Sciences, Earth and Life Sciences, School of Natural Sciences, University of Galway, Ireland
| | - A Siggins
- Ryan Institute, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland.
| |
Collapse
|
8
|
Pesticide sorption and mitigation efficiency of a detention pond in a Champagne vineyard catchment. Heliyon 2022; 8:e11475. [PMID: 36406734 PMCID: PMC9668682 DOI: 10.1016/j.heliyon.2022.e11475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Detention ponds (DPs) are used to reduce the pesticide inputs from runoff to surface water. This study aimed to assess the role of the sorption process in the mitigation of a DP made up of four successive units and built at the outlet of a vineyard catchment in Champagne (France) to treat runoff waters. Sorption kinetics and isotherms were studied for four pesticides with contrasting properties, cyazofamid (CYA), fludioxonil (FLX), fluopicolide (FLP) and oryzalin (ORY), in the presence of copper in sediments and four emergent macrophyte roots and rhizomes sampled in the DP units 2 (photodegradation) and 3 (phytoremediation). The adsorption equilibrium time (from 24 to 96 h) was less than the hydraulic residence times in the two units (6 and 18 days on average) between November 2016 and November 2017. Sorption equilibrium could then be reached in situ in 85 % of cases. The Kd coefficients of the four pesticides were overall greater in plant roots (14–6742 L kg−1) than in sediments (6–163 L kg−1) because of their affinity for organic matter and the molecular and porous structure of the plant matrices. Typha latifolia and Iris pseudacorus exhibited greater Kd coefficients than Mentha aquatica and Phragmites australis, probably due to their greater specific surface area. The pesticide adsorption capacity in sediments and in T. latifolia and I. pseudacorus roots (ORY ≥ FLX > CYA > FLP) was linked to their Kow. The estimated total annual amounts of the four pesticides adsorbed in situ were determined to be 1236 mg for unit 2 and 1570 mg for unit 3. The four plants improved the removal efficiency of the unit 3 by 33%. Thus, the establishment of suitable and effective plants should be promoted to optimize sorption processes and DP efficiency in reducing water pollution. Pesticide sorption on various substrates of a vineyard detention pond was assessed. The measured equilibrium time was less than the in situ hydraulic residence time. Plant roots and rhizomes showed greater pesticide adsorption capacity than sediments. Sorption capacity was higher on cattail and iris than on mint and reed. Affinity of selected pesticides for roots and sediments was related to their Kow.
Collapse
|
9
|
Yang Y, Zheng K, Guo LP, Wang CX, Zhong DB, Shang L, Nian HJ, Cui XM, Huang SJ. Rapid determination and dietary intake risk assessment of 249 pesticide residues in Panax notoginseng. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113348. [PMID: 35240504 DOI: 10.1016/j.ecoenv.2022.113348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
UPLC-MS/MS and GC-MS/MS were used to establish a method to simultaneously determine various pesticide residues in Panax notoginseng. Results showed that the limits of detection of 249 pesticides were all 5-10 μg/kg. The detection rate of pesticides in 121 P. notoginseng samples was 93.39%, and 19 pesticides were detected. According to the US Code of Federal Regulations, the Chinese Pharmacopoeia recommended algorithm, and the Japanese "positive list system", the pass rates of pesticide residues were 100%, 99.17%, and 89.26%, respectively. The chronic risk quotient (ADI%) and acute risk quotient (ARfD%) of P. notoginseng were 0.00-0.12% and 0.00-0.15%, respectively. In summary, the detection method established in this study can be used for routine analysis of various P. notoginseng pesticide residues. The pesticide residues in the main root samples of P. notoginseng were at a safe level and unlikely pose health risks to consumers.
Collapse
Affiliation(s)
- Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China
| | - Kai Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China
| | - Lan-Ping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Cheng-Xiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd., Kunming 650217, PR China
| | - Le Shang
- Yunnan Yunce Quality Testing Co., Ltd., Kunming 650217, PR China
| | - Hong-Juan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiu-Ming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China.
| | - Shao-Jun Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China.
| |
Collapse
|
10
|
Braschi I, Blasioli S, Lavrnić S, Buscaroli E, Di Prodi K, Solimando D, Toscano A. Removal and fate of pesticides in a farm constructed wetland for agricultural drainage water treatment under Mediterranean conditions (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7283-7299. [PMID: 34476700 PMCID: PMC8763787 DOI: 10.1007/s11356-021-16033-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
A non-waterproofed surface flow constructed wetland (SFCW), treating agricultural drainage water in Northern Italy, was investigated to gain information on the potential ability for effective pesticide abatement. A mixture of insecticide imidacloprid, fungicide dimethomorph, and herbicide glyphosate was applied, by simulating a single rain event, into 470-m-long water course of the SFCW meanders. The pesticides were monitored in the wetland water and soil for about 2 months after treatment. Even though the distribution of pesticides in the wetland was not uniform, for each of them, a mean dissipation of 50% of the applied amount was already observed at ≤7 days. The dissipation trend in the water phase of the wetland fitted (r2 ≥ 0.8166) the first-order model with calculated DT50 of 20.6, 12.0, 5.8, and 36.7 days for imidacloprid, dimethomorph, glyphosate, and the glyphosate metabolite AMPA, respectively. The pesticide behavior was interpreted based on the chemical and physical characteristics of both the substances and the water-soil system. Despite the fast abatement of glyphosate, traces were detected in the water until the end of the trial. The formation of soluble 1:1 complex between glyphosate and calcium, the most representative cation in the wetland water, was highlighted by infrared analyses. Such a soluble complex was supposed to keep traces of the herbicide in solution.
Collapse
Affiliation(s)
- Ilaria Braschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, viale G. Fanin 44, 40127, Bologna, Italy
- GRIFA Gruppo di Ricerca Fitofarmaci e Ambiente, via Ospedale 72, 09124, Cagliari, Italy
| | - Sonia Blasioli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, viale G. Fanin 44, 40127, Bologna, Italy.
| | - Stevo Lavrnić
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, viale G. Fanin 44, 40127, Bologna, Italy
| | - Enrico Buscaroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, viale G. Fanin 44, 40127, Bologna, Italy
| | - Katia Di Prodi
- GRIFA Gruppo di Ricerca Fitofarmaci e Ambiente, via Ospedale 72, 09124, Cagliari, Italy
- Central Laboratory of Conserve Italia Group, Conserve Italia Soc. Coop. Agricola, via P. Poggi 11, 40068, San Lazzaro di Savena, BO, Italy
| | - Domenico Solimando
- Consorzio di Bonifica Canale Emiliano Romagnolo, via E. Masi 8, 40137, Bologna, Italy
| | - Attilio Toscano
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, viale G. Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
11
|
A Literature Review of Wetland Treatment Systems Used to Treat Runoff Mixtures Containing Antibiotics and Pesticides from Urban and Agricultural Landscapes. WATER 2021. [DOI: 10.3390/w13243631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wetland treatment systems are used extensively across the world to mitigate surface runoff. While wetland treatment for nitrogen mitigation has been comprehensively reviewed, the implications of common-use pesticides and antibiotics on nitrogen reduction remain relatively unreviewed. Therefore, this review seeks to comprehensively assess the removal of commonly used pesticides and antibiotics and their implications for nitrogen removal in wetland treatment systems receiving non-point source runoff from urban and agricultural landscapes. A total of 181 primary studies were identified spanning 37 countries. Most of the reviewed publications studied pesticides (n = 153) entering wetlands systems, while antibiotics (n = 29) had fewer publications. Even fewer publications reviewed the impact of influent mixtures on nitrogen removal processes in wetlands (n = 16). Removal efficiencies for antibiotics (35–100%), pesticides (−619–100%), and nitrate-nitrogen (−113–100%) varied widely across the studies, with pesticides and antibiotics impacting microbial communities, the presence and type of vegetation, timing, and hydrology in wetland ecosystems. However, implications for the nitrogen cycle were dependent on the specific emerging contaminant present. A significant knowledge gap remains in how wetland treatment systems are used to treat non-point source mixtures that contain nutrients, pesticides, and antibiotics, resulting in an unknown regarding nitrogen removal efficiency as runoff contaminant mixtures evolve.
Collapse
|
12
|
Jing Y, Krauss M, Zschieschang S, Miltner A, Butkovskyi A, Eggen T, Kästner M, Nowak KM. Superabsorbent polymer as a supplement substrate of constructed wetland to retain pesticides from agricultural runoff. WATER RESEARCH 2021; 207:117776. [PMID: 34758439 PMCID: PMC8819157 DOI: 10.1016/j.watres.2021.117776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Surface water runoff can export pesticides from agricultural fields into adjacent aquatic ecosystems, where they may pose adverse effects to organisms. Constructed wetlands (CWs) are widely used to treat agricultural runoff contaminated by pesticides, but the removal of hydrophilic pesticides is usually low. In this study, we suggest superabsorbent polymer (SAP), a cross-linked hydrophilic polymer, as a supplement to substrates of CWs and tested the hypothesis that SAP results in an enhanced removal of hydrophilic pesticides. Therefore, batch experiments were conducted to study the retention capacity of water-saturated SAP (w-SAP) for several hydrophilic pesticides. Retention of the pesticides on w-SAP was related to the ionization state and water solubility of the pesticides. The retention of neutral pesticides, imidacloprid, metalaxyl and propiconazole, was about 20% higher than that measured for anionic pesticides, bentazone, glyphosate and MCPA. The retention of the pesticides by w-SAP mainly resulted from their distribution in the gel-water phase of w-SAP, while less water soluble pesticides might have also been adsorbed on the molecular backbone of SAP. Furthermore, we tested the efficacy of w-SAP for treatment of runoff water contaminated by pesticides in lab-scale horizontal subsurface flow CWs. SAP in CWs improved the removal of the pesticides, including the recalcitrant ones. The removal enhancement was owing to the increase of hydraulic retention time and improvement of biodegradation. The removal of the pesticides in SAP containing CWs was > 93% for MCPA, glyphosate, and propiconazole, 62 - 99% for imidacloprid, 50 - 84% for metalaxyl, and 38 - 73% for bentazone. In the control gravel CWs, the removal was > 98% for glyphosate, generally > 83% for MCPA and propiconazole, 46 - 98% for imidacloprid, 32 - 97% for metalaxyl, and 9 - 96% for bentazone.
Collapse
Affiliation(s)
- Yuying Jing
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin Krauss
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Simon Zschieschang
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Anja Miltner
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Andrii Butkovskyi
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Trine Eggen
- Norwegian Institute of Bioeconomy Research - NIBIO, Hogskoleringen 7, 1431-AS, Norway
| | - Matthias Kästner
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karolina M Nowak
- UFZ - Helmholtz-Centre for Environmental Research, Dept. of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
13
|
Navarro L, Camacho R, López JE, Saldarriaga JF. Assessment of the potential risk of leaching pesticides in agricultural soils: study case Tibasosa, Boyacá, Colombia. Heliyon 2021; 7:e08301. [PMID: 34816028 PMCID: PMC8591474 DOI: 10.1016/j.heliyon.2021.e08301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
Agricultural soils need monitoring systems to address pesticide risks for humans and the environment. The purpose of this paper was to obtain leaching risk maps of the pesticides imidacloprid, lambda-cyhalothrin, and chlorpyrifos in agricultural soil under an onion (Allium cepa L.) crop in Tibasosa, Boyacá, Colombia. This was obtained by studying the soil types in the area, analyzing the behavior of pollutants in the soil profile, using a delay factor and an attenuation factor to finally include GIS allowing visualization of the areas of greater potential risk in the study area.
Collapse
Affiliation(s)
- Laura Navarro
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
| | - Ricardo Camacho
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Julián E. López
- Environmental Engineering Program, Universidad de Medellín, Carrera 87 #30-65, Medellín, 050026, Colombia
| | - Juan F. Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
- Corresponding author.
| |
Collapse
|
14
|
Effect of Acacia mangium Canopy on Physicochemical Characteristics and Nutrient Concentrations of the Soil at Ayer Hitam Forest Reserve, Malaysia. FORESTS 2021. [DOI: 10.3390/f12091259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The establishment of an Acacia mangium plantation often alters physicochemical characteristics and nutrient concentrations of soils. We aimed to evaluate the invasive potential of A. mangium forest on the soil in Ayer Hitam Forest Reserve, Peninsular, Malaysia. To achieve the mentioned target, four different regions, namely, the open ground region (OG), Acacia mangium region (AM), transition region (TZ), and native forest region (NF), were selected and each of the regions was divided into six plots. Composite samples were randomly taken from subplots at 0–15 cm depth (topsoil) and 15–30 cm depth (subsoil). Some physicochemical properties such as soil moisture and texture, textural classification, bulk density and particle density, pH, electric conductivity (EC), exchangeable bases (EB) (Ca, Mg and K), cation exchange capacity (CEC), organic matter (OM), total nitrogen (TN), and available phosphorous (Av. P) were analyzed. The results of our study showed that the soil of the AM region, which was clay loam, contained clay (51%), silt (32%), and sand (16%). The chemical analysis of topsoil showed significant differences in terms of OM%, exchangeable- Ca, Mg, K (molc kg−1), N (%), gravitational water content (GWC), and Avail. P between all four regions. Additionally, the highest pH and OM of topsoil were seen in the AM region with 4.5% and 4.33%, respectively. In the subsoil, there were significant differences (p ≤ 0.01) in terms of EC (ds/m), OM (%), Exchangeable- Ca, Mg and K (cmolc kg−1), GWC, available phosphorus, and N (%) between all four regions. The highest GWC, N (%), and Ca (cmolc kg−1) were observed in the AM region with 16.00, 0.14%, and 0.64 cmolc kg−1, respectively. These results showed that A. mangium changed some soil characteristics due to its invasion potential. In summary, A. mangium showed high adaptability on degraded forest land and high ability to accumulate the soil physicochemical properties to enhance its growth.
Collapse
|