1
|
Leite C, Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. Complex interactions of rare earth elements in aquatic systems: Comparing observed and predicted cellular responses on Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176608. [PMID: 39349203 DOI: 10.1016/j.scitotenv.2024.176608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Recent societal and technological developments have led to new sources of contamination, particularly from electronic waste (e-waste). The rapid increase in e-waste, combined with inadequate disposal and recycling practices has resulted in rising levels of hazardous substances in aquatic systems, including rare-earth elements (REEs). However, the effects of REEs on aquatic organisms remain poorly understood. This lack of understanding is concerning since REEs can simultaneously appear in aquatic systems. Thus, this study aimed to evaluate the impacts of Yttrium (Y), Lanthanum (La), and Gadolinium (Gd), individually and as mixtures on the mussel species Mytilus galloprovincialis. Biomarkers related to metabolism, energy reserves, defence enzymes, redox balance, cellular damage, and neurotoxicity were analyzed. The results obtained showed that Y alone caused minimal stress, while Gd, La, and their mixtures induced from moderate to severe stress, increasing metabolic activity, and enzyme responses. This study highlights the ecological impacts of REEs mixtures on aquatic organisms. The complex interactions and additive effects, especially with Gd, underline the need for further research on contaminant mixtures.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Madalena Andrade
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, 08003 Barcelona, Spain
| | - Eduarda Pereira
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Riedel JA, Smolina I, Donat C, Svendheim LH, Farkas J, Hansen BH, Olsvik PA. Into the deep: Exploring the molecular mechanisms of hyperactive behaviour induced by three rare earth elements in early life-stages of the deep-sea scavenging amphipod Tmetonyx cicada (Lysianassidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175968. [PMID: 39226952 DOI: 10.1016/j.scitotenv.2024.175968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
With increasing socio-economic importance of the rare earth elements and yttrium (REY), Norway has laid out plans for REY mining, from land-based to deep-sea mining, thereby enhancing REY mobility in the marine ecosystem. Little is known about associated environmental consequences, especially in the deep ocean. We explored the toxicity and modes of action of a light (Nd), medium (Gd) and heavy (Yb) REY-Cl3 at four concentrations (3, 30, 300, and 3000 μg L-1) in the Arcto-boreal deep-sea amphipod Tmetonyx cicada. At the highest concentration, REY solubility was limited and increased with atomic weight (Nd < Gd < Yb). Lethal effects were practically restricted to this treatment, with the lighter elements being more acutely toxic than Yb (from ∼50 % mortality in the Gd-group at dissolved 689-504 μg L-1 to <20 % in the Yb-group at ca. 2000 μg L-1), which could be a function of bioavailability. All three REY induced hyperactivity at the low-medium concentrations. Delving into the transcriptome of T. cicada allowed us to determine a whole array of potential (neurotoxic) mechanisms underlying this behaviour. Gd induced the vastest response, affecting serotonin-synthesis; sphingolipid-synthesis; the renin-angiotensin system; mitochondrial and endoplasmic reticulum functioning (Gd, Nd); and lysosome integrity (Gd, Yb); as well as the expression of hemocyanin, potentially governing REY-uptake (Gd, Yb). While Nd and Yb shared only few pathways, suggesting a link between mode of action and atomic weight/radius, almost all discussed mechanisms imply the disruption of organismal Ca-homeostasis. Despite only fragmental genomic information available for crustaceans to date, our results provide novel insight into the toxicophysiology of REY in marine biota. The neurotoxic/behavioural effects in T. cicada at concentrations with potential environmental relevance warn about the possibility of bottom-up ecological consequences in mining exposed fjords and deep-sea ecosystems, calling for follow-up studies and regulatory measures prior to the onset of REY mining in Norway.
Collapse
Affiliation(s)
- Juliane Annemieke Riedel
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - Coline Donat
- IUT de Saint Étienne, Université Jean Monnet, 28 Av. Léon Jouhaux, 42100 Saint-Étienne, France
| | | | - Julia Farkas
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Bjørn Henrik Hansen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Pål Asgeir Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| |
Collapse
|
3
|
Zhang Z, Jiang W, Gu T, Guo N, Sun R, Zeng Y, Han Y, Yu K. Anthropogenic gadolinium contaminations in the marine environment and its ecological implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124740. [PMID: 39147221 DOI: 10.1016/j.envpol.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Due to the widespread application in medicine and industry of anthropogenic gadolinium (Gdanth), the widespread of Gd anomaly in surface water has leading to disruption of the natural Gd geochemical cycle. However, challenges related to the identification and quantification of Gdanth, assessment of its impacts on marine ecosystems, and exploration of strategies for mitigating its adverse effects still exist. Meanwhile, as the major source of the Gdanth, the environmental geochemical behavior of Gd-based contrast agents (GBCAs), which are used in medical diagnostics in magnetic resonance imaging (MRI), are still poorly understood. In this review, we 1) analyzed Gd anomalies in samples from published literature worldwide, confirmed their prevalence (81.25% for sea and lake water, 72.73% for river water), 2) demonstrated that the third-order polynomial method is the preferred approach for the detection of Gdanth in surface seawater, 3) outlined the species and applications of Gdanth and its impacts on marine environment, 4) explored the process of GBCAs influx into the ocean and demonstrated the concentration of Gdanth in coral samples was mainly affected by terrestrial input GBCAs (63.75%) through Pearson correlation analysis and principle component analysis, 5) proposed effective management strategies for GBCAs at all stages from production to release into the ocean, 6) formulated an expectation for future research on marine Gdanth.
Collapse
Affiliation(s)
- Zhaolin Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Wei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Tingwu Gu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ning Guo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruipeng Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yang Zeng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yansong Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
4
|
Garnier J, Tonha M, Araujo DF, Landrot G, Cunha B, Machado W, Resongles E, Freydier R, Seyler P, Ratié G. Detangling past and modern zinc anthropogenic source contributions in an urbanized coastal river by combining elemental, isotope and speciation approaches. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135714. [PMID: 39298958 DOI: 10.1016/j.jhazmat.2024.135714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
The accumulation of trace metals in the environmental compartments of coastal rivers is a global and complex environmental issue, requiring multiple tools to constrain the various anthropogenic sources and biogeochemical processes affecting the water quality of these environments. The Valao fluvio-estuarine system (Rio de Janeiro, Brazil) presents a challenging case of a coastal river contaminated by both modern and historical anthropogenic metal sources, located in the land and in the intra-estuary, continuously mixed by tidal cycles. This study employed a combination of spatial distribution analysis of trace metals including gadolinium (Gd), zinc (Zn) isotopic analyses, and X-ray absorption spectroscopy (XAS) to distinguish between these sources. The concentrations of metals in both dissolved (water samples) and surficial sediment compartments (Suspended Particulate Matter and sediment samples) display an overall enrichment trend from upstream to downstream. Multivariate statistical analysis allows to discriminate geogenic elements derived from watershed geology (Ti, K, and Mg) vs anthropogenic contaminants from urban runoff and domestic sewage discharges (Cu, Cr, Pb, Zn, and Gd); and legacy metal contaminants (Zn and Cd) remobilized from ancient metallurgical wastes and transported upstream in the estuary during tidal cycles. The anthropogenic Gd concentration in the dissolved compartment increases along the watercourse, highlighting continuous ongoing sewage discharge. Zinc solid speciation also indicates that Zn contribution from legacy metallurgy waste is primarily associated with sulfide-Zn and Zn-phyllosilicate in the outlet estuary, while in upstream sediments of fluvio-estuarine system, Zn is found bound to organic matter. Zinc isotope systematically reveals a progressive downstream shift to heavier isotope compositions. Upstream, the relatively pristine site and the urbanized section of the river exhibit a relatively uniform δ66/64Zn value (+0.20 ± 0.07 ‰) in suspended particulate matter (SPM) and surficial sediments. These results indicate that domestic sewage discharges contribute to Zn enrichment in sediments of the Valao fluvio-estuarine system but without modifying its isotope signature in sediments. The sediment of the downstream estuarine section shows a heavier δ66/64Zn value (+0.48 ± 0.08 ‰), indicating the strong influence of the intra-estuarine source identified as the historical metallurgic contamination. An integrated view of the geochemical tracers allows thus inferring that the untreated sewage and legacy metallurgical contamination are the primary sources of anthropogenic Zn contamination. It highlights the progressive mixing along the estuarine gradient under tidal dynamics. The influence of the former source continuously expands from the headland towards the estuary.
Collapse
Affiliation(s)
- J Garnier
- University of Brasilia, Institute of Geosciences, Graduate Program in Geology, Asa Norte, 70910-900 Brasilia, DF, Brazil.
| | - M Tonha
- University of Brasilia, Institute of Geosciences, Graduate Program in Geology, Asa Norte, 70910-900 Brasilia, DF, Brazil
| | - D F Araujo
- Ifremer, CCEM, Unité Contamination Chimique des Ecosystèmes Marins, F-F-44300 Nantes, France
| | - G Landrot
- Synchrotron SOLEIL, 91190 Saint Aubin, France
| | - B Cunha
- University of Brasilia, Institute of Geosciences, Graduate Program in Geology, Asa Norte, 70910-900 Brasilia, DF, Brazil; Center of Geochronological Research, Geoscience Institute, University of São Paulo, São Paulo, SP, Brazil
| | - W Machado
- Geochemistry Department, Federal University of Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - E Resongles
- Hydrosciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - R Freydier
- Hydrosciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - P Seyler
- University of Brasilia, Institute of Geosciences, Graduate Program in Geology, Asa Norte, 70910-900 Brasilia, DF, Brazil; Hydrosciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - G Ratié
- Nantes Université, Univ. Angers, Le Mans Université, CNRS, Laboratoire de Planétologie et Géosciences LPG UMR 6112, F-44000 Nantes, France
| |
Collapse
|
5
|
Frazzoli C, Bocca B, Battistini B, Ruggieri F, Rovira J, Amadi CN, Offor SJ, Orisakwe OE. Rare Earth and Platinum Group Elements In Sub-Saharan Africa and Global Health: The Dark Side of the Burgeoning of Technology. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241271553. [PMID: 39282214 PMCID: PMC11393805 DOI: 10.1177/11786302241271553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024]
Abstract
Despite steady progress in the development and promotion of the circular economy as a model, an overwhelming proportion of technological devices discarded by the Global North still finds its way to the Global South, where technology-related environmental health problems start from the predation of resources and continue all the way to recycling and disposal. We reviewed literature on TCEs in sub-Saharan Africa (SSA), focussing on: the sources and levels of environmental pollution; the extent of human exposure to these substances; their role in the aetiology of human diseases; their effects on the environment. Our review shows that even minor and often neglected technology-critical elements (TCEs), like rare earth elements (REEs) and platinum group elements (PGEs), reveal the environmental damage and detrimental health effects caused by the massive mining of raw materials, exacerbated by improper disposal of e-waste (from dumping to improper recycling and open burning). We draw attention of local research on knowledge gaps such as workable safer methods for TCE recovery from end-of-life products, secondary materials and e-waste, environmental bioremediation and human detoxification. The technical and political shortcomings in the management of TCEs in SSA is all the more alarming against the background of unfavourable determinants of health and a resulting higher susceptibility to diseases, especially among children who work in mines and e-waste recycling sites or who reside in dumping sites.This paper demonstrates, for the first time, that the role of unjust North-South dynamics is evident even in the environmental levels of minor trace elements and that the premise underlying attempts to solve the problem of e-waste dumped in Africa through recycling and disposal technology is in fact misleading. The influx of foreign electrical and electronic equipments should be controlled and limited by clearly defining what is a 'useful' second-hand device and what is e-waste; risks arising from device components or processing by-products should be managed differently, and scientific uncertainty and One Health thinking should be incorporated in risk assessment.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Environmental Engineering Laboratory, Department d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Turkey
| |
Collapse
|
6
|
Mehennaoui K, Felten V, Caillet C, Giamberini L. Acute and chronic toxicity of rare earth elements-enriched sediments from a prospective mining area: Effects on life history traits, behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda). CHEMOSPHERE 2024; 364:143117. [PMID: 39168391 DOI: 10.1016/j.chemosphere.2024.143117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Rare earth elements (REE) have an essential role and growing importance in the world's economy. They are attracting interest from society, policymakers, and scientists. The rapidly growing global demand for REE in several strategic industrial and agricultural sectors led many countries to consider the (re)-opening of mining activities for REE extraction. Hence, their increasing use led to the disruption of their biogeochemical cycles with anthropic abnormalities already observed in aquatic ecosystems. Nonetheless, REE remain less studied, and their mechanisms of toxicity actions are not fully understood. As amphipods, Gammarus fossarum represent an important part of the aquatic macroinvertebrate assemblage and are generally used in ecotoxicological studies for their high ecological relevance. However, their use for the study of REE effects has been rather limited so far. The current study aims to assess the potential effects of two naturally REE-enriched sediments (N2 and B4) on G. fossarum. Effects on life history traits, behavioural and physiological responses have been evaluated. Exposing G. fossarum males for 72h to sediments N2 and B4 led to a decrease in haemolymph osmolality and locomotion while an increase in ventilatory activity was observed. Exposing G. fossarum pre-copula pairs with females at the same reproductive stage to the naturally REE-enriched sediments, for one moult cycle duration (∼30 days) showed that sediment B4 led to i) a significant uptake of REE, ii) a significant decrease in the proportion of females with oocytes and iii) a significant reduction in the total number of juveniles. The physicochemical analyses of sediments showed that B4 contains the highest amount of REE with a higher proportion of light REE. The present study gives the first insights into the potential toxicity of REE on G. fossarum as they may have deleterious effects on G. fossarum population's dynamics, which may alter the functioning of aquatic ecosystems.
Collapse
Affiliation(s)
- Kahina Mehennaoui
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR, 7360, Université de Lorraine, Metz, France
| | - Vincent Felten
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR, 7360, Université de Lorraine, Metz, France
| | - Celine Caillet
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR, 7360, Université de Lorraine, Metz, France
| | - Laure Giamberini
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR, 7360, Université de Lorraine, Metz, France.
| |
Collapse
|
7
|
Haase R, Pinetz T, Kobler E, Bendella Z, Gronemann C, Paech D, Radbruch A, Effland A, Deike K. Artificial T1-Weighted Postcontrast Brain MRI: A Deep Learning Method for Contrast Signal Extraction. Invest Radiol 2024:00004424-990000000-00240. [PMID: 39074258 DOI: 10.1097/rli.0000000000001107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
OBJECTIVES Reducing gadolinium-based contrast agents to lower costs, the environmental impact of gadolinium-containing wastewater, and patient exposure is still an unresolved issue. Published methods have never been compared. The purpose of this study was to compare the performance of 2 reimplemented state-of-the-art deep learning methods (settings A and B) and a proposed method for contrast signal extraction (setting C) to synthesize artificial T1-weighted full-dose images from corresponding noncontrast and low-dose images. MATERIALS AND METHODS In this prospective study, 213 participants received magnetic resonance imaging of the brain between August and October 2021 including low-dose (0.02 mmol/kg) and full-dose images (0.1 mmol/kg). Fifty participants were randomly set aside as test set before training (mean age ± SD, 52.6 ± 15.3 years; 30 men). Artificial and true full-dose images were compared using a reader-based study. Two readers noted all false-positive lesions and scored the overall interchangeability in regard to the clinical conclusion. Using a 5-point Likert scale (0 being the worst), they scored the contrast enhancement of each lesion and its conformity to the respective reference in the true image. RESULTS The average counts of false-positives per participant were 0.33 ± 0.93, 0.07 ± 0.33, and 0.05 ± 0.22 for settings A-C, respectively. Setting C showed a significantly higher proportion of scans scored as fully or mostly interchangeable (70/100) than settings A (40/100, P < 0.001) and B (57/100, P < 0.001), and generated the smallest mean enhancement reduction of scored lesions (-0.50 ± 0.55) compared with the true images (setting A: -1.10 ± 0.98; setting B: -0.91 ± 0.67, both P < 0.001). The average scores of conformity of the lesion were 1.75 ± 1.07, 2.19 ± 1.04, and 2.48 ± 0.91 for settings A-C, respectively, with significant differences among all settings (all P < 0.001). CONCLUSIONS The proposed method for contrast signal extraction showed significant improvements in synthesizing postcontrast images. A relevant proportion of images showing inadequate interchangeability with the reference remains at this dosage.
Collapse
Affiliation(s)
- Robert Haase
- From the Clinic of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany (R.H., E.K., Z.B., C.G., D.P., A.R., K.D.); Institute of Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany (T.P., A.E.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.); and German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Bonn, Germany (A.R., K.D.)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bringas A, Bringas E, Ibañez R, San Román MF. Tracing Gadolinium levels throughout wastewater treatment: Insights from a yearly assessment in northern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174819. [PMID: 39019274 DOI: 10.1016/j.scitotenv.2024.174819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Gadolinium (Gd) is a rare earth element (REE) used in the formulation of contrast agents for Magnetic Resonance Imaging (MRI) due to its paramagnetic properties. The growth in population and the improved quality of the healthcare systems over the last years, has promoted the use of MRI as an effective diagnostic tool thus increasing the consumption of gadolinium and its release into the wastewater treatment network. Therefore, the tracking and quantification of this metal in sewage treatment plants and water bodies, is of paramount importance since there are currently no specific rare earth treatment technologies installed in WWTPs, and consequently gadolinium is finally discharged into the environment. In this work, the presence of gadolinium and all other rare earth elements was monitored during a year in three WWTPs in northern Spain (Vuelta Ostrera and San Román in Cantabria and Galindo in País Vasco). These WWTPs are located close to urban centres with hospitals where MRI tests are performed. By tracing Gd throughout the wastewater treatment facilities, its presence was confirmed in water streams, in the order of ng per litter, and in sludge and ashes, in the order of mg per kilogram. A significant human influence was observed, with Gd anomaly values between 3.14 and 79.2 and anthropogenic Gd percentages above 90 %. The presence of Gd in water streams is affected by the sampling period due to the variations of the activity periods of the hospitals nearby the treatment plants. On the contrary, its content in sludge and ashes remains almost constant along the year. The concentration of this metal found in the ashes opens the door to its possible recovery together with other critical raw materials in the context of the circular economy.
Collapse
Affiliation(s)
- A Bringas
- Dpto. de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 46, Santander 39005, Cantabria, Spain
| | - E Bringas
- Dpto. de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 46, Santander 39005, Cantabria, Spain
| | - R Ibañez
- Dpto. de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 46, Santander 39005, Cantabria, Spain
| | - Ma-F San Román
- Dpto. de Ingenierías Química y Biomolecular, ETSIIyT, Universidad de Cantabria, Avda. de los Castros, 46, Santander 39005, Cantabria, Spain.
| |
Collapse
|
9
|
Picone M, Giurin A, Distefano GG, Corami F, Turetta C, Volpi Ghirardini A, Basso M, Panzarin L, Farioli A, Bacci M, Sebastanelli C, Morici F, Artese C, De Sanctis A, Galuppi M, Imperio S, Serra L. Mercury and rare earth elements (REEs) show different spatial trends in feathers of Kentish plover (Charadrius alexandrinus) breeding along the Adriatic Sea coast, Italy. ENVIRONMENTAL RESEARCH 2024; 252:119140. [PMID: 38751003 DOI: 10.1016/j.envres.2024.119140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Feather analysis is an ethical and effective method for assessing the exposure of wild birds to environmental contamination due to trace elements and organic pollutants. We used feather to monitor the exposure to three toxic and non-essential metals (Hg, Cd, and Pb) and rare earth elements (REEs) of Kentish plover (Charadrius alexandrinus) breeding in different coastal areas (Veneto, Emilia-Romagna, Marche, Abruzzo, and Apulia) along the Italian coast of the Adriatic Sea. Feathers (n = 113) were collected from April to June. Feather concentrations evidenced a significant exposure to Hg (13.05 ± 1.71 mg kg-1 dw) and REEs (447.3 ± 52.8 ng g-1 dw) in the Kentish plover breeding in Veneto (n = 21) compared to the other coastal areas, with several individuals showing Hg concentrations above the adverse effect (5 mg kg-1 dw) and high-risk (9.14 mg kg-1 dw) thresholds reported for birds. Higher REE concentrations compared to Marche (n = 29), Abruzzo (n = 11) and Apulia (n = 13) were also reported for birds breeding in Emilia-Romagna (474.9 ± 41.9 ng g-1 dw; n = 29). The exposure to Cd and Pb was low in all the coastal areas, and only a few samples (n = 6 and n = 4 for Cd and Pb, respectively) exceeded the adverse effect thresholds (0.1 and 4 mg kg-1 for Cd and Pb, respectively). A significant sex-related difference was observed for REE-concentrations, with females showing higher concentration than males. These data highlight the need to monitor the exposure of the Kentish plover to Hg and REEs, especially in the northern basin of the Adriatic Sea, since these elements might negatively affect species' reproductive success and threaten its conservation.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy.
| | - Alessia Giurin
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Gabriele Giuseppe Distefano
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Fabiana Corami
- National Council for the Research - Institute of Polar Sciences, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Clara Turetta
- National Council for the Research - Institute of Polar Sciences, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Marco Basso
- Via Gianbattista Verci, 25/4, 35128, Padua, Italy
| | - Lucio Panzarin
- Via Giacomo Leopardi 5, 30020, Torre di Mosto, VE, Italy
| | - Alessio Farioli
- Associazione Ornitologi Dell'Emilia Romagna, Via Giovanni Boccaccio 23, 40026, Imola, BO, Italy
| | - Mattia Bacci
- Associazione Ornitologi Dell'Emilia Romagna, Via Giovanni Boccaccio 23, 40026, Imola, BO, Italy
| | | | - Francesca Morici
- Ornitologi Marchigiani ETS, Via Giuseppe Verdi 10/A, 62100, Macerata, Italy
| | - Carlo Artese
- Servizio Scientifico Parco Nazionale Del Gran Sasso e Monti Della Laga, Via Del Convento 1, 67010, Assergi, AQ, Italy
| | - Augusto De Sanctis
- Stazione Ornitologica Abruzzese, Via Antonio De Nino 3, 65126, Pescara, Italy
| | - Mirko Galuppi
- Via Antonio De Marinis 110, 70021, Acquaviva Delle Fonti, BA, Italy
| | - Simona Imperio
- Area Avifauna Migratrice, Istituto Superiore per La Protezione e La Ricerca Ambientale (ISPRA), Via Ca' Fornacetta 9, 40064, Ozzano Emilia, BO, Italy
| | - Lorenzo Serra
- Area Avifauna Migratrice, Istituto Superiore per La Protezione e La Ricerca Ambientale (ISPRA), Via Ca' Fornacetta 9, 40064, Ozzano Emilia, BO, Italy
| |
Collapse
|
10
|
Cesarini G, Spani F, Patricelli R, Quattrocchi CC, Colasanti M, Scalici M. Assessing teratogenic risks of gadolinium in freshwater environments: Implications for environmental health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116442. [PMID: 38728946 DOI: 10.1016/j.ecoenv.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Gadolinium (Gd) is among the rare earth elements extensively utilized in both industrial and medical applications. The latter application appears to contribute to the rise in Gd levels in aquatic ecosystems, as it is excreted via urine from patients undergoing MRI scans and often not captured by wastewater treatment systems. The potential environmental and biological hazards posed by gadolinium exposure are still under investigation. This study aimed to assess the teratogenic risk posed by a gadolinium chelate on the freshwater cnidarian Hydra vulgaris. The experimental design evaluated the impact of pure Gadodiamide (25 μg/l, 50 μg/l, 100 μg/l, 500 μg/l) and its commercial counterpart compound (Omniscan®; 100 μg/l, 500 μg/l, 782.7 mg/l) at varying concentrations using the Teratogenic Risk Index (TRI). Here we showed a moderate risk (Class III of TRI) following exposure to both tested formulations at concentrations ≥ 100 μg/l. Given the potential for similar concentrations in aquatic environments, particularly near wastewater discharge points, a teratogenic risk assessment using the Hydra regeneration assay was conducted on environmental samples collected from three rivers (Tiber, Almone, and Sacco) in Central Italy. Additionally, chemical analysis of field samples was performed using ICP-MS. Analysis of freshwater samples revealed low Gd concentrations (≤ 0.1 μg/l), despite localized increases near domestic and/or industrial wastewater discharge sites. Although teratogenic risk in environmental samples ranged from high (Class IV of TRI) to negligible (Class I of TRI), the low Gd concentrations, particularly when compared to higher levels of other contaminants like arsenic and heavy metals, preclude establishing a direct cause-effect relationship between Gd and observed teratogenic risks in environmental samples. Nevertheless, the teratogenic risks observed in laboratory tests warrant further investigation.
Collapse
Affiliation(s)
- Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy; National Research Council-Water Research Institute (CNR-IRSA), Corso Tonolli 50, Verbania, Pallanza 28922, Italy
| | - Federica Spani
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma 21 - 00128, Italy.
| | - Raoul Patricelli
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences-CISMed, University of Trento, Via S. Maria Maddalena 1, Trento 38122, Italy
| | - Marco Colasanti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, Rome 00146, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, Palermo 90133, Italy
| |
Collapse
|
11
|
Chiesa S, Rotini A, Esposito C, Secco S, Manfra L, Trifuoggi M, Libralato G, Scalici M. Metal(loid)s and Rare Earth Elements in Posidonia oceanica (L.) Delile (1813) banquettes. MARINE POLLUTION BULLETIN 2024; 203:116435. [PMID: 38772171 DOI: 10.1016/j.marpolbul.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/23/2024]
Abstract
The Posidonia oceanica (L.) Delile 1813 banquette provides precious ecosystem services for Mediterranean beach nourishment and protection, representing an important way of energy transfer through marine-coastal habitats. It is surprising to note how it is poorly investigated, especially concerning its double role as potential sink and source of chemicals. In particular, few studies exist about the metal (loid)s occurrence and no data are available on emerging contaminants, such as Rare Earth Elements (REEs). The present research investigated for the first time the concentrations of twenty-eight metal(loid)s and fifteen REEs in a well-structured banquette along the Italian coast (Central Tyrrhenian Sea) showing that (i) metal(loid)s and REEs occur in banquettes, with higher relative concentrations of some metal(loid)s (B, Sr, Mn, Fe, Al, Zn) and REEs (Ce, Y, La, Nd) with no statistically significant seasonal variations; (ii) Posidonia banquettes may represent an interesting biological model for chemicals monitoring.
Collapse
Affiliation(s)
- S Chiesa
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy.
| | - A Rotini
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - C Esposito
- Department of Sciences, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - S Secco
- Department of Sciences, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - L Manfra
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - M Trifuoggi
- Department of Chemistry, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Napoli, Italy
| | - G Libralato
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Napoli, Italy
| | - M Scalici
- Department of Sciences, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
12
|
Spampinato M, Siciliano A, Travaglione A, Chianese T, Mileo A, Libralato G, Guida M, Trifuoggi M, De Gregorio V, Rosati L. Unravelling the ecotoxicological impacts of gadolinium (Gd) on Mytilus galloprovincialis embryos and sperm in seawater: A preliminary study. Heliyon 2024; 10:e31087. [PMID: 38826730 PMCID: PMC11141363 DOI: 10.1016/j.heliyon.2024.e31087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
As the demand for rare earth elements (REEs) continues to surge in diverse industrial and medical domains, the ecological consequences of their ubiquitous presence have garnered heightened attention. Among the REEs, gadolinium (Gd), commonly used in medical imaging contrast agents, has emerged as a pivotal concern due to its inadvertent introduction into marine ecosystems via wastewater release. This study delves into the complex ecotoxicological implications of Gd contamination, focusing on its impact on the embryonic development and sperm functionality of Mytilus galloprovincialis. The findings from this study underscore the potential hazards posed by this rare element, offering a critical perspective on the ecological risks associated with Gd. Notably, this exploratory work reveals that Gd exerts a significant embryotoxic effect at elevated concentrations, with an observed half maximal effective concentration (EC50) value of 0.026 mg/L. Additionally, Gd exposure leads to a considerable reduction in sperm motility and alters sperm morfo-kinetic parameters, especially at a concentration of 5.6 mg/L. The results highlight a dose-dependent relationship between Gd exposure and the prevalence of specific malformation types in Mytilus embryos, further providing crucial insights into the potential risks imposed by this rare earth element.
Collapse
Affiliation(s)
- Marisa Spampinato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Angela Travaglione
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Teresa Chianese
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Aldo Mileo
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Vincenza De Gregorio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| |
Collapse
|
13
|
Siems A, Zimmermann T, Sanders T, Pröfrock D. Dissolved trace elements and nutrients in the North Sea-a current baseline. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:539. [PMID: 38733446 PMCID: PMC11088546 DOI: 10.1007/s10661-024-12675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3-, PO43-, and SiO44-) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3-, PO43-, SiO44-), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.
Collapse
Affiliation(s)
- Anna Siems
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Institute of Inorganic and Applied Chemistry, Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Tristan Zimmermann
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Tina Sanders
- Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Daniel Pröfrock
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
| |
Collapse
|
14
|
Revel M, Medjoubi K, Charles S, Hursthouse A, Heise S. Mechanistic analysis of the sub chronic toxicity of La and Gd in Daphnia magna based on TKTD modelling and synchrotron X-ray fluorescence imaging. CHEMOSPHERE 2024; 353:141509. [PMID: 38403125 DOI: 10.1016/j.chemosphere.2024.141509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The release of lanthanides (Ln) into the environment has increased in recent decades due to their expanding applications in society. Studying their toxicity in aquatic ecosystems is urgent and challenging, with contradictory evidence presented in the literature. This study compared the biodistribution of La and Gd in Daphnia magna exposed to sub-chronic conditions and developed the first Toxicokinetic-Toxicodynamic (TKTD) model for these lanthanides with this model crustacean. D. magna were initially exposed for 7 days to concentrations close to the LC50 of La (2.10 mg L-1) and Gd (1.70 mg L-1). After exposure, half of the live daphnids were introduced in a clean media to allow depuration over 24 h, while the other organisms were directly prepared for synchrotron imaging measurements. Synchrotron X-ray fluorescence analysis revealed that metal distribution in the organisms was similar for both La and Gd, predominantly localized in the intestinal tract, even after the depuration process. These results indicate that ingested metal can adversely affect organisms under sub-chronic exposure conditions, highlighting the importance of using nominal concentrations as a more suitable indicator of metal bioavailability for risk assessment. The General Unified Threshold Model of Survival (GUTS) TKTD framework, in its reduced form (GUTS-RED), was developed for La and Gd using dissolved and nominal concentrations. D. magna were exposed for 7 days to concentrations from 0.5 to 5 mg L-1 of La or Gd and mortality monitored daily. The mechanistic model revealed a faster toxicokinetics for La than Gd and a higher toxicity for Gd than La in the organism. This study confirmed, despite similar chemical properties, the variation in both toxicity and toxicokinetics between these two metals.
Collapse
Affiliation(s)
- Marion Revel
- Faculty of Life Sciences, Hamburg University of Applied Science, Ulmenliet 20, D-21033 Hamburg, Germany; University of the West of Scotland, Paisley, PA1 2BE, UK.
| | - Kadda Medjoubi
- SOLEIL Synchrotron, L'Orme des Merisiers, Dptale 128, 91190 Saint-Aubin, France
| | - Sandrine Charles
- University Lyon 1, CNRS UMR 5558, Laboratory of Biometry and Evolutionary Biology, Villeurbanne Cedex, 69622, France
| | | | - Susanne Heise
- Faculty of Life Sciences, Hamburg University of Applied Science, Ulmenliet 20, D-21033 Hamburg, Germany
| |
Collapse
|
15
|
Dekker HM, Stroomberg GJ, Van der Molen AJ, Prokop M. Review of strategies to reduce the contamination of the water environment by gadolinium-based contrast agents. Insights Imaging 2024; 15:62. [PMID: 38411847 PMCID: PMC10899148 DOI: 10.1186/s13244-024-01626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Gadolinium-based contrast agents (GBCA) are essential for diagnostic MRI examinations. GBCA are only used in small quantities on a per-patient basis; however, the acquisition of contrast-enhanced MRI examinations worldwide results in the use of many thousands of litres of GBCA per year. Data shows that these GBCA are present in sewage water, surface water, and drinking water in many regions of the world. Therefore, there is growing concern regarding the environmental impact of GBCA because of their ubiquitous presence in the aquatic environment. To address the problem of GBCA in the water system as a whole, collaboration is necessary between all stakeholders, including the producers of GBCA, medical professionals and importantly, the consumers of drinking water, i.e. the patients. This paper aims to make healthcare professionals aware of the opportunity to take the lead in making informed decisions about the use of GBCA and provides an overview of the different options for action.In this paper, we first provide a summary on the metabolism and clinical use of GBCA, then the environmental fate and observations of GBCA, followed by measures to reduce the use of GBCA. The environmental impact of GBCA can be reduced by (1) measures focusing on the application of GBCA by means of weight-based contrast volume reduction, GBCA with higher relaxivity per mmol of Gd, contrast-enhancing sequences, and post-processing; and (2) measures that reduce the waste of GBCA, including the use of bulk packaging and collecting residues of GBCA at the point of application.Critical relevance statement This review aims to make healthcare professionals aware of the environmental impact of GBCA and the opportunity for them to take the lead in making informed decisions about GBCA use and the different options to reduce its environmental burden.Key points• Gadolinium-based contrast agents are found in sources of drinking water and constitute an environmental risk.• Radiologists have a wide spectrum of options to reduce GBCA use without compromising diagnostic quality.• Radiology can become more sustainable by adopting such measures in clinical practice.
Collapse
Affiliation(s)
- Helena M Dekker
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | - Gerard J Stroomberg
- RIWA-Rijn - Association of River Water Works, Groenendael 6, 3439 LV, Nieuwegein, The Netherlands
| | - Aart J Van der Molen
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
16
|
El Ayari T, Ben Ahmed R, Hammemi Z, Kouki A, Chelb E, Nechi S, Trigui El Menif N. Effects of rare earth element samarium doped zinc oxide nanoparticles on Mytilus galloprovincialis (Lamarck, 1819): Filtration rates and histopathology. J Trace Elem Med Biol 2024; 81:127349. [PMID: 38006813 DOI: 10.1016/j.jtemb.2023.127349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Doping was reported to improve the photo catalytic performance, antioxidant, antibacterial and other biological properties of nanoparticles. While, improving the nanoparticle properties, doping could change toxicity profile to living organism. Hence, the aim of this work was to assess the effects of samarium doped zinc oxide nanoparticles (Sm doped ZnO NPs) on the edible mussel Mytilus galloprovincialis. METHODS Sm doped ZnO nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) techniques. 156 mussels were exposed during 7 days to a low, intermediate and high concentration of Sm doped ZnO NPs (0.5, 1 and 1.5 mg/L, respectively). The filtration rates were assessed after 1 and 2 h. Histopathological alterations were determined in gills, digestive glands and gonads using a quantitative analysis. RESULTS The filtration rates decreased in all individuals exposed to Sm doped ZnO NPs, a significant decrease was noted with the low and intermediate concentration (0.5 and 1 mg/L) of Sm doped ZnO NPs after 1 and 2 h, respectively. The histopathological index (Ih) estimated for gills, digestive glands and gonads showed differences depending on the organ and the nanoparticle concentration. The highest Ih were reported for digestive glands and female gonads exposed to the intermediate concentration (1 mg/L) of Sm doped ZnO NPs. As for gills and male gonads, the highest Ih were noted with the high concentration (1.5 mg/L) of Sm doped ZnO NPs. CONCLUSION Results from this study revealed the toxicity of Sm doped ZnO NPs in Mytilus galloprovincialis gills, digestive glands and gonads. The toxicity induced by this nanoparticle varies depending on the organ and the concentration.
Collapse
Affiliation(s)
- Tahani El Ayari
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-Monitoring, Group of Fundamental and Applied Malacology (LEB/GFAM), University of Carthage, 7021 Zarzouna, Bizerte, Tunisia.
| | - Raja Ben Ahmed
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and physiology of Aquatic Organisms Laboratory, Tunis, Tunisia
| | - Zaineb Hammemi
- Laboratoire des composes hétāéro-organiques et des matériaux nanostructurés, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Abdessalem Kouki
- Laboratoire de Microscopie électronique et de Microanalyse, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Emna Chelb
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Salwa Nechi
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Najoua Trigui El Menif
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-Monitoring, Group of Fundamental and Applied Malacology (LEB/GFAM), University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
| |
Collapse
|
17
|
Pastorino P, Squadrone S, Berti G, Esposito G, Bondavalli F, Renzi M, Pizzul E, Kazmi SSUH, Barceló D, Abete MC, Prearo M. Occurrence of rare earth elements in water, sediment, and freshwater fish of diverse trophic levels and feeding ecology: Insights from the Po river (northwest Italy). ENVIRONMENTAL RESEARCH 2024; 240:117455. [PMID: 37865325 DOI: 10.1016/j.envres.2023.117455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
To date, the occurrence of rare earth elements (REEs) in freshwater ecosystems has garnered limited attention in the scientific literature. Furthermore, a dearth of data exists regarding their potential bioaccumulation in freshwater fish. To fill this knowledge gap, we studied REEs concentrations in water, sediment, and fish specimens collected along the Po River (northwest Italy) and calculated biota-sediment accumulation (BSAF) and bioconcentration (BCF) factors, while taking into account fish feeding behavior and trophic level effects on the overall content of total REEs (ƩREEs). The fish communities were composed of native and non-native species. Remarkably low concentrations of REEs (<0.0003 mg/L) were detected in the water samples, indicating REEs insolubility. In contrast, sediment samples were found to be a good sink for REEs, with a higher mean ƩREEs recorded for the samples from the Moncalieri station (70.93 mg/kg). Notably, no significant differences in ƩREEs concentration were observed in the muscle tissue of fish samples from the three stations. The highest mean ƩREEs was recorded in the samples from the Murazzi station (0.027 mg/kg). The BSAF was very low, consistently below the unit, indicating an absence of bioaccumulation in fish muscle from sediment. In contrast, the BCF was high for several REEs, mainly for Sc and Y. While feeding ecology did not appear to affect REEs accumulation in muscle, there was a significant negative relationship between the trophic level and ΣREEs, indicating a trophic dilution of REEs from predator (Silurus glanis) to planktivorous (Alburnus arborella) fish. This study provides baseline concentrations, trophic transfers, and patterns of REEs in a river system. Further studies are needed to understand the transfer of REEs to other biotic components of lotic ecosystems.
Collapse
Affiliation(s)
- Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy.
| | - Stefania Squadrone
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| | - Giovanna Berti
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| | - Giuseppe Esposito
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| | - Fabio Bondavalli
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elisabetta Pizzul
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Syed Shabi Ul Hassan Kazmi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, Spain
| | - Maria Cesarina Abete
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| |
Collapse
|
18
|
Lachaux N, Otero-Fariña A, Minguez L, Sohm B, Rétif J, Châtel A, Poirier L, Devin S, Pain-Devin S, Gross EM, Giamberini L. Fate, subcellular distribution and biological effects of rare earth elements in a freshwater bivalve under complex exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167302. [PMID: 37742965 DOI: 10.1016/j.scitotenv.2023.167302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Rare earth elements (REE) are emerging contaminants due to their increased use in diverse applications including cutting-edge and green-technologies. Their environmental concerns and contradicting results concerning their biological effects require an extensive understanding of REE ecotoxicology. Thus, we have studied the fate, bioaccumulation and biological effects of three representative REE, neodymium (Nd), gadolinium (Gd) and ytterbium (Yb), individually and in mixture, using the freshwater bivalve Corbicula fluminea. The organisms were exposed for 96 h at 1 mg L-1 REE in the absence and presence of dissolved organic matter (DOM) reproducing an environmental contamination. Combined analysis of the fate, distribution and effects of REE at tissue and subcellular levels allowed a comprehensive understanding of their behaviour, which would help improving their environmental risk assessment. The bivalves accumulated significant concentrations of Nd, Gd and Yb, which were decreased in the presence of DOM likely due to the formation of REE-DOM complexes that reduced REE bioavailability. The accumulation of Nd, Gd and Yb differed between tissues, with gills > digestive gland ≥ rest of soft tissues > hemolymph. In the gills and in the digestive gland, Nd, Gd and Yb were mostly (>90 %) distributed among metal sensitive organelles, cellular debris and detoxified metal-rich granules. Gadolinium, Yb and especially Nd decreased lysosome size in the digestive gland and disturbed osmo- and iono-regulation of C. fluminea by decreasing Na concentrations in the hemolymph and Ca2+ ATPase activity in the gills. Individual and mixed Nd, Gd and Yb exhibited numerous similarities and some differences in terms of fate, accumulation and biological effects, possibly because they have common abiotic and biotic ligands but different affinities for the latter. In most cases, individual and mixed effects of Nd, Gd, Yb were similar suggesting that additivity approach is suitable for the environmental risk assessment of REE mixtures.
Collapse
Affiliation(s)
- Nicolas Lachaux
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France.
| | - Alba Otero-Fariña
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Université Catholique de l'Ouest, Laboratoire Mer, Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), F-49000 Angers Cedex 01, France
| | | | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Julie Rétif
- Université Catholique de l'Ouest, Laboratoire Mer, Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), F-49000 Angers Cedex 01, France; Nantes University, Institut des Substances et Organismes de La Mer, ISOMer, UR 2160, F-44000 Nantes, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, Laboratoire Mer, Biologie des Organismes, Stress, Santé, Environnement (BIOSSE), F-49000 Angers Cedex 01, France
| | - Laurence Poirier
- Nantes University, Institut des Substances et Organismes de La Mer, ISOMer, UR 2160, F-44000 Nantes, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Sandrine Pain-Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Elisabeth M Gross
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Laure Giamberini
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| |
Collapse
|
19
|
Gylytė B, Martinyuk V, Cimmperman R, Karitonas R, Stoliar O, Manusadžianas L. Long-term toxicity of chlorpromazine, diclofenac and two lanthanides on three generations of Ceriodaphnia dubia. PeerJ 2023; 11:e16472. [PMID: 38025671 PMCID: PMC10666609 DOI: 10.7717/peerj.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Amultigenerational study on Ceriodaphnia dubia was carried out by exposing three subsequent generations to pharmaceuticals chlorpromazine (CPZ) and diclofenac (DCF), and two lanthanide chlorides, gadolinium as GdCl3 and europium as EuCl3. As the treatments, environmentally relevant concentrations were chosen (0.001, 0.01 and 0.1 mg/L for CPZ; 0.1, 1 and 10 mg/L for DCF; 0.425, 4.25 and 42.5 µg/L for Gd and 0.41, 4.1 and 41 µg/L for Eu). Survival, population growth and reproduction success were evaluated at 21 and 30 days of exposure, and the whole observation period lasted 40 days. The least sensitive to all selected substances was the first daphnid generation (F1). Within 21-day exposure, no significant effects of the psychotropic drug CPZ on C. dubia survival were observed in generations F1-F3. The anti-inflammatory drug DCF did not affect survival in the F1 generation; however, it significantly reduced survival in the F3 generation at 1-10 mg/L. Both lanthanides did not affect survival in the F1 and F2 generations of C. dubia but considerably decreased survival in the F3 at 4-42 µg/L. Both pharmaceuticals stimulated the reproduction of C. dubia in the F1 generation, while inhibition occurred at the highest tested concentrations in generations F2 and F3. The inhibitory effect on the reproductive success of lanthanides in the F2 generation resembled that for CPZ but not for DCF. The dynamics of adverse effects during the 21-30-day period revealed that despite increased mortality in the controls (up to 30%), concentrations used in the study minified, in most instances, the survival and aggravated population growth and reproduction success of C. dubia. Our data suggest that C. dubia as a test organism can be used for 21 days in multigenerational investigations, especially when testing close to environmental concentrations. In this respect, the standard C. dubia chronic toxicity assay seems limited since prolonged observations and several generations of daphnids are required to obtain reliable information for the risk assessment of potentially aggressive chemicals.
Collapse
Affiliation(s)
- Brigita Gylytė
- Nature Research Centre, Institute of Botany, Vilnius, Lithuania
| | - Viktoria Martinyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Reda Cimmperman
- Nature Research Centre, Institute of Botany, Vilnius, Lithuania
| | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | | |
Collapse
|
20
|
Sönmez VZ, Akarsu C, Sivri N. The new era hypothesis of coastal degradation: G(s) elements-gallium, gadolinium, and germanium. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8803-8822. [PMID: 37755578 DOI: 10.1007/s10653-023-01743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Mining of precious metals contributes to environmental pollution, especially in coastal areas, and conventional treatment methods are not always effective in removing metal contaminants. Some of these metals, such as gadolinium, germanium and gallium, have caused increasing concern worldwide, as little is known about their current concentrations in the aquatic environment and their biological significance. Therefore, the aim of this study was to determine for the first time the variation of average G(s) concentrations (gallium, gadolinium and germanium) by month/season/site differences along the coast of Istanbul. The ecological risk index was calculated to assess the contamination of seawater and to serve as a diagnostic tool for the mitigation of water pollution. The average distribution G(s) in seawater was in the following order: Ga > Gd > Ge. In addition, the potential ecological risk in the sampling areas ranged from 68 to 1049. Of the three metals, Gd poses the highest ecological risk (grade III). In the spatial distribution of ecological risks, Gd mainly originated from discharges from wastewater treatment plants. Therefore, the sources of the anthropogenic Gd anomaly in wastewater should be identified, as this indicates the possibility of human exposure to potentially harmful anthropogenic compounds.
Collapse
Affiliation(s)
- Vildan Zülal Sönmez
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ceyhun Akarsu
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Nüket Sivri
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
21
|
Yuan X, Cui K, Chen Y, Zhang Y, Wu S, Xie X, Liu T, Yao H. Microbial community and gene dynamics response to high concentrations of gadolinium and sulfamethoxazole in biological nitrogen removal system. CHEMOSPHERE 2023; 342:140218. [PMID: 37734503 DOI: 10.1016/j.chemosphere.2023.140218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The impact of high antibiotic and heavy metal pollution levels on biological nitrogen removal in wastewater treatment plants (WWTPs) remains poorly understood, posing a global concern regarding the issue spread of antibiotic resistance induced by these contaminants. Herein, we investigated the effects of gadolinium (Gd) and sulfamethoxazole (SMX), commonly found in medical wastewater, on biological nitrogen removal systems and microbial characteristics, and the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs). Our findings indicated that high SMX and Gd(III) concentrations adversely affected nitrification and denitrification, with Gd(III) exerting a strong inhibitory effect on microbial activity. Metagenomic analysis revealed that high SMX and Gd(III) concentrations could reduce microbial diversity, with Thauera and Pseudomonas emerging as dominant genera across all samples. While the relative abundance of most ARGs decreased under single Gd(III) stress, MRGs increased, and nitrification functional genes were inhibited. Conversely, combined SMX and Gd(III) pollution increased the relative abundance of intl1. Correlation analysis revealed that most genera could host ARGs and MRGs, indicating co-selection and competition between these resistance genes. However, most denitrifying functional genes exhibited a positive correlation with MRGs. Overall, our study provides novel insights into the impact of high concentrations of antibiotics and heavy metal pollution in WWTPs, and laying the groundwork for the spread and proliferation of resistance genes under combined SMX and Gd pollution.
Collapse
Affiliation(s)
- Xinrui Yuan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yao Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shiyang Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xianjin Xie
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tong Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hongjia Yao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
22
|
Castro L, Farkas J, Jenssen BM, Piarulli S, Ciesielski TM. Biomonitoring of rare earth elements in Southern Norway: Distribution, fractionation, and accumulation patterns in the marine bivalves Mytilus spp. and Tapes spp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122300. [PMID: 37536480 DOI: 10.1016/j.envpol.2023.122300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Growing extraction and usage of rare earth elements and yttrium (REY) for medical and industrial applications has resulted in increased discharges into the marine environment. Using Mytilus spp. Mussels and Tapes spp. clams as bioindicator organisms, we analyzed 15 REY in soft tissues of specimens collected at two potentially polluted sites in Southern Norway: in the vicinity of an industry producing gadolinium-based MRI contrast agents (GBCAs) (Lindesnes) and in an industrially-affected fjord (Porsgrunn). The spatial distribution of REY and shale-normalized fractionation patterns were determined to assess the potential anthropogenic contribution of REY at the sites. At both sites, the REY fractionation pattern in soft tissue was characterized by enrichment of light rare earth elements (LREE) over heavy rare earth elements (HREE), while also displaying negative cerium and small positive gadolinium (Gd) anomalies. LREEs contributed to over 80% of the total REY concentrations, with increasing relative enrichment following higher total REY. Gd anomalies remained conserved in most sites despite significant differences in total REY; however, a high Gd anomaly (Gd/Gd* = 4.4) was found downstream of the GBCA industry spillwater outlet, indicating biotic uptake of excess anthropogenic Gd at this site. Total REY concentrations in clams in Porsgrunn were one order of magnitude higher than in mussels in Lindesnes. This may be attributable to freshwater influences in Porsgrunn, where clams collected closer to the river mouth had significantly higher total REY concentrations. This study constitutes the first assessment of REY concentrations in marine bivalves in Norway and can provide useful information for future biomonitoring studies on REY contamination.
Collapse
Affiliation(s)
- Lyen Castro
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Julia Farkas
- SINTEF Ocean, Climate and Environment, 7465, Trondheim, Norway.
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Arctic Technology, The University Center in Svalbard, 9171, Longyearbyen, Norway
| | | | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Arctic Technology, The University Center in Svalbard, 9171, Longyearbyen, Norway
| |
Collapse
|
23
|
Xia YY, de Seymour JV, Yang XJ, Zhou LW, Liu Y, Yang Y, Beck KL, Conlon CA, Mansell T, Novakovic B, Saffery R, Han TL, Zhang H, Baker PN. Hair and cord blood element levels and their relationship with air pollution, dietary intake, gestational diabetes mellitus, and infant neurodevelopment. Clin Nutr 2023; 42:1875-1888. [PMID: 37625317 DOI: 10.1016/j.clnu.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND & AIMS Exposure to a range of elements, air pollution, and specific dietary components in pregnancy has variously been associated with gestational diabetes mellitus (GDM) risk or infant neurodevelopmental problems. We measured a range of pregnancy exposures in maternal hair and/or infant cord serum and tested their relationship to GDM and infant neurodevelopment. METHODS A total of 843 pregnant women (GDM = 224, Non-GDM = 619) were selected from the Complex Lipids in Mothers and Babies cohort study. Forty-eight elements in hair and cord serum were quantified using inductively coupled plasma-mass spectrometry analysis. Binary logistic regression was used to estimate the associations between hair element concentrations and GDM risk, while multiple linear regression was performed to analyze the relationship between hair/cord serum elements and air pollutants, diet exposures, and Bayley Scales of infant neurodevelopment at 12 months of age. RESULTS After adjusting for maternal age, BMI, and primiparity, we observed that fourteen elements in maternal hair were associated with a significantly increased risk of GDM, particularly Ta (OR = 9.49, 95% CI: 6.71, 13.42), Re (OR = 5.21, 95% CI: 3.84, 7.07), and Se (OR = 5.37, 95% CI: 3.48, 8.28). In the adjusted linear regression model, three elements (Rb, Er, and Tm) in maternal hair and infant cord serum were negatively associated with Mental Development Index scores. For dietary exposures, elements were positively associated with noodles (Nb), sweetened beverages (Rb), poultry (Cs), oils and condiments (Ca), and other seafood (Gd). In addition, air pollutants PM2.5 (LUR) and PM10 were negatively associated with Ta and Re in maternal hair. CONCLUSIONS Our findings highlight the potential influence of maternal element exposure on GDM risk and infant neurodevelopment. We identified links between levels of these elements in both maternal hair and infant cord serum related to air pollutants and dietary factors.
Collapse
Affiliation(s)
- Yin-Yin Xia
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jamie V de Seymour
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Xiao-Jia Yang
- Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Lin-Wei Zhou
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Liu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Kathryn L Beck
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Cathryn A Conlon
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Toby Mansell
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Ting-Li Han
- Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China; Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China.
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
24
|
Grosjean N, Le Jean M, Ory J, Blaudez D. Yeast Deletomics to Uncover Gadolinium Toxicity Targets and Resistance Mechanisms. Microorganisms 2023; 11:2113. [PMID: 37630673 PMCID: PMC10459663 DOI: 10.3390/microorganisms11082113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Among the rare earth elements (REEs), a crucial group of metals for high-technologies. Gadolinium (Gd) is the only REE intentionally injected to human patients. The use of Gd-based contrasting agents for magnetic resonance imaging (MRI) is the primary route for Gd direct exposure and accumulation in humans. Consequently, aquatic environments are increasingly exposed to Gd due to its excretion through the urinary tract of patients following an MRI examination. The increasing number of reports mentioning Gd toxicity, notably originating from medical applications of Gd, necessitates an improved risk-benefit assessment of Gd utilizations. To go beyond toxicological studies, unravelling the mechanistic impact of Gd on humans and the ecosystem requires the use of genome-wide approaches. We used functional deletomics, a robust method relying on the screening of a knock-out mutant library of Saccharomyces cerevisiae exposed to toxic concentrations of Gd. The analysis of Gd-resistant and -sensitive mutants highlighted the cell wall, endosomes and the vacuolar compartment as cellular hotspots involved in the Gd response. Furthermore, we identified endocytosis and vesicular trafficking pathways (ESCRT) as well as sphingolipids homeostasis as playing pivotal roles mediating Gd toxicity. Finally, tens of yeast genes with human orthologs linked to renal dysfunction were identified as Gd-responsive. Therefore, the molecular and cellular pathways involved in Gd toxicity and detoxification uncovered in this study underline the pleotropic consequences of the increasing exposure to this strategic metal.
Collapse
Affiliation(s)
- Nicolas Grosjean
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Marie Le Jean
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France;
| | - Jordan Ory
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France;
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France;
| |
Collapse
|
25
|
Revel M, Medjoubi K, Rivard C, Vantelon D, Hursthouse A, Heise S. Determination of the distribution of rare earth elements La and Gd in Daphnia magna via micro and nano-SXRF imaging. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1288-1297. [PMID: 37249563 DOI: 10.1039/d3em00133d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While our awareness of the toxicity of rare earth elements to aquatic organisms increases, our understanding of their direct interaction and accumulation remains limited. This study describes the acute toxicity of lanthanum (La) and gadolinium (Gd) in Daphnia magna neonates and discusses potential modes of action on the basis of the respective patterns of biodistribution. Ecotoxicological bioassays for acute toxicity were conducted and dissolved metal concentrations at the end of the tests were determined. The results showed a significant difference in nominal EC50 (immobility) between La (>30 mg L-1) and Gd (13.93 (10.92 to 17.38) mg L-1). Daphnids that were then exposed to a concentration close to the determined EC50 of Gd (15 mg L-1, nominal concentration) for 48 h and 72 h were studied by synchrotron micro and nano-X-ray fluorescence to evaluate the biodistribution of potentially accumulated metals. X-ray fluorescence analyses showed that La was mainly found in the intestinal track and appeared to accumulate in the hindgut. This accumulation might be explained by the ingestion of solid La precipitates formed in the media. In contrast, Gd could only be detected in a small amount, if at all, in the intestinal tract, but was present at a much higher concentration in the tissues and became more pronounced with longer exposure time. The solubility of Gd is higher in the media used, leading to higher dissolved concentrations and uptake into tissue in ionic form via common metal transporting proteins. By studying La and Gd biodistribution in D. magna after an acute exposure, the present study has demonstrated that different uptake pathways of solid and dissolved metal species may lead to different accumulation patterns and toxicity.
Collapse
Affiliation(s)
- Marion Revel
- Life Sciences, Hamburg University of Applied Science, Ulmenliet 20, D-21033 Hamburg, Germany.
- University of the CWest of Scotland, Paisley, PA1 2BE, UK
| | - Kadda Medjoubi
- SOLEIL synchrotron, L'Orme des Merisiers, Dptale 128, 91190 Saint-Aubin, France
| | - Camille Rivard
- SOLEIL synchrotron, L'Orme des Merisiers, Dptale 128, 91190 Saint-Aubin, France
- TRANSFORM, INRAE, 44316 Nantes, France
| | - Delphine Vantelon
- SOLEIL synchrotron, L'Orme des Merisiers, Dptale 128, 91190 Saint-Aubin, France
| | | | - Susanne Heise
- Life Sciences, Hamburg University of Applied Science, Ulmenliet 20, D-21033 Hamburg, Germany.
| |
Collapse
|
26
|
Haase R, Pinetz T, Kobler E, Paech D, Effland A, Radbruch A, Deike-Hofmann K. Artificial Contrast: Deep Learning for Reducing Gadolinium-Based Contrast Agents in Neuroradiology. Invest Radiol 2023; 58:539-547. [PMID: 36822654 DOI: 10.1097/rli.0000000000000963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
ABSTRACT Deep learning approaches are playing an ever-increasing role throughout diagnostic medicine, especially in neuroradiology, to solve a wide range of problems such as segmentation, synthesis of missing sequences, and image quality improvement. Of particular interest is their application in the reduction of gadolinium-based contrast agents, the administration of which has been under cautious reevaluation in recent years because of concerns about gadolinium deposition and its unclear long-term consequences. A growing number of studies are investigating the reduction (low-dose approach) or even complete substitution (zero-dose approach) of gadolinium-based contrast agents in diverse patient populations using a variety of deep learning methods. This work aims to highlight selected research and discusses the advantages and limitations of recent deep learning approaches, the challenges of assessing its output, and the progress toward clinical applicability distinguishing between the low-dose and zero-dose approach.
Collapse
Affiliation(s)
| | - Thomas Pinetz
- Institute of Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Erich Kobler
- From the Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn
| | | | - Alexander Effland
- Institute of Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | |
Collapse
|
27
|
de Almeida Duarte LF, Dos Santos Barbosa Ortega A, de Souza Paço M, Sadauskas-Henrique H, Cesar-Ribeiro C, Souza IC, Monteiro R, Monferrán MV, Wunderlin DA, Fernandes MN, Pereira CDS. Settleable atmospheric particulate matter harms a marine invertebrate: Integrating chemical and biological damage in a bivalve model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163380. [PMID: 37044328 DOI: 10.1016/j.scitotenv.2023.163380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Some atmospheric pollutants may affect aquatic ecosystems after settling, generating contamination, bioaccumulation, and threats to aquatic species. Metallurgical processes result in the emission of settleable atmospheric particulate matter (SePM), including metals and metalloids, along with rare earth elements (REE) that are considered emerging contaminants. We report the 30-day exposure of brown mussels (Perna perna) to SePM collected in a metallurgical area of southeast Brazil close to estuarine ecosystems, followed by a 30-day clearance period, to evaluate the toxic potential of SePM to this model mollusk. The bioaccumulation of 28 elements identified in SePM and the sublethal effects were evaluated. REEs were found in SePM (Ce, Y, and La). Significant bioaccumulation of eight metals (Fe, Ni, Cu, Zn, Rb, Sr, Cd, and Ba) was found in the bivalves and correlates with the cytotoxicity and genotoxicity, showing a dose-dependent mode and suggesting a pre-pathological condition that could lead to ecological disturbances over time. Conversely, the unchanged lipid-peroxidation level after SePM exposure could indicate the effectiveness of the antioxidant system in protecting gills and digestive glands. The clearance period was not enough to successfully reverse the negative effects observed. So far, the current results enhance the comprehension of the negative role of SePM on metal bioaccumulation and metal-induced toxicity to aquatic biota. Thus, this report adds innovative findings on the role of SePM in aquatic pollution in coastal areas affected by atmospheric pollution, which should be relevant for future public policies to verify and control the environmental pollution.
Collapse
Affiliation(s)
- Luis Felipe de Almeida Duarte
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Rua Maria Máximo 168, 11030-100 Santos, São Paulo, Brazil; Universidade Santa Cecília, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, R. Oswaldo Cruz, 277, Boqueirão, 11045-907 Santos, São Paulo, Brazil.
| | - Andressa Dos Santos Barbosa Ortega
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Rua Maria Máximo 168, 11030-100 Santos, São Paulo, Brazil; Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Litoral Paulista, Praça Infante Dom Henrique, s/n - Parque Bitaru, 11330-900 São Vicente, São Paulo, Brazil
| | - Marina de Souza Paço
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Rua Maria Máximo 168, 11030-100 Santos, São Paulo, Brazil
| | - Helen Sadauskas-Henrique
- Universidade Santa Cecília, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, R. Oswaldo Cruz, 277, Boqueirão, 11045-907 Santos, São Paulo, Brazil
| | - Caio Cesar-Ribeiro
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Litoral Paulista, Praça Infante Dom Henrique, s/n - Parque Bitaru, 11330-900 São Vicente, São Paulo, Brazil
| | - Iara Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Rafaella Monteiro
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Magdalena Victoria Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cidad, Universitaria, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cidad, Universitaria, 5000 Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Rua Maria Máximo 168, 11030-100 Santos, São Paulo, Brazil; Universidade Santa Cecília, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, R. Oswaldo Cruz, 277, Boqueirão, 11045-907 Santos, São Paulo, Brazil
| |
Collapse
|
28
|
Kohl J, Schweikert M, Klaas N, Lemloh ML. Intracellular bioaccumulation of the rare earth element Gadolinium in ciliate cells resulting in biogenic particle formation and excretion. Sci Rep 2023; 13:5650. [PMID: 37024513 PMCID: PMC10079679 DOI: 10.1038/s41598-023-32596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Ciliates are abundant unicellular organisms capable of resisting high concentrations of metal ions in the environment caused by various anthropogenic activities. Understanding the cellular pathways involved in resistance to and detoxification of elements is required to predict the impact of ciliates on environmental element cycles. Here, we investigated the so far unknown process of tolerance, cellular uptake and bioaccumulation of the emerging rare earth element gadolinium (Gd) in the common ciliate Tetrahymena pyriformis. Gd treatment results in the intracellular formation and excretion of biogenic Gd-containing particles. This cellular process effectively removes dissolved Gd from the organic growth medium by 53.37% within 72 h. Based on light and electron microscopic observations, we postulate a detoxification pathway: Cells take up toxic Gd3+ ions from the medium by endocytosis, process them into stable Gd-containing particles within food vacuoles, and exocytose them. Stable biogenic particles can be isolated, which are relatively homogeneous and have a diameter of about 3 µm. They consist of the elements Gd, C, O, P, Na, Mg, K, and Ca. These findings broaden the view of metal ion accumulation by protists and are of relevance to understand environmental elemental cycles and may inspire approaches for metal recovery or bioremediation.
Collapse
Affiliation(s)
- Jana Kohl
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569, Stuttgart, Germany
| | - Michael Schweikert
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569, Stuttgart, Germany
- SRF AMICA, University of Stuttgart, 70569, Stuttgart, Germany
| | - Norbert Klaas
- IWS, Research Facility for Subsurface Remediation (VEGAS), University of Stuttgart, 70569, Stuttgart, Germany
| | - Marie-Louise Lemloh
- SRF AMICA, University of Stuttgart, 70569, Stuttgart, Germany.
- Materials Testing Institute, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
29
|
Liu Z, Gu X, Lian M, Wang J, Xin M, Wang B, Ouyang W, He M, Liu X, Lin C. Occurrence, geochemical characteristics, enrichment, and ecological risks of rare earth elements in sediments of "the Yellow river-Estuary-bay" system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121025. [PMID: 36621719 DOI: 10.1016/j.envpol.2023.121025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Recent studies have suggested that rare earth elements (REEs) are contaminants of emerging concern. Moreover, the understanding of the occurrence and risks of REEs in river-estuary-bay systems is limited. The present study investigated the distributions, geochemical characteristics, and ecological risks of Y and 14 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in sediments from the Yellow River to its estuary and adjacent Laizhou Bay. The average total concentrations of Y and REEs in the sediments generally increased from the Yellow River (149 mg/kg) to the estuary (165 mg/kg) and Laizhou Bay (173 mg/kg). In the estuarine core sediments, the concentrations of Y, light REEs (LREEs), and heavy REEs (HREEs) were in the ranges of 19.5-31.4 mg/kg, 58.6-156 mg/kg, and 12.3-19.1 mg/kg, respectively, from the 1700s to 2018, showing no obvious increasing or decreasing trends. The surface and core sediments from the river to the bay were characterized by obvious fractionation between LREEs and HREEs. In sediments, Fe minerals and clay are believed to promote the accumulation of REEs, especially HREEs. The enrichment levels of REEs generally increased from the middle reaches of the Yellow River to the bay, and Gd, Tb, Dy, Ho, Yb, and Lu were the most enriched elements in the sediments. Lu had moderate potential ecological risks in sediments of "the Yellow River-estuary-bay" system, and other REEs had relatively low ecological risks. The potential ecological risk indices of Y and REEs ranged from 78.7 to 144, showing increasing trends from the Yellow River to its estuary and adjacent bay, which should raise concerns regarding emerging contaminant management around estuarine and coastal regions.
Collapse
Affiliation(s)
- Ziyu Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiang Gu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Maoshan Lian
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jing Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ming Xin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Baodong Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Wei Ouyang
- School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Mengchang He
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
30
|
Villemaire A, Adam G, Fayolle H, Roques M, Darcourt J, Caron P, Bonneville F. Is systematic Gadolinium injection relevant during MRI follow-up for non-functioning pituitary macroadenomas? J Neuroradiol 2023; 50:3-8. [PMID: 36055429 DOI: 10.1016/j.neurad.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To compare the performance of coronal contrast-enhanced T1-weighted (ceT1-w) and T2-weighted (T2-w) sequences for diagnosing progression during the MRI follow-up of Non-Functioning Pituitary MacroAdenomas (NFPMAs). PATIENTS AND METHODS 106 patients, who had at least two MRIs for the follow-up of NFPMA, were enrolled retrospectively. The largest adenoma diameter was measured on coronal ceT1-w sequences and separately on T2-w sequences for all follow-up MRIs. Interobserver variability was also assessed by 2 independent neuroradiologists in a sample series of 100 examinations. Progression was defined by an increase ≥ 2 mm in diameter between 2 MRIs. Progression thresholds of 3 and 4 mm were also tested. The results of ceT1-w and T2-w sequences were analysed for concordance. RESULTS 93.1% concordance was achieved between ceT1-w and T2-w coronal sequences in 580 follow-up MRIs. In the case of progression detected on at least one sequence, 64.4% concordance was documented for a 2-mm threshold, 87.7% for 3-mm and 97.1% for 4-mm. Discordance was mainly observed on the first postoperative MRI and in case of NFPMAs with multiple recurrences. Kappa was better for diagnosing progression on T2-w than on ceT1-w sequences (0.67 vs. 0.54). It should be noted that 100% agreement was observed between the 2 sequences in the 82 follow-up MRIs of patients with complete surgical resection. CONCLUSION 93.1% concordance was achieved for coronal ceT1-w and T2-w sequences during the MRI follow-up of NFPMAs, thus challenging systematic injection of gadolinium. If MRI without gadolinium injection is a first-line option, our results suggest that ceT1-w sequences should be reserved for the first postoperative MRI and for the follow-up of aggressive and recurrent NFPMAs.
Collapse
Affiliation(s)
- Axel Villemaire
- Departements of Neuroradiology, CHU Toulouse, Toulouse, France.
| | - Gilles Adam
- Departements of Neuroradiology, CHU Toulouse, Toulouse, France
| | | | - Margaux Roques
- Departements of Neuroradiology, CHU Toulouse, Toulouse, France
| | - Jean Darcourt
- Departements of Neuroradiology, CHU Toulouse, Toulouse, France
| | - Philippe Caron
- Endocrinology-Metabolic and nutrition Diseases, CHU Toulouse, Toulouse, France
| | | |
Collapse
|
31
|
Jellema PEJ, Wijnen JP, De Luca A, Mutsaerts HJMM, Obdeijn IV, van Baarsen KM, Lequin MH, Hoving EW. Advanced intraoperative MRI in pediatric brain tumor surgery. Front Physiol 2023; 14:1098959. [PMID: 37123260 PMCID: PMC10134397 DOI: 10.3389/fphys.2023.1098959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: In the pediatric brain tumor surgery setting, intraoperative MRI (ioMRI) provides "real-time" imaging, allowing for evaluation of the extent of resection and detection of complications. The use of advanced MRI sequences could potentially provide additional physiological information that may aid in the preservation of healthy brain regions. This review aims to determine the added value of advanced imaging in ioMRI for pediatric brain tumor surgery compared to conventional imaging. Methods: Our systematic literature search identified relevant articles on PubMed using keywords associated with pediatrics, ioMRI, and brain tumors. The literature search was extended using the snowball technique to gather more information on advanced MRI techniques, their technical background, their use in adult ioMRI, and their use in routine pediatric brain tumor care. Results: The available literature was sparse and demonstrated that advanced sequences were used to reconstruct fibers to prevent damage to important structures, provide information on relative cerebral blood flow or abnormal metabolites, or to indicate the onset of hemorrhage or ischemic infarcts. The explorative literature search revealed developments within each advanced MRI field, such as multi-shell diffusion MRI, arterial spin labeling, and amide-proton transfer-weighted imaging, that have been studied in adult ioMRI but have not yet been applied in pediatrics. These techniques could have the potential to provide more accurate fiber tractography, information on intraoperative cerebral perfusion, and to match gadolinium-based T1w images without using a contrast agent. Conclusion: The potential added value of advanced MRI in the intraoperative setting for pediatric brain tumors is to prevent damage to important structures, to provide additional physiological or metabolic information, or to indicate the onset of postoperative changes. Current developments within various advanced ioMRI sequences are promising with regard to providing in-depth tissue information.
Collapse
Affiliation(s)
- Pien E. J. Jellema
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
- *Correspondence: Pien E. J. Jellema,
| | - Jannie P. Wijnen
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Alberto De Luca
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Iris V. Obdeijn
- Centre for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Kirsten M. van Baarsen
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Maarten H. Lequin
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Department of Radiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Eelco W. Hoving
- Department of Pediatric Neuro-Oncology, Princess Máxima Centre for Pediatric Oncology, Utrecht, Netherlands
- Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
32
|
Klein O, Zimmermann T, Hildebrandt L, Pröfrock D. Technology-critical elements in Rhine sediments - A case study on occurrence and spatial distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158464. [PMID: 36057312 DOI: 10.1016/j.scitotenv.2022.158464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Despite their presence in almost every technical device, little is known about the occurrence, distribution, and fate of technology-critical elements (TCEs) within the environment. Due to high economic demands and short product lifespans as well as low recycling rates, many TCEs appear to become emerging contaminants. Within the scope of this work, 57 sediment samples from the German part of the Rhine river, as well as various tributaries, were collected to study the occurrence and distribution of TCEs. This specific catchment area has consistently been subjected to strong anthropogenic influences over the last century. Hierarchical cluster analysis, as well as principal component analysis were used to gain first insights into the spatial distribution and possible sources of TCEs along the Rhine. Obtained mass fractions in conjunction with corresponding geoaccumulation indices (Igeo) provide first indications of a possible enrichment along the Rhine for the TCEs of interest (Ga, Ge, Nb, In, Te, rare earth elements, and Ta). Especially the mass fractions of Zn, Ge, In, La, Sm, and Gd exhibit significant anthropogenic inputs. For stations characterized by high Ge and In mass fractions, element fingerprints imply possible atmospheric deposition stemming from e.g. combustion processes. Distinct anomalies of La and Sm most likely originate from discharges located at the city of Worms into the Upper Rhine. Statistical analysis of all analyzed 55 elemental mass fractions revealed similar behavior of TCEs compared to classical heavy metals. Diffuse as well as point sources of TCEs are likely. As a result, this study provides further insight into the role of TCEs as potential emerging contaminants in the environment.
Collapse
Affiliation(s)
- Ole Klein
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Inorganic Environmental Chemistry, Max-Planck Str. 1, 21502 Geesthacht, Germany; Universität Hamburg, Department of Chemistry, Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Tristan Zimmermann
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Inorganic Environmental Chemistry, Max-Planck Str. 1, 21502 Geesthacht, Germany
| | - Lars Hildebrandt
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Inorganic Environmental Chemistry, Max-Planck Str. 1, 21502 Geesthacht, Germany
| | - Daniel Pröfrock
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Inorganic Environmental Chemistry, Max-Planck Str. 1, 21502 Geesthacht, Germany.
| |
Collapse
|
33
|
Figueiredo C, Grilo TF, Oliveira R, Ferreira IJ, Gil F, Lopes C, Brito P, Ré P, Caetano M, Diniz M, Raimundo J. Gadolinium ecotoxicity is enhanced in a warmer and acidified changing ocean as shown by the surf clam Spisula solida through a multibiomarker approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106346. [PMID: 36327686 DOI: 10.1016/j.aquatox.2022.106346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Humans have exhaustively combusted fossil fuels, and released pollutants into the environment, at continuously faster rates resulting in global average temperature increase and seawater pH decrease. Climate change is forecasted to exacerbate the effects of pollutants such as the emergent rare earth elements. Therefore, the objective of this study was to assess the combined effects of rising temperature (Δ = + 4 °C) and decreasing pH (Δ = - 0.4 pH units) on the bioaccumulation and elimination of gadolinium (Gd) in the bioindicator bivalve species Spisula solida (Surf clam). We exposed surf clams to 10 µg L-1 of GdCl3 for seven days, under warming, acidification, and their combination, followed by a depuration phase lasting for another 7 days and investigated the Gd bioaccumulation and oxidative stress-related responses after 1, 3 and 7 days of exposure and the elimination phase. Gadolinium accumulated after just one day with values reaching the highest after 7 days. Gadolinium was not eliminated after 7 days, and elimination is further hampered under climate change scenarios. Warming and acidification, and their interaction did not significantly impact Gd concentration. However, there was a significant interaction on clam's biochemical response. The augmented total antioxidant capacity and lipid peroxidation values show that the significant impacts of Gd on the oxidative stress response are enhanced under warming while the increased superoxide dismutase and catalase values demonstrate the combined impact of Gd, warming & acidification. Ultimately, lipid damage was greater in clams exposed to warming & Gd, which emphasizes the enhanced toxic effects of Gd in a changing ocean.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal; Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; Department of Chemistry, Department of Life Sciences, School of Science and Technology, UCIBIO, Applied Molecular Biosciences Unit, NOVA University Lisbon, Caparica 2819-516, Portugal.
| | - Tiago F Grilo
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Rui Oliveira
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal
| | - Inês João Ferreira
- Chemistry Department, LAQV-REQUIMTE, NOVA School of Science and Technology, Caparica 2829-516, Portugal
| | - Fátima Gil
- Aquário Vasco da Gama, Rua Direita do Dafundo, Cruz Quebrada 1495-718, Portugal
| | - Clara Lopes
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Pedro Brito
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Pedro Ré
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Mário Diniz
- Department of Chemistry, Department of Life Sciences, School of Science and Technology, UCIBIO, Applied Molecular Biosciences Unit, NOVA University Lisbon, Caparica 2819-516, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 2819-516, Portugal
| | - Joana Raimundo
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; Aquário Vasco da Gama, Rua Direita do Dafundo, Cruz Quebrada 1495-718, Portugal
| |
Collapse
|
34
|
Cao Y, Zhang C, Fang Y, Liu Y, Lyu K, Ding J, Wang X. Investigation the global effect of rare earth gadolinium on the budding Saccharomyces cerevisiae by genome-scale screening. Front Microbiol 2022; 13:1022054. [DOI: 10.3389/fmicb.2022.1022054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
IntroductionThe rare earth gadolinium (Gd) is widely used in industry and medicine, which has been treated as an emerging pollutant in environment. The increasing pollution of Gd has potential hazards to living organisms. Thus it is essential to investigate the toxicity and action mechanism of Gd in biological system.MethodsIn this study, the global effect and activation mechanism of Gd on yeast were investigated by genome-scale screening.Results and discussionOur results show that 45 gene deletion strains are sensitive to Gd and 10 gene deletion strains are Gd resistant from the diploid gene deletion strain library of Saccharomyces cerevisiae. The result of localization analysis shows that most of these genes are involved in cell metabolism, cell cycle, transcription, translation, protein synthesis, protein folding, and cell transport. The result of functional analysis shows that four genes (CNB1, CRZ1, VCX1, and GDT1) are involved in the calcium signaling pathway, and four genes (PHO84, PHO86, PHO2, and PHO4) are involved in phosphorus metabolism. For Gd3+ has the similar ion radius with Ca2+ and easily binds to the phosphate radical, it affects Ca2+ signaling pathway and phosphorus metabolism. The genes ARF1, ARL1, ARL3, SYS1, COG5, COG6, YPT6, VPS9, SSO2, MRL1, AKL1, and TRS85 participate in vesicle transport and protein sorting. Thus, Gd accumulation affects the function of proteins related to vesicle transport, which may result in the failure of Gd transport out of cells. In addition, the intracellular Gd content in the 45 sensitive deletion strains is higher than that in the wild type yeast under Gd stress. It suggests that the sensitivity of yeast deletion strains is related to the excessive intracellular Gd accumulation.
Collapse
|
35
|
Lian Z, Han Y, Zhao X, Xue Y, Gu X. Rare earth elements in the upland soils of northern China: Spatial variation, relationships, and risk assessment. CHEMOSPHERE 2022; 307:136062. [PMID: 35981620 DOI: 10.1016/j.chemosphere.2022.136062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
While global demand for rare earth elements (REEs) is rapidly growing, recent studies have suggested that REEs are pollutants of emerging concern. In this study, the spatial distribution and risk assessments of REEs in the upland soils of northern China were comprehensively investigated. The total REE concentrations ranged from 81 to 180 mg/kg, with average concentrations of 123, 128, and 98.3 mg/kg in the northwestern, northern, and northeastern zones, respectively. The decreasing trend of REE contents from northwest to northeast might be influenced by variation in the REE metallogenic belt distribution, mining activities, and precipitation intensity in these regions. The ratio of light rare elements (LREEs) to heavy rare elements (HREEs) ranged from 5.04 to 9.06, revealing obvious fractionation between them in upland soils and indicating that LREEs enrichment was common in northern China. The significantly positive correlations between the REEs indicated that REEs might frequently coexist and share similar sources in the upland soils of northern China. Based on a modified ecological risk index (eRI), REEs were estimated to pose relatively low ecological risks to current environmental residues, with eRI values ranging from 0.564 to 0.984. Fortunately, the estimated daily intakes of REEs from soils for children (1.08-2.41 μg/kg/day) and adults (0.119-0.312 μg/kg/day) were well below the safety thresholds. However, the health risks posed by REEs in upland soils were estimated to be higher for children. Thus, the continuous monitoring of REE abundance in soils is essential to avoid potential health risks.
Collapse
Affiliation(s)
- Zhongmin Lian
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yixuan Han
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xumao Zhao
- College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Yinglan Xue
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing, 100190, China; State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing, 100012, China.
| | - Xiang Gu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
36
|
Cunha M, Louro P, Silva M, Soares AMVM, Pereira E, Freitas R. Biochemical alterations caused by lanthanum and gadolinium in Mytilus galloprovincialis after exposure and recovery periods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119387. [PMID: 35513194 DOI: 10.1016/j.envpol.2022.119387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The increasing use of rare earth elements (REEs) in electric and electronic equipment has been associated with the presence of these elements in aquatic systems. The present study aimed to evaluate the toxicity of two REEs, Lanthanum (La) and Gadolinium (Gd), towards the mussel species Mytilus galloprovincialis. For this, the toxicity was assessed after a short-term exposure (14 days) to an environmentally relevant concentration of each element (10 μg/L), followed by a recovery period (14 days) in the absence of any contaminant. The measured biomarkers included energy-related parameters, activity of antioxidant and biotransformation enzymes, indicators of oxidative damage, levels of oxidized glutathione and neurotoxicity. After exposure mussels accumulated more La (0.54 μg/g) than Gd (0.15 μg/g). After recovery higher concentration decrease was observed for Gd (≈40% loss) compared to La exposed mussels (≈30% loss) which may be associated with lower detoxification capacity of mussels previously exposed to La. Mussels increased their metabolism (i.e., higher electron transport system activity) only after the exposure to Gd. Exposure to La and Gd resulted into lower energy expenditure, while when both elements were removed glycogen and protein concentrations decreased to values observed in non-contaminated mussels. Antioxidant and biotransformation capacity was mainly increased in the presence of Gd. This defense response avoided the occurrence of cellular damage but still loss of redox balance was found regardless the contaminant, which was re-established after the recovery period. Neurotoxicity was only observed in the presence of Gd with no effects after the recovery period. Results showed that a short-term exposure to La and especially to Gd can exert deleterious effects that may compromise specific biochemical pathways in aquatic species, such as M. galloprovincialis, but under low concentrations organisms can be able to re-establish their biochemical status to control levels after a recovery period.
Collapse
Affiliation(s)
- Marta Cunha
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Patricia Louro
- Departamento de Física, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Mónica Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
37
|
Figueiredo C, Grilo TF, Lopes C, Brito P, Caetano M, Raimundo J. Lanthanum and Gadolinium availability in aquatic mediums: New insights to ecotoxicology and environmental studies. J Trace Elem Med Biol 2022; 71:126957. [PMID: 35227975 DOI: 10.1016/j.jtemb.2022.126957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 01/22/2023]
Abstract
Studies dealing with Rare Earth Elements (REE) ecotoxicological behavior are scattered and with potential conflicting results. Climate change impacts on aquatic biota and is known to modify contaminants toxicokinetic. Nevertheless, the current knowledge on the potential interactions between climate change and REE is virtually non-existent. Therefore, we focus our research on La and Gd as representatives of Light and Heavy REE that also are of great environmental concern. Experiments on different mediums (fresh-, brackish- and seawater) were designed to run at present-day and near-future conditions (T°=+4 °C, pH=△-0.4). Sampling was taken at different time scales from minutes to hours for one day. The main challenge was to evaluate the availability of La and Gd under environmental conditions closely related to climate changes scenarios. Furthermore, this study will contribute to the baseline knowledge by which future research towards understanding REE patterns and toxicity will build upon. Lanthanum and Gd behave differently with salinity. Temperature also affects the availability of dissolved La in freshwater. On the other hand, pH reduction causes the decrease of Gd in freshwater. In this medium, concentrations reduce sharply, presumably due to sorption processes or precipitates. In the brackish water experiment only the dissolved La levels in the Warming (T°=+4 °C) and Warming & Acidification (T°=+4 °C, pH=△0.4) diminished significantly through time. Dissolved La and Gd levels in seawater were relatively constant with time. The speciation of both elements is also of great relevance for ecotoxicological experiments. The trivalent free ions (La3+ and Gd3+) were the most common species in the trials. However, as ionic strength increases, the availability of other complexes rose, which should be subject of great attention for upcoming ecotoxicological studies.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal; Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Tiago F Grilo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Clara Lopes
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal
| | - Pedro Brito
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
38
|
Martino C, Chianese T, Chiarelli R, Roccheri MC, Scudiero R. Toxicological Impact of Rare Earth Elements (REEs) on the Reproduction and Development of Aquatic Organisms Using Sea Urchins as Biological Models. Int J Mol Sci 2022; 23:ijms23052876. [PMID: 35270017 PMCID: PMC8911218 DOI: 10.3390/ijms23052876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The growing presence of lanthanides in the environment has drawn the attention of the scientific community on their safety and toxicity. The sources of lanthanides in the environment include diagnostic medicine, electronic devices, permanent magnets, etc. Their exponential use and the poor management of waste disposal raise serious concerns about the quality and safety of the ecosystems at a global level. This review focused on the impact of lanthanides in marine organisms on reproductive fitness, fertilization and embryonic development, using the sea urchin as a biological model system. Scientific evidence shows that exposure to lanthanides triggers a wide variety of toxic insults, including reproductive performance, fertilization, redox metabolism, embryogenesis, and regulation of embryonic gene expression. This was thoroughly demonstrated for gadolinium, the most widely used lanthanide in diagnostic medicine, whose uptake in sea urchin embryos occurs in a time- and concentration-dependent manner, correlates with decreased calcium absorption and primarily affects skeletal growth, with incorrect regulation of the skeletal gene regulatory network. The results collected on sea urchin embryos demonstrate a variable sensitivity of the early life stages of different species, highlighting the importance of testing the effects of pollution in different species. The accumulation of lanthanides and their emerging negative effects make risk assessment and consequent legislative intervention on their disposal mandatory.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
- Correspondence:
| |
Collapse
|
39
|
Cobanoglu H. Assessment of genetic damage induced by gadolinium-based radiocontrast agents. J Trace Elem Med Biol 2022; 70:126914. [PMID: 34953388 DOI: 10.1016/j.jtemb.2021.126914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Today, although gadolinium based contrast agents have been frequently used in the field of medicine, there is limited data available whether gadolinium based agents affect the genome. AIM The present study aimed to investigate the genotoxic and cytotoxic potentials of gadoteric acid and gadoversetamide used as gadolinium-based contrast agents for magnetic resonance (MR) imaging. MATERIAL AND METHODS The cytokinesis-block micronucleus assay was applied to human peripheral blood lymphocytes to assess the genotoxicity measured as micronucleus (MN), nucleoplasmic bridge (NPBs) and nuclear bud (NBUDs) frequencies. Furthermore, cytokinesis-block proliferation index (CBPI) was calculated to determine cytostasis. Lymphocytes were treated with gadoteric acid at concentrations of 1.0, 2.5, 5.0, and 25 mM and with gadoversetamide at concentrations of 0.25, 1.0, 2.5, and 5.0 mM for 48 h. RESULTS Gadoteric acid did not cause significant increase in MN, NBPs and NBUDs frequencies and CBPI values at any concentration. Gadoversetamide induced significantly increase MN formation at concentration of 2.5 mM, NBP formation at concentrations of 1.0 and 2.5 mM, and NBUD formation at concentrations of 0.25, 1.0 and 2.5 mM. Additionally, gadoversetamide exposure resulted in statistically significant decrease in CBPI values compared to the control at concentrations of 2.5 and 5.0 mM. In addition, CBPI levels in response to concentrations of gadoversetamide was negatively and significantly associated with concentration. CONCLUSION These findings show that gadoteric acid does not have genotoxic or cytotoxic potential, while gadoversetamide might have both genotoxic and cytotoxic potential on human peripheral blood lymphocytes. As a comparison, gadoversetamide was found more genotoxic and cytotoxic.
Collapse
Affiliation(s)
- Hayal Cobanoglu
- Vocational College of Health Services, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
| |
Collapse
|
40
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Will climate changes enhance the impacts of e-waste in aquatic systems? CHEMOSPHERE 2022; 288:132264. [PMID: 34624793 DOI: 10.1016/j.chemosphere.2021.132264] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The increase of the worlds' population is being accompanied by the exponential growth in waste of electrical and electronic equipment (e-waste) generation as a result of the rapid technological implementations. The inappropriate processing and disposal of this e-waste, containing rare-earth elements (REEs) such as gadolinium (Gd), may enhance its occurrence in the environment. In particular, the presence of Gd in marine systems may lead to environmental risks which are still unknown, especially considering foreseen climate modifications such as water salinity shifts due to extreme weather events. Within this context, the present study intended to assess the combined effects of Gd at variable salinities. For that, biochemical modifications were assessed in mussels, Mytilus galloprovincialis, exposed to Gd (0 and 10 μg/L) and different salinity levels (20, 30 and 40), acting individually and in combination. A decrease in salinity, induced an array of biochemical effects associated to hypotonic stress in non-contaminated and contaminated mussels, including metabolism, antioxidant and biotransformation defenses activation. Moreover, in Gd-contaminated organisms, the increase in salinity was responsible for a significant reduction of metabolic and defense mechanisms, possibly associated with a mussels' physiological response to the stress caused by the combination of both factors. In particular, Gd caused cellular damage at all salinities, but mussels adopted different strategies under each salinity to limit the extent of oxidative stress. That is, an increase in metabolism was associated to hypotonic stress and Gd exposure, an activation of defense enzymes was revealed at the control salinity (30) and a decrease in metabolism and non-activation of defenses, associated with a possible physiological defense trait, was evidenced at the highest salinity. The different strategies adopted highlight the need to investigate the risk of emerging contaminants such as REEs at present and forecasted climate change scenarios, thus providing a more realistic environmental risk assessment.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & CESAM/LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
41
|
Advances in the Fate of Rare Earth Elements, REE, in Transitional Environments: Coasts and Estuaries. WATER 2022. [DOI: 10.3390/w14030401] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The production of rare earth elements, REE, has significantly increased over the past years, in parallel with the latest advances in nanotechnologies and representing a new group of emerging contaminants. They find application in construction, transport, agriculture, electronics, catalysis, and biomedicine. Their extraordinary intrinsic characteristics are fundamental for overcoming current technological challenges. The accumulation of REE is consistent in near-shore waters being affected by runoff, wastewater discharge, and proximity to built-up areas. Bioavailability in water, sediments, and accumulation in marine biota as well their endocrine disruptor effect is mostly unknown. There is a significant gap of knowledge on the ecotoxicological behaviour of REE in marine areas. The existing investigations have been performed inside well-mixed estuarine systems, due to complex hydrodynamics and multiple sediment transport situations. This hampers the definition of regulatory thresholds for REE concentrations and emissions. The review summarizes the existing information on REE geochemistry and physicochemical conditions influencing dissolution, surface complexation reactions, and distribution at the continent–ocean interface, as well as their speciation, bioavailability, and detrimental effects on living organisms. Strategies for reducing REE usage and inputs are also discussed.
Collapse
|
42
|
Piarulli S, Hansen BH, Ciesielski T, Zocher AL, Malzahn A, Olsvik PA, Sonne C, Nordtug T, Jenssen BM, Booth AM, Farkas J. Sources, distribution and effects of rare earth elements in the marine environment: Current knowledge and research gaps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118230. [PMID: 34597732 DOI: 10.1016/j.envpol.2021.118230] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Rare earth elements and yttrium (REY) are critical elements for a wide range of applications and consumer products. Their growing extraction and use can potentially lead to REY and anthropogenic-REY chemical complexes (ACC-REY) being released in the marine environment, causing concern regarding their potential effects on organisms and ecosystems. Here, we critically review the scientific knowledge on REY sources (geogenic and anthropogenic), factors affecting REY distribution and transfer in the marine environment, as well as accumulation in- and effects on marine biota. Further, we aim to draw the attention to research gaps that warrant further scientific attention to assess the potential risk posed by anthropogenic REY release. Geochemical processes affecting REY mobilisation from natural sources and factors affecting their distribution and transfer across marine compartments are well established, featuring a high variability dependent on local conditions. There is, however, a research gap with respect to evaluating the environmental distribution and fate of REY from anthropogenic sources, particularly regarding ACC-REY, which can have a high persistence in seawater. In addition, data on organismal uptake, accumulation, organ distribution and effects are scarce and at best fragmentary. Particularly, the effects of ACC-REY at organismal and community levels are, so far, not sufficiently studied. To assess the potential risks caused by anthropogenic REY release there is an urgent need to i) harmonise data reporting to promote comparability across studies and environmental matrices, ii) conduct research on transport, fate and behaviour of ACC-REY vs geogenic REY iii) deepen the knowledge on bioavailability, accumulation and effects of ACC-REY and REY mixtures at organismal and community level, which is essential for risk assessment of anthropogenic REY in marine ecosystems.
Collapse
Affiliation(s)
- Stefania Piarulli
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway.
| | - Bjørn Henrik Hansen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Tomasz Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway
| | - Anna-Lena Zocher
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
| | - Arne Malzahn
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026, Bodø, Norway
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK, 4000, Roskilde, Denmark
| | - Trond Nordtug
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway
| | - Andy M Booth
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Julia Farkas
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| |
Collapse
|
43
|
Macke M, Quarles CD, Sperling M, Karst U. Fast and automated monitoring of gadolinium-based contrast agents in surface waters. WATER RESEARCH 2021; 207:117836. [PMID: 34798450 DOI: 10.1016/j.watres.2021.117836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are frequently used for magnetic resonance imaging to improve image contrast. These inert complexes are excreted unmetabolized from the human body and pass through wastewater treatment plants almost unaffected, leading to a significant release of anthropogenic Gd into the environment. However, long-term ecotoxicological effects of GBCAs are mainly unknown and thus powerful methods of speciation analysis are required to monitor their distribution and fate in aquatic systems. In this work, a rapid and efficient monitoring method was developed utilizing a fully automated single platform system for total metal analysis and syringe-driven chromatography in combination with inductively coupled plasma-mass spectrometry (ICP-MS). An anion-exchange chromatography (IC) method was developed and applied to achieve a rapid separation and sensitive detection of the five complexes Gd-HP-DO3A, Gd-BT-DO3A, Gd-DOTA, Gd-DTPA, and Gd-BOPTA that are commonly administered in the European Union. Furthermore, the use of an automated inline-dilution function allowed a fast-external calibration from single stock standards. A chromatographic run time of less than 2 min and species-specific detection limits between 11 and 19 pmol L-1 on a quadrupole ICP-MS proved to be competitive compared to previously published methods, but without the use of aerosol desolvation and/or sector field ICP-MS to enhance sensitivity. The automated IC-ICP-MS method was applied for quantitative GBCA monitoring in a multitude of surface water samples that were obtained in the German state of North Rhine-Westphalia. The complexes Gd-HP-DO3A, Gd-BT-DO3A, and Gd-DOTA, were detected and quantified. In addition, the occurrence of an unidentified Gd species was observed for one of the sampled river systems.
Collapse
Affiliation(s)
- Marcel Macke
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - C Derrick Quarles
- Elemental Scientific, Inc., 7277 World Communications Dr., Omaha, NE 68022, United States
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany; European Virtual Institute for Speciation Analysis (EVISA), Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany.
| |
Collapse
|
44
|
El Zrelli R, Baliteau JY, Yacoubi L, Castet S, Grégoire M, Fabre S, Sarazin V, Daconceicao L, Courjault-Radé P, Rabaoui L. Rare earth elements characterization associated to the phosphate fertilizer plants of Gabes (Tunisia, Central Mediterranean Sea): Geochemical properties and behavior, related economic losses, and potential hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148268. [PMID: 34139493 DOI: 10.1016/j.scitotenv.2021.148268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
This is the first study on the behavior and industrial fluxes of rare earth elements (REE) in the coastal fertilizer plants of Gabes (south-eastern Tunisia), the economic losses related to their wastes, and their environmental and human health hazards. The concentrations of 16 REE were assessed in phosphate rock (PR), phosphogypsum (PG) and phosphogypsum foam (PGF) samples, collected from Gabes plants. REE concentrations ranged from 0.23 (for Sc in PG) to 309.33 mg kg-1 (for Ce in PGF). Ce was the most abundant in the three matrices, with concentrations ranging between 80.40 (in PG) and 309.33 mg kg-1 (in PGF). PGF was the most enriched with REE (1075.32 mg kg-1). The annual flow of REE from the fertilizer factories to the marine environment may reach 1523.67 t. The economic losses related to the discharge of phosphogypsum REE in the Gulf of Gabes (GG) was estimated at ~58 million US$ y-1. The potential hazards of discharged REE on the local environment and human health were also evaluated and discussed. These findings show the need for the development of a new industry exploiting REE from phosphogypsum wastes (short term) and phosphate ores (long term) which should lead to reduce its high environmental and human health footprint and to potential economic gains.
Collapse
Affiliation(s)
| | | | | | - Sylvie Castet
- Géosciences Environnement Toulouse (GET), Université de Toulouse, UMR 5563 CNRS/UPS/IRD/CNES, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Michel Grégoire
- Géosciences Environnement Toulouse (GET), Université de Toulouse, UMR 5563 CNRS/UPS/IRD/CNES, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Sébastien Fabre
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Vivien Sarazin
- SADEF, 30 Rue de la Station, 68700 Aspach-Le-Bas, France
| | | | - Pierre Courjault-Radé
- Géosciences Environnement Toulouse (GET), Université de Toulouse, UMR 5563 CNRS/UPS/IRD/CNES, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Lotfi Rabaoui
- Center for Environment & Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|