1
|
Biney M, Gusiatin MZ. Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 1: Evaluating Types of Co-Substrates and Co-Pyrolysis Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3603. [PMID: 39063895 PMCID: PMC11278580 DOI: 10.3390/ma17143603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
With the increasing production of municipal sewage sludge (MSS) worldwide, the development of efficient and sustainable strategies for its management is crucial. Pyrolysis of MSS offers several benefits, including volume reduction, pathogen elimination, and energy recovery through the production of biochar, syngas, and bio-oil. However, the process can be limited by the composition of the MSS, which can affect the quality of the biochar. Co-pyrolysis has emerged as a promising solution for the sustainable management of MSS, reducing the toxicity of biochar and improving its physical and chemical properties to expand its potential applications. This review discusses the status of MSS as a feedstock for biochar production. It describes the types and properties of various co-substrates grouped according to European biochar certification requirements, including those from forestry and wood processing, agriculture, food processing residues, recycling, anaerobic digestion, and other sources. In addition, the review addresses the optimization of co-pyrolysis conditions, including the type of furnace, mixing ratio of MSS and co-substrate, co-pyrolysis temperature, residence time, heating rate, type of inert gas, and flow rate. This overview shows the potential of different biomass types for the upgrading of MSS biochar and provides a basis for research into new co-substrates. This approach not only mitigates the environmental impact of MSS but also contributes to the wider goal of achieving a circular economy in MSS management.
Collapse
Affiliation(s)
| | - Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna Str. 45G, 10-709 Olsztyn, Poland;
| |
Collapse
|
2
|
Li Y, Fu C, Xia Y, Wu Y, Hu K, Shen J, Zhu Y, Peng H, Wang D, Yan J. Effect of polyethylene terephthalate plastics on nitrogen, sulphur and chlorine contaminants via sludge pyrolysis and Pb/Cu adsorption properties of biochar. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 38955513 DOI: 10.1080/09593330.2024.2371079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/22/2024] [Indexed: 07/04/2024]
Abstract
Pyrolysis is an effective process for disposing of municipal sewage sludge (SS). Plastics can affect the SS pyrolysis behaviour and pyrolysis products due to their low ash and high hydrocarbon ratio. The secondary pollutants from the pyrolysis process may also be affected. Therefore, polyethylene terephthalate (PET), a typical plastic, was chosen to investigate the release characteristics of pollutants containing nitrogen, sulphur, and chlorine via SS pyrolysis, and the changes of biochar to adsorb two typical heavy metals, Pb and Cu. The pyrolysis of PET plastics facilitates the migration of N toward solid and liquid-phase products, S and Cl to the gas-phase products via pyrolysis. Oxygenated compounds of pyrolytic volatiles decreased from 38.18% to 28.43%, concurrently promoting the formation of phenolic compounds. The co-pyrolysis improved the quality of biochar and the ability to adsorb Pb and Cu. This systematic study can provide some support for the further improvement of SS pyrolysis technology, and will also be beneficial for subsequent applications.
Collapse
Affiliation(s)
- Yurong Li
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou, People's Republic of China
- College of Biological and Food Engineering, Chongqing Three Gorges University, Wan Zhou, People's Republic of China
| | - Chuan Fu
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou, People's Republic of China
| | - Yaping Xia
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou, People's Republic of China
- Hunan ARSC Environmental Technology Co., Ltd., Changsha, People's Republic of China
| | - Yan Wu
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou, People's Republic of China
- Chongqing GreenKarbon Environmental Protection Technology Co., Ltd., Chongqing, People's Republic of China
| | - Kewei Hu
- Hunan ARSC Environmental Technology Co., Ltd., Changsha, People's Republic of China
| | - Jia Shen
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou, People's Republic of China
| | - Yin Zhu
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou, People's Republic of China
| | - Hanyu Peng
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou, People's Republic of China
| | - Dan Wang
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou, People's Republic of China
| | - Jingsong Yan
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou, People's Republic of China
| |
Collapse
|
3
|
Xu W, Xie X, Li Q, Yang X, Ren J, Shi Y, Liu D, Shaheen SM, Rinklebe J. Biochar co-pyrolyzed from peanut shells and maize straw improved soil biochemical properties, rice yield, and reduced cadmium mobilization and accumulation by rice: Biogeochemical investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133486. [PMID: 38244456 DOI: 10.1016/j.jhazmat.2024.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/02/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Biochar is an eco-friendly amendment for the remediation of soils contaminated with cadmium (Cd). However, little attention has been paid to the influence and underlying mechanisms of the co-pyrolyzed biochar on the bioavailability and uptake of Cd in paddy soils. The current study explored the effects of biochar co-pyrolyzed from peanut shells (P) and maize straw (M) at different mixing ratios (1:0, 1:1, 1:2, 1:3, 0:1, 2:1 and 3:1, w/w), on the bacterial community and Cd fractionation in paddy soil, and its uptake by rice plant. Biochar addition, particularly P1M3 (P/M 1:3), significantly elevated soil pH and cation exchange capacity, transferred the mobile Cd to the residual fraction, and reduced Cd availability in the rhizosphere soil. P1M3 application decreased the concentration of Cd in different rice tissues (root, stem, leaf, and grain) by 30.0%- 49.4%, compared to the control. Also, P1M3 enhanced the microbial diversity indices and relative abundance of iron-oxidizing bacteria in the rhizosphere soil. Moreover, P1M3 was more effective in promoting the formation of iron plaque, increasing the Cd sequestration by iron plaque than other treatments. Consequently, the highest yield and lowest Cd accumulation in rice were observed following P1M3 application. This study revealed the feasibility of applying P1M3 for facilitating paddy soils contaminated with Cd.
Collapse
Affiliation(s)
- Weijie Xu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xiaocui Xie
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Qi Li
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Renmin Road 58, Haikou 570228, China
| | - Jiajia Ren
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Yanping Shi
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
4
|
Luo X, Chen W, Liu Q, Wang X, Miao J, Liu L, Zheng H, Liu R, Li F. Corn straw biochar addition elevated phosphorus availability in a coastal salt-affected soil under the conditions of different halophyte litter input and moisture contents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168355. [PMID: 37952652 DOI: 10.1016/j.scitotenv.2023.168355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Improving salt-affected soil health using different strategies is of great significance for Sustainable Development Goals. The effects of biochar as a sustainable carbon negative soil amendment on phosphorous (P) pools in the degraded salt-affected soils of the of coastal wetlands (as one of the primary blue carbon ecosystems) with halophyte litter input under different water conditions (the two intrinsic characteristics of coastal wetlands) are poorly understood. Thus, a corn straw derived biochar (CBC) was added into a coastal salt-affected soil collected from the Yellow River Delta to investigate its effect on P fractions and availability under the input of three different local halophyte litters (i.e., Suaeda salsa, Imperata cylindrica and Phragmites australis) and under the unflooded and flooded water conditions. The results showed that the individual input of Suaeda salsa increased soil P availability by 28.2-40.9 %, but Imperata cylindrica and Phragmites australis had little effect on P availability. CBC individual amendment more efficiently enhanced P availability in the unflooded soil than the flooded soil. However, the co-amendment of CBC with litters showed little synergistic effect on P availability. CBC sharply increased the proportion of Ca-bound labile P fraction, but moderately lifted the proportion of Al/Fe-bound mediumly labile P fraction. CBC-enhanced P availability and altered inorganic P fractions were mainly resulted from the provision of labile inherent P by biochar, improved soil properties (i.e., increased CEC), and altered bacterial community composition (i.e., elevated abundance of P-solubilizing and phosphate-accumulating bacteria). These findings give new insights into understanding P biogeochemical cycling in the coastal salt-affected soils amended with biochars, and will be helpful to develop biochar-based technologies for enhancing P pools and improving soil health of the blue carbon ecosystems.
Collapse
Affiliation(s)
- Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Wenjie Chen
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Qiang Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technological Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China.
| | - Jing Miao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Liuingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Ruhai Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
5
|
Mohamed BA, Nicomel NR, Hamid H, Li LY. Using circular economy principles in the optimisation of sludge-based activated carbon production for the removal of perfluoroalkyl substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162392. [PMID: 36842579 DOI: 10.1016/j.scitotenv.2023.162392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Massive sewage sludge (SS) production from municipal wastewater treatment plants and the presence of numerous pollutant types render the process of SS treatment and disposal costly and complex. Here, resource recovery from SS was maximised via the optimisation of sludge-based activated carbon (SBAC) production for the removal of poly- and perfluoroalkyl substances (PFASs), while considering economic factors and minimising environmental impacts. SBAC production optimisation was realised under different operating conditions (different ZnCl2 impregnation ratios and different pyrolysis activation temperatures and durations). The sorption capacity of the optimised SBAC with respect to the removal of nine commonly detected PFASs, with environmentally relevant concentrations (∽50 μg/L), from simulated wastewater was evaluated. Economic analysis and life-cycle assessment (LCA) were also performed to determine the feasibility of the process and its potential role in the circular economy. Batch adsorption tests confirmed the high efficiency of the optimised SBACs for PFAS removal (93-100 %), highlighting the possibility of converting SS to SBAC. Economically speaking, the optimised SBAC at 1.5 M ZnCl2, 500 °C, and 0.75 h reduced total production cost by 49 %. Further, the cost could be reduced to as little as 1087 US $/metric-ton compared with that corresponding to the original conditions (2.5 M ZnCl2, 500 °C, 2 h; 2144 US $/metric-ton). LCA results also showed that freshwater ecotoxicity, marine ecotoxicity, and human non-carcinogenic toxicity were the most affected environmental impact indicators, showing a 49 % decrease when ZnCl2 impregnation ratio was reduced from 2.5 to 1.5 M. These findings highlighted the optimal conditions for the production of SBAC with high sorption capacity at a reduced cost and with reduced environmental impacts. Thus, they can serve as valuable tools for decision making regarding the selection of the most sustainable and economically feasible process for PFAS removal.
Collapse
Affiliation(s)
- Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza 12613, Egypt.
| | - Nina Ricci Nicomel
- Department of Civil Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hanna Hamid
- Department of Civil Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
6
|
Fan Z, Zhou X, Peng Z, Wan S, Gao ZF, Deng S, Tong L, Han W, Chen X. Co-pyrolysis technology for enhancing the functionality of sewage sludge biochar and immobilizing heavy metals. CHEMOSPHERE 2023; 317:137929. [PMID: 36682641 DOI: 10.1016/j.chemosphere.2023.137929] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Sewage sludge (SS) is a frequent and challenging issue for countries with big populations, due to its massive output, significant hazard potential, and challenging resource utilization. Pyrolysis can simultaneously realize the reduction, harmlessness and recycling of SS. Co-pyrolysis offers a wide range of potential in terms of increasing product quality and immobilizing heavy metals (HMs), thanks to its capacity to use additives to address the mismatch between SS characteristics and pyrolysis. High-value utilization potential of SS biochar is the key to evaluating the advancement of treatment technology. A further requirement for using biochar resources is the immobilization and bioavailability reduction of HMs. Due to the catalytic and synergistic effects in the co-pyrolysis process, co-pyrolysis SS biochar exhibits enhanced functionality and has been applied in soil improvement, pollutant adsorption and catalytic reactions. This review focuses on the research progress of different additives in improving the functionality of biochar and influencing the behavior of HMs. The key limitation and challenges in SS co-pyrolysis are then discussed. Future research prospects are detailed from seven perspectives, including pyrolysis process optimization, co-pyrolysis additive selection, catalytic mechanism research of process and product, biochar performance improvement and application field expansion, cooperative immobilization of HMs, and life cycle assessment. This review will offer recommendations and direction for future research paths, while also assist pertinent researchers in swiftly understanding the current state of SS pyrolysis research field.
Collapse
Affiliation(s)
- Zeyu Fan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China.
| | - Xian Zhou
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Ziling Peng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Sha Wan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Zhuo Fan Gao
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Shanshan Deng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Luling Tong
- Wuhan Planning & Design Institute, Wuhan, 430000, China
| | - Wei Han
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China
| | - Xia Chen
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan, 430010, China.
| |
Collapse
|
7
|
Wen X, Sun R, Cao Z, Huang Y, Li J, Zhou Y, Fu M, Ma L, Zhu P, Li Q. Synergistic metabolism of carbon and nitrogen: Cyanate drives nitrogen cycle to conserve nitrogen in composting system. BIORESOURCE TECHNOLOGY 2022; 361:127708. [PMID: 35907603 DOI: 10.1016/j.biortech.2022.127708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, HCO3- was used as a co-substrate for cyanate metabolism to investigate its effect on nitrogen cycle in composting. The results showed that the carbamate content in experimental group (T) with HCO3- added was higher than that in control group (CP) during cooling period. Actinobacteria and Proteobacteria were the dominant phyla for cyanate metabolism, and the process was mediated by cyanase gene (cynS). The cynS abundance was 16.6% higher in T than CP. In cooling period, the nitrification gene hao in T was 8.125% higher than CP. Denitrification genes narG, narH, nirK, norB, and nosZ were 25.64%, 35.33%, 45.93%, 36.62%, and 36.12% less than CP, respectively. The nitrogen fixation gene nifH in T was consistently higher than CP in the late composting period. Conclusively, cyanate metabolism drove the nitrogen cycle by promoting nitrification, nitrogen fixation, and inhibiting denitrification, which improved nitrogen retention and compost quality.
Collapse
Affiliation(s)
- Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ru Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ziyi Cao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Mengxin Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liangcai Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Wang M, Zhang M, Chen X, Chen A, Xiao R, Chen X. Hydrothermal conversion of Chinese cabbage residue for sustainable agriculture: Influence of process parameters on hydrochar and hydrolysate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152478. [PMID: 34953838 DOI: 10.1016/j.scitotenv.2021.152478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The demands on novel and sustainable techniques for vegetable waste (VW) valorization continues to increase during the past few decades due to the growing waste production under the flourishing vegetable industries. In this study, Chinese cabbage residues were hydrothermal carbonization (HTC) at 180, 200, 220 and 240 °C for 2 to 6 h to explore the impacts of process parameters on the characteristics of hydrochars and hydrolysates and their feasibility in sustainable agriculture. Results indicated that hydrothermal temperature had a greater impact on cabbage residue hydrolysis than the residence time. With the rising reaction severity, hydrochars became more alkaline with higher amount of ash and carbon (C), while the pH and dissolved organic nitrogen (DON) and NH4+-N in the hydrolysate were gradually reduced. The thermogravimetric analysis (TG-DTG) indicated that organic constitutions in the feedstock went through incomplete decomposition. Although the recalcitrance index (R50) steadily increased through HTC (0.37-0.46), hydrochars were unstable and would not applicable for carbon sequestration. Furthermore, hydrochars and hydrolysate would be optimal media for plants seedling and growth for the abundant nutrients and dissolved organic compounds but reduced phytotoxicity. In conclusion, these results showed that HTC is highly applicable for vegetable waste management for sustainable agriculture.
Collapse
Affiliation(s)
- Mengqiao Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Muyuan Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xuhao Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Gbouri I, Yu F, Wang X, Wang J, Cui X, Hu Y, Yan B, Chen G. Co-Pyrolysis of Sewage Sludge and Wetland Biomass Waste for Biochar Production: Behaviors of Phosphorus and Heavy Metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052818. [PMID: 35270520 PMCID: PMC8909961 DOI: 10.3390/ijerph19052818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
Large amounts of sewage sludge (SS) and wetland plant wastes are generated in the wastewater treatment system worldwide. The conversion of these solid wastes into biochar through co-pyrolysis could be a promising resource utilization scheme. In this study, biochar was prepared by co-pyrolysis of SS and reed (Phragmites australis, RD) using a modified muffle furnace device under different temperatures (300, 500, and 700 °C) and with different mixing ratios (25, 50, and 75 wt.% RD). The physicochemical properties of biochar and the transformation behaviors of phosphorus (P) and heavy metals during the co-pyrolysis process were studied. Compared with single SS pyrolysis, the biochar derived from SS-RD co-pyrolysis had lower yield and ash content, higher pH, C content, and aromatic structure. The addition of RD could reduce the total P content of biochar and promote the transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP). In addition, co-pyrolysis also reduced the content and toxicity of heavy metals in biochar. Therefore, co-pyrolysis could be a promising strategy to achieve the simultaneous treatment of SS and RD, as well as the production of value-added biochar.
Collapse
Affiliation(s)
- Ilham Gbouri
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
| | - Fan Yu
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Xutong Wang
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
| | - Junxia Wang
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
| | - Xiaoqiang Cui
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
- Correspondence:
| | - Yanjun Hu
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Beibei Yan
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
| | - Guanyi Chen
- Tianjin Key Laboratory of Biomass Waste Utilization, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (I.G.); (F.Y.); (X.W.); (J.W.); (B.Y.); (G.C.)
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
10
|
Hung CM, Chen CW, Huang CP, Tsai ML, Wu CH, Lin YL, Cheng YR, Dong CD. Efficacy and cytotoxicity of engineered ferromanganese-bearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126922. [PMID: 34425433 DOI: 10.1016/j.jhazmat.2021.126922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Phthalate esters (PAEs) are a group of ubiquitous organic environmental contaminants. Engineered ferromanganese-bearing sludge-derived biochar (SDB), synthesized using one-step pyrolysis in the temperature range between 300 and 900 °C, was used to enable Fenton-like processes that decontaminated PAE-laden sediments. SDB was thoroughly characterized using scanning electron microscopyenergy-dispersive spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Raman spectroscopy, Fourier-transform infrared spectroscopy, electron paramagnetic resonance, X-ray photoelectron spectroscopy, and fluorescence excitation-emission matrix spectroscopy coupled with parallel factor analysis. The maximum PAE degradation was remarkable at 90% in 12 h at pH 6.0 in the presence of 1.7 g L-1 of SDB 900. The highly-effective PAE degradation was mainly attributed to the synergism between FeOx and MnOx, which strengthened the activation of percarbonate (PC) via electron transfer, hydroxy addition, and hydrogen abstraction through radical (HO•) and nonradical (1O2) oxidation mechanisms, thereby facilitating PAE catalytic degradation over SDB in real sediments, which clearly proved the efficacy of ferromanganese-bearing SDB and PC for the remediation of contaminated sediments. The cytotoxicity exhibited by human skin keratinocyte cells exposure to high SDB concentration (100-400 µg mL-1) for 24-48 h was low indicating insignificant cellular toxicity and oxidative damages. This study provides a new strategy for freshwater sludge treatment and reutilization, which enables a water-cycle-based circular economy and waste-to-resource recycling.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chung-Hsin Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yu-Rong Cheng
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|