1
|
Yang Z, Dong H, Gao Y, Liu S, Chen L, Ni G, Guo X, Wang M, Wang C, Chen Y, Chen L. Airborne Nanoplastics Exposure Inducing Irreversible Glucose Increase and Complete Hepatic Insulin Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38319870 DOI: 10.1021/acs.est.3c06468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
As an emerging type of pollutant, microplastics have become a global environmental problem. Approximately, a fifth of the global burden of type 2 diabetes can be attributed to air particulate pollution. However, scientific knowledge remains limited about the effects of airborne nanoplastics (NPs) exposure on metabolic diseases. In this experiment, a whole-body exposure system was used to simulate the real atmospheric environment, and three exposure concentrations combined with the actual environmental concentration were selected to explore the effects of airborne NPs on metabolic diseases. Based on histological analyses, metabolic studies, gene expression, metabolites, and molecular signaling analyses, mice exposed to airborne NPs were observed to show a phenotype of systemic inflammation and complete insulin resistance featuring excessive drinking and eating, weight loss, elevated blood glucose, and decreased triglyceride levels. After airborne NPs exposure, mice were intolerant to glucose and tolerant to insulin. In addition, airborne NPs exposure could result in long-term irreversible hyperglycemia. Together, the research findings provide a strong basis for understanding the hazards of airborne nanopollution on metabolic disorders.
Collapse
Affiliation(s)
- Ziye Yang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Huajiang Dong
- Logistics University of Chinese People's Armed Police Forces, Tianjin 300189, China
| | - Yifei Gao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, PR China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Guo
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Meixue Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Can Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Sanchez-Rodriguez L, Galvez-Fernandez M, Rojas-Benedicto A, Domingo-Relloso A, Amigo N, Redon J, Monleon D, Saez G, Tellez-Plaza M, Martin-Escudero JC, Ramis R. Traffic Density Exposure, Oxidative Stress Biomarkers and Plasma Metabolomics in a Population-Based Sample: The Hortega Study. Antioxidants (Basel) 2023; 12:2122. [PMID: 38136241 PMCID: PMC10740723 DOI: 10.3390/antiox12122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Exposure to traffic-related air pollution (TRAP) generates oxidative stress, with downstream effects at the metabolic level. Human studies of traffic density and metabolomic markers, however, are rare. The main objective of this study was to evaluate the cross-sectional association between traffic density in the street of residence with oxidative stress and metabolomic profiles measured in a population-based sample from Spain. We also explored in silico the potential biological implications of the findings. Secondarily, we assessed the contribution of oxidative stress to the association between exposure to traffic density and variation in plasma metabolite levels. Traffic density was defined as the average daily traffic volume over an entire year within a buffer of 50 m around the participants' residence. Plasma metabolomic profiles and urine oxidative stress biomarkers were measured in samples from 1181 Hortega Study participants by nuclear magnetic resonance spectroscopy and high-performance liquid chromatography, respectively. Traffic density was associated with 7 (out of 49) plasma metabolites, including amino acids, fatty acids, products of bacterial and energy metabolism and fluid balance metabolites. Regarding urine oxidative stress biomarkers, traffic associations were positive for GSSG/GSH% and negative for MDA. A total of 12 KEGG pathways were linked to traffic-related metabolites. In a protein network from genes included in over-represented pathways and 63 redox-related candidate genes, we observed relevant proteins from the glutathione cycle. GSSG/GSH% and MDA accounted for 14.6% and 12.2% of changes in isobutyrate and the CH2CH2CO fatty acid moiety, respectively, which is attributable to traffic exposure. At the population level, exposure to traffic density was associated with specific urine oxidative stress and plasma metabolites. Although our results support a role of oxidative stress as a biological intermediary of traffic-related metabolic alterations, with potential implications for the co-bacterial and lipid metabolism, additional mechanistic and prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Laura Sanchez-Rodriguez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- Joint Research Institute-National School of Health (IMIENS), National Distance Education University, 28029 Madrid, Spain
| | - Marta Galvez-Fernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
| | - Ayelén Rojas-Benedicto
- Joint Research Institute-National School of Health (IMIENS), National Distance Education University, 28029 Madrid, Spain
- Department of Communicable Diseases, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Nuria Amigo
- Biosfer Teslab, 43201 Reus, Spain;
- Department of Basic Medical Sciences, Universidad de Rovira i Virgili, 43007 Tarragona, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic de Valencia (INCLIVA), 46010 Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic de Valencia (INCLIVA), 46010 Valencia, Spain
| | - Guillermo Saez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, Clinical Analysis Service, Hospital Universitario Dr. Peset-FISABIO, Universitat de Valencia, 46020 Valencia, Spain;
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
| | - Juan Carlos Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, 47012 Valladolid, Spain;
| | - Rebeca Ramis
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- CIBER on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Arya CK, Maurya S, Ramanathan G. Insight into the metabolic pathways of Paracoccus sp. strain DMF: a non-marine halotolerant methylotroph capable of degrading aliphatic amines/amides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125947-125964. [PMID: 38010547 DOI: 10.1007/s11356-023-30858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Paracoccus sp. strain DMF (P. DMF from henceforth) is a gram-negative heterotroph known to tolerate and utilize high concentrations of N,N-dimethylformamide (DMF). The work presented here elaborates on the metabolic pathways involved in the degradation of C1 compounds, many of which are well-known pollutants and toxic to the environment. Investigations on microbial growth and detection of metabolic intermediates corroborate the outcome of the functional genome analysis. Several classes of C1 compounds, such as methanol, methylated amines, aliphatic amides, and naturally occurring quaternary amines like glycine betaine, were tested as growth substrates. The detailed growth and kinetic parameter analyses reveal that P. DMF can efficiently aerobically degrade trimethylamine (TMA) and grow on quaternary amines such as glycine betaine. The results show that the mechanism for halotolerant adaptation in the presence of glycine betaine is dissimilar from those observed for conventional trehalose-mediated halotolerance in heterotrophic bacteria. In addition, a close genomic survey revealed the presence of a Co(I)-based substrate-specific corrinoid methyltransferase operon, referred to as mtgBC. This demethylation system has been associated with glycine betaine catabolism in anaerobic methanogens and is unknown in denitrifying aerobic heterotrophs. This report on an anoxic-specific demethylation system in an aerobic heterotroph is unique. Our finding exposes the metabolic potential for the degradation of a variety of C1 compounds by P. DMF, making it a novel organism of choice for remediating a wide range of possible environmental contaminants.
Collapse
Affiliation(s)
- Chetan Kumar Arya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Shiwangi Maurya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
4
|
Maurya S, Arya CK, Parmar N, Sathyanarayanan N, Joshi CG, Ramanathan G. Genomic profiling and characteristics of a C1 degrading heterotrophic fresh-water bacterium Paracoccus sp. strain DMF. Arch Microbiol 2023; 206:6. [PMID: 38015256 DOI: 10.1007/s00203-023-03729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Paracoccus species are metabolically versatile gram-negative, aerobic facultative methylotrophic bacteria showing enormous promise for environmental and bioremediation studies. Here we report, the complete genome analysis of Paracoccus sp. strain DMF (P. DMF) that was isolated from a domestic wastewater treatment plant in Kanpur, India (26.4287 °N, 80.3891 °E) based on its ability to degrade a recalcitrant organic solvent N, N-dimethylformamide (DMF). The results reveal a genome size of 4,202,269 base pairs (bp) with a G + C content of 67.9%. The assembled genome comprises 4141 coding sequences (CDS), 46 RNA sequences, and 2 CRISPRs. Interestingly, catabolic operons related to the conventional marine-based methylated amines (MAs) degradation pathway were functionally annotated within the genome of an obligated aerobic heterotroph that is P. DMF. The genomic data-based characterization presented here for the novel heterotroph P. DMF aims to improve the understanding of the phenotypic gene products, enzymes, and pathways involved with greater emphasis on facultative methylotrophic motility-based latent pathogenicity.
Collapse
Affiliation(s)
- Shiwangi Maurya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Chetan Kumar Arya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Nidhi Parmar
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382 011, India
| | - Nitish Sathyanarayanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382 011, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
5
|
Li Z, Wu D, Yu Z, Cui C, Yin D. Nontargeted metabolomic evidence for antagonism between tetracycline and its resistance bacteria underlying their obesogenic effects on Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160223. [PMID: 36402327 DOI: 10.1016/j.scitotenv.2022.160223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Environmental antibiotics raise serious health concerns due to their contribution to the obesity prevalence. Moreover, antibiotics promote antibiotic-resistance bacteria (ARB) which represent another emerging pollutant. However, the interaction between antibiotic and ARB in the obesogenic effects remained unexplored. In the present study, the obesogenic effects of tetracycline antibiotic (TCH) and ARB containing tetA were studied on C. elegans, and E. coli OP50 (OP50) was referred as a normal bacterial food. Results showed that TCH stimulated nematode triglyceride contents, while ARB alone had no significant influences. The combination of TCH and ARB showed less obesogenic effects than TCH alone, showing antagonism. Biochemical assays showed that the combination of TCH and ARB showed similar effects to ARB alone, and had less increases in lipid metabolism enzymes or metabolites than those of TCH or ARB alone, supporting the antagonism. In the nontargeted metabolomic analysis, TCH with ARB showed less significantly changed metabolites (SCMs) in the nematodes than TCH or ARB alone, partially explaining the antagonism. The metabolomic results also pointed out the significant involvement of amino acids, the carboxylic acids and derivatives, and also the benzene and substituted derivatives in the obesogenic effects of TCH and ARB. The findings of the present study provided a direct support for interaction between antibiotics and ARB underlying their health risks.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Di Wu
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Changzheng Cui
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
6
|
Tian L, Guo M, Chen H, Wu Y. Human health risk assessment of cinnamate UV absorbers: In vitro and in silico investigations. ENVIRONMENT INTERNATIONAL 2023; 171:107658. [PMID: 36459820 DOI: 10.1016/j.envint.2022.107658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Organic UV absorbers (UVAs) are contaminants of emerging concern. Environmental persistence and potential toxicological enrichment studies of UVAs have attracted international concern. It is important to study the toxicity mechanism of UVAs. This study is the first to report the toxicological mechanism of two cinnamate UV absorbers (CUVAs), 2-ethyl 4-methoxycinnamate (OMC) and isoamyl 4-methoxycinnamate (IMC) based on cellular models and molecular models. Cellular models demonstrated that the CUVAs-induced apoptosis might be associated with cellular mitochondrial damage pathways. The results of molecular models showed that OMC and IMC could affect the binding between major proteins and enzymes in the mitochondrial damage pathway and contaminants, ultimately leading to apoptosis. The cellular-molecular models showed that IMC and OMC have dose-effect relationships on cytotoxicity. The composite model is more informative than a single model. This study further indicate that UVAs causes toxicology effects that have implications for the environment and human health.
Collapse
Affiliation(s)
- Luwei Tian
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China.
| | - Haili Chen
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yanan Wu
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
7
|
Chen J, Li G, Yu H, Liu H, An T. The respiratory cytotoxicity of typical organophosphorus flame retardants on five different respiratory tract cells: Which are the most sensitive one? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119564. [PMID: 35654249 DOI: 10.1016/j.envpol.2022.119564] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/10/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPHP) is a frequently used flame retardant and indoor semi-volatile pollutant exposing humans with endocrinal disrupting effects. However, its respiratory tract toxicity remains unclear. Herein, we mainly focused on exploring the cytotoxicity of TPHP to the cells from five different parts of the human respiratory tract (from top to bottom): human nasal epithelial (HNEpC) cells, human bronchial epithelial (16HBE) cells, normal nasopharyngeal epithelial (NP69) cells, human lung epithelial cells (Beas-2B) cells, and human lung fibrocells (HFL1 cells) cells. The cell viability, micronucleus induction, endoplasmic reticulum stress gene, intracellular Ca2+ concentration, mitochondrial membrane potential (MMP) were investigated in short-term as well as extended exposure of TPHP. HFL1 and HNEpC cells were found to be irreversible damage, while other three type cells achieved homeostasis through self-rescue. Moreover, expression of downstream genes of Nrf2 signaling pathway were upregulated for 1.3-7.0 times and glutathione detoxification enzyme activity changed for 2-10 (U/mg protein) in HNEpC cells. Furthermore, the vascular endothelial growth factor (VEGF), a disease-related factor, increased 1.0-3.5-fold in HNEpC cells. RNA-sequencing results suggested that protein linkage recombination, molecular function regulation and metabolic processes signal pathway were all affected by TPHP exposure in HNEpC. This is a first report to compare respiratory cytotoxicity in whole human respiratory tract under OPFR exposure and found HNEpC cells were the most sensitive target of TPHP. Molecular biological mechanisms uncovered that TPHP exposure in HNEpC can induce the activation of MAPK signal pathway and demonstrate potential respiratory growth differentiation and stress disorder in human nasal cells upon TPHP exposure.
Collapse
Affiliation(s)
- Jingyi Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education, China), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education, China), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongli Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education, China), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education, China), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Zeng J, Wu H, He M. Image classification combined with faster R–CNN for the peak detection of complex components and their metabolites in untargeted LC-HRMS data. Anal Chim Acta 2022; 1238:340189. [DOI: 10.1016/j.aca.2022.340189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022]
|
9
|
Chen Y, Lin Q, Li G, An T. A new method of simultaneous determination of atmospheric amines in gaseous and particulate phases by gas chromatography-mass spectrometry. J Environ Sci (China) 2022; 114:401-411. [PMID: 35459503 DOI: 10.1016/j.jes.2021.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 06/14/2023]
Abstract
As more attention is being paid to the characteristics of atmospheric amines, there is also an increasing demand for reliable detection technologies. Herein, a method was developed for simultaneous detection of atmospheric amines in both gaseous and particulate phases using gas chromatography-mass spectrometry (GC-MS). The amine samples were collected with and without phosphoric acid filters, followed by derivatization with benzenesulfonyl chloride under alkaline condition prior to GC-MS analysis. Furthermore, the method was optimized and validated for determining 14 standard amines. The detection limits ranged from 0.0408-0.421 µg/mL (for gaseous samples) and 0.163-1.69 µg/mL (for particulate samples), respectively. The obtained recoveries ranged from 68.8%-180% and the relative standard deviation was less than 30%, indicating high precision and good reliability of the method. Seven amines were simultaneously detected in gaseous and particulate samples in an industrial park using the developed method successfully. Methylamine, dimethylamine and diethylamine together accounted for 76.7% and 75.6% of particulate and gaseous samples, respectively. By comparing the measured and predicted values of gas-particle partition fractions, it was found that absorption process of aqueous phase played a more important role in the gas-partition of amines than physical adsorption. Moreover, the reaction between unprotonated amines and acid (aq.) in water phase likely promoted water absorption. Higher measured partition fraction of dibutylamine was likely due to the reaction with gaseous HCl. The developed method would help provide a deeper understanding of gas-particle partitioning as well as atmospheric evolution of amines.
Collapse
Affiliation(s)
- Yifei Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qinhao Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China.
| |
Collapse
|
10
|
Lagunas‐Rangel FA, Linnea‐Niemi JV, Kudłak B, Williams MJ, Jönsson J, Schiöth HB. Role of the Synergistic Interactions of Environmental Pollutants in the Development of Cancer. GEOHEALTH 2022; 6:e2021GH000552. [PMID: 35493962 PMCID: PMC9036628 DOI: 10.1029/2021gh000552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
There is a growing awareness that the large number of environmental pollutants we are exposed to on a daily basis are causing major health problems. Compared to traditional studies that focus on individual pollutants, there are relatively few studies on how pollutants mixtures interact. Several studies have reported a relationship between environmental pollutants and the development of cancer, even when pollutant levels are below toxicity reference values. The possibility of synergistic interactions between different pollutants could explain how even low concentrations can cause major health problems. These intricate that molecular interactions can occur through a wide variety of mechanisms, and our understanding of the physiological effects of mixtures is still limited. The purpose of this paper is to discuss recent reports that address possible synergistic interactions between different types of environmental pollutants that could promote cancer development. Our literature studies suggest that key biological pathways are frequently implicated in such processes. These include increased production of reactive oxygen species, activation by cytochrome P450, and aryl hydrocarbon receptor signaling, among others. We discuss the need to understand individual pathological vulnerability not only in relation to basic genetics and gene expression, but also in terms of measurable exposure to contaminants. We also mention the need for significant improvements in future studies using a multitude of disciplines, such as the development of high-throughput study models, better tools for quantifying pollutants in cancer patients, innovative pharmacological and toxicological studies, and high-efficiency computer analysis, which allow us to analyze the molecular mechanisms of mixtures.
Collapse
Affiliation(s)
| | - Jenni Viivi Linnea‐Niemi
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Błażej Kudłak
- Faculty of ChemistryDepartment of Analytical ChemistryGdańsk University of TechnologyGdańskPoland
| | - Michael J. Williams
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
- Institute of Translational Medicine and BiotechnologyI. M. Sechenov First Moscow State Medical UniversityMoscowRussia
| |
Collapse
|
11
|
Wasilewski T, Brito NF, Szulczyński B, Wojciechowski M, Buda N, Melo ACA, Kamysz W, Gębicki J. Olfactory Receptor-based Biosensors as Potential Future Tools in Medical Diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|