1
|
Severe E, Errigo IM, Proteau M, Sayedi SS, Kolbe T, Marçais J, Thomas Z, Petton C, Rouault F, Vautier C, de Dreuzy JR, Moatar F, Aquilina L, Wood RL, LaBasque T, Lécuyer C, Pinay G, Abbott BW. Deep denitrification: Stream and groundwater biogeochemistry reveal contrasted but connected worlds above and below. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163178. [PMID: 37023812 DOI: 10.1016/j.scitotenv.2023.163178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 05/27/2023]
Abstract
Excess nutrients from agricultural and urban development have created a cascade of ecological crises around the globe. Nutrient pollution has triggered eutrophication in most freshwater and coastal ecosystems, contributing to a loss in biodiversity, harm to human health, and trillions in economic damage every year. Much of the research conducted on nutrient transport and retention has focused on surface environments, which are both easy to access and biologically active. However, surface characteristics of watersheds, such as land use and network configuration, often do not explain the variation in nutrient retention observed in rivers, lakes, and estuaries. Recent research suggests subsurface processes and characteristics may be more important than previously thought in determining watershed-level nutrient fluxes and removal. In a small watershed in western France, we used a multi-tracer approach to compare surface and subsurface nitrate dynamics at commensurate spatiotemporal scales. We combined 3-D hydrological modeling with a rich biogeochemical dataset from 20 wells and 15 stream locations. Water chemistry in the surface and subsurface showed high temporal variability, but groundwater was substantially more spatially variable, attributable to long transport times (10-60 years) and patchy distribution of the iron and sulfur electron donors fueling autotrophic denitrification. Isotopes of nitrate and sulfate revealed fundamentally different processes dominating the surface (heterotrophic denitrification and sulfate reduction) and subsurface (autotrophic denitrification and sulfate production). Agricultural land use was associated with elevated nitrate in surface water, but subsurface nitrate concentration was decoupled from land use. Dissolved silica and sulfate are affordable tracers of residence time and nitrogen removal that are relatively stable in surface and subsurface environments. Together, these findings reveal distinct but adjacent and connected biogeochemical worlds in the surface and subsurface. Characterizing how these worlds are linked and decoupled is critical to meeting water quality targets and addressing water issues in the Anthropocene.
Collapse
Affiliation(s)
- Emilee Severe
- Lancaster Environmental Centre, Lancaster University, Lancaster, UK; Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Isabella M Errigo
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA; Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencas Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Mary Proteau
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Sayedeh Sara Sayedi
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Tamara Kolbe
- Section of Hydrogeology and Hydrochemistry, Institute of Geology, Faculty of Geoscience, Geoengineering and Mining, TU Bergakademie Freiberg, Freiberg, Germany
| | - Jean Marçais
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), RiverLy, Centre de Lyon-Villeurbanne, 69625 Villeurbanne, France
| | - Zahra Thomas
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Sol Agro et Hydrosystème Spatialisation, UMR 1069, Agrocampus Ouest, 35042 Rennes, France
| | - Christophe Petton
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - François Rouault
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Sol Agro et Hydrosystème Spatialisation, UMR 1069, Agrocampus Ouest, 35042 Rennes, France
| | - Camille Vautier
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Jean-Raynald de Dreuzy
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France; Univ Rennes, CNRS, OSUR (Observatoire des sciences de l'univers de Rennes), UMS 3343, 35000 Rennes, France
| | - Florentina Moatar
- RiverLy, INRAE, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, Lyon, France
| | - Luc Aquilina
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Rachel L Wood
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Thierry LaBasque
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | | | - Gilles Pinay
- Environnement, Ville & Société (EVS UMR5600), Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Benjamin W Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
2
|
Zhang H, Han X, Wang G, Mao H, Chen X, Zhou L, Huang D, Zhang F, Yan X. Spatial distribution and driving factors of groundwater chemistry and pollution in an oil production region in the Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162635. [PMID: 36889386 DOI: 10.1016/j.scitotenv.2023.162635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Concerns have been raised on the deterioration of groundwater quality associated with anthropogenic impacts such as oil extraction and overuse of fertilizers. However, it is still difficult to identify groundwater chemistry/pollution and driving forces in regional scale since both natural and anthropogenic factors are spatially complex. This study, combining self-organizing map (SOM, combined with K-means algorithm) and principal component analysis (PCA), attempted to characterize the spatial variability and driving factors of shallow groundwater hydrochemistry in Yan'an area of Northwest China where diverse land use types (e.g., various oil production sites and agriculture lands) coexist. Based on the major and trace elements (e.g., Ba, Sr, Br, Li) and total petroleum hydrocarbons (TPH), groundwater samples were classified into four clusters with obvious geographical and hydrochemical characteristics by using SOM - K-means clustering: heavily oil-contaminated groundwater (Cluster 1), slightly oil-contaminated groundwater (Cluster 2), least-polluted groundwater (Cluster 3) and NO3- contaminated groundwater (Cluster 4). Noteworthily, Cluster 1, located in a river valley with long-term oil exploitation, had the highest levels of TPH and potentially toxic elements (Ba, Sr). Multivariate analysis combined with ion ratios analysis were used to determine the causes of these clusters. The results revealed that the hydrochemical compositions in Cluster 1 were mainly caused by the oil-related produced water intrusion into the upper aquifer. The elevated NO3- concentrations in Cluster 4 were induced by agricultural activities. Water-rock interactions (e.g., carbonate as well as silicate dissolution and precipitation) also shaped the chemical constituents of groundwater in clusters 2, 3, and 4. In addition, SO42--related processes (redox, precipitation of sulfate minerals) also affected groundwater chemical compositions in Cluster 1. This work provides the insight into the driving factors of groundwater chemistry and pollution which could contribute to groundwater sustainable management and protection in this area and other oil extraction areas.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Xu Han
- Geology Institute of China Chemical Geology and Mine Bureau, Beijing 100028, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China.
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Ling Zhou
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Dandan Huang
- School of Water Resources & Environment Engineering, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Fan Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Xin Yan
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
3
|
Tesoriero AJ, Stratton LE, Miller MP. Influence of redox gradients on nitrate transport from the landscape to groundwater and streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:150200. [PMID: 34625279 DOI: 10.1016/j.scitotenv.2021.150200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Increases in nitrogen applications to the land surface since the 1950s have led to a cascade of negative environmental impacts, including degradation of drinking water supplies, nutrient enrichment of aquatic ecosystems and contributions to global climate change. In this study, groundwater, streambed porewater, and stream sampling were used to establish trends in nitrate concentrations and how redox gradients influence nitrate transport across diverse glacial terranes. Decadal sampling has found that elevated nitrate concentrations in shallow groundwater beneath cropland have been sustained for decades. Redox gradients established in the saturated zone using dissolved O2, iron, nitrate and excess N2 from denitrification suggest that nitrate-bearing zones are thin in glacial terranes dominated by fine materials. These thin nitrate-bearing zones lead to suboxic, low nitrate streambed porewater and limit the contributions of nitrate to streams from slow-flow groundwater. In contrast, thick oxic zones in more coarse-grained glacial terranes allow nitrate to reach deeper groundwater, resulting in streambed porewater with elevated nitrate concentrations and causing a large portion of stream nitrate to be derived from slow-flow groundwater. Groundwater age tracer data indicate that denitrification occurs more quickly in the terrane dominated by fine material than in the more coarse-grained terrane. The quicker depletion of nitrate in the more fine-grained terrane suggests that the thinner oxic zone in this terrane is due, in part, to the greater availability and reactivity of electron donors in this terrane than in the more coarse-grained terrane. Groundwater age tracer data and hydrograph separation analysis suggest that saturated zone lag times between when changes in land use practices occur and when changes in stream water are fully observed may vary widely across hydrogeologic settings.
Collapse
Affiliation(s)
- Anthony J Tesoriero
- U.S. Geological Survey, 2130 S.W. 5th Avenue, Portland, OR 97201, United States of America.
| | - Laurel E Stratton
- U.S. Geological Survey, 2130 S.W. 5th Avenue, Portland, OR 97201, United States of America
| | - Matthew P Miller
- U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303, United States of America
| |
Collapse
|
4
|
Frei RJ, Lawson GM, Norris AJ, Cano G, Vargas MC, Kujanpää E, Hopkins A, Brown B, Sabo R, Brahney J, Abbott BW. Limited progress in nutrient pollution in the U.S. caused by spatially persistent nutrient sources. PLoS One 2021; 16:e0258952. [PMID: 34843503 PMCID: PMC8629290 DOI: 10.1371/journal.pone.0258952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/10/2021] [Indexed: 01/01/2023] Open
Abstract
Human agriculture, wastewater, and use of fossil fuels have saturated ecosystems with nitrogen and phosphorus, threatening biodiversity and human water security at a global scale. Despite efforts to reduce nutrient pollution, carbon and nutrient concentrations have increased or remained high in many regions. Here, we applied a new ecohydrological framework to ~12,000 water samples collected by the U.S. Environmental Protection Agency from streams and lakes across the contiguous U.S. to identify spatial and temporal patterns in nutrient concentrations and leverage (an indicator of flux). For the contiguous U.S. and within ecoregions, we quantified trends for sites sampled repeatedly from 2000 to 2019, the persistence of spatial patterns over that period, and the patch size of nutrient sources and sinks. While we observed various temporal trends across ecoregions, the spatial patterns of nutrient and carbon concentrations in streams were persistent across and within ecoregions, potentially because of historical nutrient legacies, consistent nutrient sources, and inherent differences in nutrient removal capacity for various ecosystems. Watersheds showed strong critical source area dynamics in that 2-8% of the land area accounted for 75% of the estimated flux. Variability in nutrient contribution was greatest in catchments smaller than 250 km2 for most parameters. An ensemble of four machine learning models confirmed previously observed relationships between nutrient concentrations and a combination of land use and land cover, demonstrating how human activity and inherent nutrient removal capacity interactively determine nutrient balance. These findings suggest that targeted nutrient interventions in a small portion of the landscape could substantially improve water quality at continental scales. We recommend a dual approach of first prioritizing the reduction of nutrient inputs in catchments that exert disproportionate influence on downstream water chemistry, and second, enhancing nutrient removal capacity by restoring hydrological connectivity both laterally and vertically in stream networks.
Collapse
Affiliation(s)
- Rebecca J. Frei
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Gabriella M. Lawson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Adam J. Norris
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Gabriel Cano
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Maria Camila Vargas
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Elizabeth Kujanpää
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Austin Hopkins
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Brian Brown
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Robert Sabo
- United States Environmental Protection Agency, Washington, D. C., United States of America
| | - Janice Brahney
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, Utah, United States of America
| | - Benjamin W. Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
5
|
Webber ZR, Webber KGI, Rock T, St Clair I, Thompson C, Groenwald S, Aanderud Z, Carling GT, Frei RJ, Abbott BW. Diné citizen science: Phytoremediation of uranium and arsenic in the Navajo Nation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148665. [PMID: 34218141 DOI: 10.1016/j.scitotenv.2021.148665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Mid-20th century mining in Naabeehó Bináhásdzo (Navajo Nation) polluted soil and groundwater with uranium and arsenic. The Diné and other indigenous residents of this region use groundwater for drinking, livestock, and irrigation, creating a serious environmental health risk. Currently, many individuals and communities on the Navajo Nation must purchase and transport treated water from hours away. Sunflowers (Helianthus annuus) preferentially take up uranium and arsenic, potentially representing a tool to remove these contaminants through on-site, low-cost phytoremediation. This study reports the results of a collaboration among researchers, high school students, teachers, and tribal leaders to analyze water chemistry and perform a phytoremediation experiment. In 2018 and 2019, we compiled existing data from the Navajo Nation Environmental Protection Agency (NNEPA) and collected samples from surface and groundwater. We then used sunflower seedlings grown in local soil to assess whether phytoremediation could be effective at removing arsenic and uranium. For the NNEPA-sampled wells, 9.5% exceeded the maximum contaminant level for uranium (30 μg per liter) and 16% for arsenic (10 μg per liter). For the new samples, uranium was highest in surface pools, suggesting leaching from local soil. Unlike studies from humid regions, sunflowers did not decrease uranium and arsenic in soil water. Instead, there was no change in arsenic concentration and an increase in uranium concentration in both planted and control treatments, attributable to weathering of uranium-bearing minerals in the desert soil. Because much of global uranium mining occurs in arid and semiarid regions, the ineffectiveness of phytoremediation on the Navajo Nation emphasizes the importance of prevention and conventional remediation. More generally, the participatory science approach created meaningful relationships and an important collaboration between a tribal chapter and a university, providing both cultural and scientific experiential learning opportunities for Diné high school students, undergraduate researchers, and senior personnel.
Collapse
Affiliation(s)
- Zak R Webber
- Brigham Young University, Department of Plant and Wildlife Sciences, 4105 LSB, Provo, UT 84602, USA
| | - Kei G I Webber
- Brigham Young University, Department of Chemistry and Biochemistry, C-104 BNSN, Provo, UT 84602, USA
| | - Tommy Rock
- University of Utah Rocky Mountain Center for Occupational and Environmental Health, 391 Chipeta Way Suite C, Salt Lake City, UT 84108, USA
| | - Isaac St Clair
- Brigham Young University, Department of Statistics, 223 TMCB, Provo, UT 84602, USA
| | - Carson Thompson
- Brigham Young University, Department of Plant and Wildlife Sciences, 4105 LSB, Provo, UT 84602, USA
| | | | - Zach Aanderud
- Brigham Young University, Department of Plant and Wildlife Sciences, 4105 LSB, Provo, UT 84602, USA
| | - Gregory T Carling
- Brigham Young University, Department of Geological Sciences, S-389 ESC, Provo, UT 84602, USA
| | - Rebecca J Frei
- University of Alberta, Department of Renewable Resources, 751 General Services Building University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin W Abbott
- Brigham Young University, Department of Plant and Wildlife Sciences, 4105 LSB, Provo, UT 84602, USA.
| |
Collapse
|
6
|
Jones EF, Frei RJ, Lee RM, Maxwell JD, Shoemaker R, Follett AP, Lawson GM, Malmfeldt M, Watts R, Aanderud ZT, Allred C, Asay AT, Buhman M, Burbidge H, Call A, Crandall T, Errigo I, Griffin NA, Hansen NC, Howe JC, Meadows EL, Kujanpaa E, Lange L, Nelson ML, Norris AJ, Ostlund E, Suiter NJ, Tanner K, Tolworthy J, Vargas MC, Abbott BW. Citizen science reveals unexpected solute patterns in semiarid river networks. PLoS One 2021; 16:e0255411. [PMID: 34411107 PMCID: PMC8376020 DOI: 10.1371/journal.pone.0255411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
Human modification of water and nutrient flows has resulted in widespread degradation of aquatic ecosystems. The resulting global water crisis causes millions of deaths and trillions of USD in economic damages annually. Semiarid regions have been disproportionately affected because of high relative water demand and pollution. Many proven water management strategies are not fully implemented, partially because of a lack of public engagement with freshwater ecosystems. In this context, we organized a large citizen science initiative to quantify nutrient status and cultivate connection in the semiarid watershed of Utah Lake (USA). Working with community members, we collected samples from ~200 locations throughout the 7,640 km2 watershed on a single day in the spring, summer, and fall of 2018. We calculated ecohydrological metrics for nutrients, major ions, and carbon. For most solutes, concentration and leverage (influence on flux) were highest in lowland reaches draining directly to the lake, coincident with urban and agricultural sources. Solute sources were relatively persistent through time for most parameters despite substantial hydrological variation. Carbon, nitrogen, and phosphorus species showed critical source area behavior, with 10-17% of the sites accounting for most of the flux. Unlike temperate watersheds, where spatial variability often decreases with watershed size, longitudinal variability showed an hourglass shape: high variability among headwaters, low variability in mid-order reaches, and high variability in tailwaters. This unexpected pattern was attributable to the distribution of human activity and hydrological complexity associated with return flows, losing river reaches, and diversions in the tailwaters. We conclude that participatory science has great potential to reveal ecohydrological patterns and rehabilitate individual and community relationships with local ecosystems. In this way, such projects represent an opportunity to both understand and improve water quality in diverse socioecological contexts.
Collapse
Affiliation(s)
- Erin Fleming Jones
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Rebecca J. Frei
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Raymond M. Lee
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Jordan D. Maxwell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Rhetta Shoemaker
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Andrew P. Follett
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Gabriella M. Lawson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Madeleine Malmfeldt
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Rachel Watts
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Zachary T. Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Carter Allred
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Allison Tuttle Asay
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Madeline Buhman
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Hunter Burbidge
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Amber Call
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Trevor Crandall
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Isabella Errigo
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Natasha A. Griffin
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Neil C. Hansen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Jansen C. Howe
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Emily L. Meadows
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Elizabeth Kujanpaa
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Leslie Lange
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Monterey L. Nelson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Adam J. Norris
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Elysse Ostlund
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Nicholas J. Suiter
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Kaylee Tanner
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Joseph Tolworthy
- Department of Geology, Brigham Young University, Provo, Utah, United States of America
| | - Maria Camila Vargas
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Benjamin W. Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|