1
|
Adesina KE, Burgos CJ, Grier TR, Sayam ASM, Specht AJ. Ways to Measure Metals: From ICP-MS to XRF. Curr Environ Health Rep 2025; 12:7. [PMID: 39865194 DOI: 10.1007/s40572-025-00473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/28/2025]
Abstract
PURPOSE OF REVIEW This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation. RECENT FINDINGS Recent studies highlight enhanced capabilities of both ICP-MS and XRF technologies, making them more adaptable to various analytical needs. ICP-MS is renowned for its unmatched sensitivity and precision in detecting ultra-trace metals and metalloids in complex biological samples, such as lead in plasma or seawater. XRF advancements include lower detection limits and reduced sample preparation time, enabling rapid, non-destructive analyses, ideal for quick field assessments. Portable XRF analyzers have revolutionized on-the-spot testing, providing robust data without traditional wet-lab constraints. Moreover, hybrid techniques combining ICP-MS and XRF features are emerging, offering rapid and precise metal analysis for environmental monitoring, clinical diagnostics, and epidemiological studies. Matching analytical methods to specific research demands is critical. ICP-MS is the gold standard for detailed quantitative analysis in laboratories, while XRF excels in non-destructive, immediate field applications. Selection should consider sample complexity, sensitivity, speed, and cost-efficiency. Integrating ICP-MS and XRF offers a versatile approach to metals analysis, transforming practices in environmental science and healthcare diagnostics. As these technologies evolve, they are promising to expand capabilities in detecting and understanding the roles of metals and metalloids in health and the environment.
Collapse
Affiliation(s)
- Kolawole E Adesina
- School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA
| | - Chandler J Burgos
- School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA
| | - Thomas R Grier
- School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA
| | - Abu S M Sayam
- School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA
| | - Aaron J Specht
- School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Brandis KJ, Francis RJ, Zawada KJA, Hasselerharm CD, Ramp D. Advancing the application of pXRF for animal samples. PLoS One 2024; 19:e0297830. [PMID: 39636899 PMCID: PMC11620409 DOI: 10.1371/journal.pone.0297830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/15/2024] [Indexed: 12/07/2024] Open
Abstract
Portable x-ray fluorescent (pXRF) technology provides significant opportunities for rapid, non-destructive data collection in a range of fields of study. However, there are sources of variation and sample assumptions that may influence the data obtained, particularly in animal samples. We used representative species for four taxa (fish, mammals, birds, reptiles) to test the precision of replicate scans, and the impact of sample thickness, sample state, scan location and scan time on data obtained from a pXRF. We detected some significant differences in concentration data due to sample state, scanning time and scanning location for all taxa. Infinite thickness assumptions were met for fish, reptile and mammal representatives at all body locations. Infinite thickness was not met for feathers. Scan time results found in most cases the 40, 60 and 80 second beam scan times were equivalent but significantly different to 20 second beam scan times. Concentration data across replicate scans were highly correlated. The opportunities for the use of pXRF in biological studies are wide-ranging. These findings highlight the considerations required when scanning biological samples to ensure the required data are suitably collected and standardised while reducing radiation exposure to live animals.
Collapse
Affiliation(s)
- Kate J. Brandis
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Roxane J. Francis
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Kyle J. A. Zawada
- Centre for Compassionate Conservation, University of Technology Sydney, Broadway, Australia
| | - Chris D. Hasselerharm
- Centre for Compassionate Conservation, University of Technology Sydney, Broadway, Australia
| | - Daniel Ramp
- Centre for Compassionate Conservation, University of Technology Sydney, Broadway, Australia
| |
Collapse
|
3
|
Katzner TE, Pain DJ, McTee M, Brown L, Cuadros S, Pokras M, Slabe VA, Watson RT, Wiemeyer G, Bedrosian B, Hampton JO, Parish CN, Pay JM, Saito K, Schulz JH. Lead poisoning of raptors: state of the science and cross-discipline mitigation options for a global problem. Biol Rev Camb Philos Soc 2024; 99:1672-1699. [PMID: 38693847 DOI: 10.1111/brv.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Lead poisoning is an important global conservation problem for many species of wildlife, especially raptors. Despite the increasing number of individual studies and regional reviews of lead poisoning of raptors, it has been over a decade since this information has been compiled into a comprehensive global review. Here, we summarize the state of knowledge of lead poisoning of raptors, we review developments in manufacturing of non-lead ammunition, the use of which can reduce the most pervasive source of lead these birds encounter, and we compile data on voluntary and regulatory mitigation options and their associated sociological context. We support our literature review with case studies of mitigation actions, largely provided by the conservation practitioners who study or manage these efforts. Our review illustrates the growing awareness and understanding of lead exposure of raptors, and it shows that the science underpinning this understanding has expanded considerably in recent years. We also show that the political and social appetite for managing lead ammunition appears to vary substantially across administrative regions, countries, and continents. Improved understanding of the drivers of this variation could support more effective mitigation of lead exposure of wildlife. This review also shows that mitigation strategies are likely to be most effective when they are outcome driven, consider behavioural theory, local cultures, and environmental conditions, effectively monitor participation, compliance, and levels of raptor exposure, and support both environmental and human health.
Collapse
Affiliation(s)
- Todd E Katzner
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 230 North Collins Road, Boise, ID, 83702, USA
| | - Deborah J Pain
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Zoology Department, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Michael McTee
- MPG Ranch, 19400 Lower Woodchuck Road, Florence, MT, 59833, USA
| | - Leland Brown
- Oregon Zoo, North American Non-lead Partnership, 4001 SW Canyon Rd, Portland, OR, 97221, USA
| | - Sandra Cuadros
- Hawk Mountain Sanctuary, 410 Summer Valley Rd, Orwigsburg, PA, 17961, USA
- Department of Biology, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, V1V 1V7, Canada
| | - Mark Pokras
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA, 01536, USA
| | - Vincent A Slabe
- Conservation Science Global, Bozeman, MT, USA
- The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID, 83709, USA
| | - Richard T Watson
- The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID, 83709, USA
| | - Guillermo Wiemeyer
- CONICET- Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, Calle 5 esq. 116 MO L6360, Gral. Pico, La Pampa, Argentina
| | | | - Jordan O Hampton
- Faculty of Science, University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | | | - James M Pay
- School of Natural Sciences, University of Tasmania, Churchill Ave, Hobart, Tasmania, 7005, Australia
| | - Keisuke Saito
- Institute for Raptor Biomedicine Japan 2-2101 Hokuto, Kushiro, Hokkaido, 084-0922, Japan
| | - John H Schulz
- School of Natural Resources, University of Missouri, 1111 Rollins St, Columbia, MO, 65203, USA
| |
Collapse
|
4
|
Specht AJ, Sayam ASM, Parish CN, Hauck TJ, Watson RT, McClure CJW, Weisskopf MG. Bone lead measurements of live condors in field to assess cumulative lead exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56308-56313. [PMID: 39264498 DOI: 10.1007/s11356-024-34950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Lead poisoning remains the leading cause of diagnosed death for critically endangered California condors, which are annually monitored for lead exposure via blood tests. Blood tests are generally reflective of acute lead exposure. Since condors are victims to both chronic and acute lead exposure, measuring bone, which in humans is reflective of years to decades worth of exposure, is a valuable biomarker. In this study, we measured bone Pb of the tibiotarsus of 64 condors in vivo using a portable x-ray fluorescence device. The average uncertainty for measurements, typically reflective of how effective the device performed, was found to be 3.8 ± 2.2 µg/g bone mineral. The average bone lead level was found to be 26.7 ± 24.5 µg/g bone mineral. Bone lead correlated significantly with a sum of all blood lead measures over the lifetime of each condor. In the future, bone lead can potentially be used to inform treatment planning and address the chronic health implications of lead in the species.
Collapse
Affiliation(s)
- Aaron J Specht
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA.
| | | | | | | | | | | | - Marc G Weisskopf
- Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| |
Collapse
|
5
|
Jones EM, Koch AJ, Pay JM, Jones ME, Hamede RK, Hampton JO. Lead exposure and source attribution for a mammalian scavenger before and after a culling program. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173686. [PMID: 38830425 DOI: 10.1016/j.scitotenv.2024.173686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
Lead-based ammunition is a significant source of environmental lead and threatens species that scavenge lead-shot carcasses, particularly in areas with intensive shooting. With the impacts of lead on avian scavengers well established, there is increasing focus on the effects of lead on mammalian scavengers. We investigated lead exposure in a morphologically specialized mammalian scavenger, the Tasmanian devil (Sarcophilus harrisii), by analyzing their blood lead levels (BLLs) before and after a marsupial culling program using linear mixed effects models. We compared lead isotope signatures in devil blood to those in the culling ammunition to inform potential source attributions. We sampled 23 devils before culling and 15 after culling, finding no significant difference in mean BLLs pre and post-culling. However, devils captured closer to forestry coupes where culling had occurred had higher BLLs, and a greater proportion of devils displayed elevated BLLs post-culling (33 % compared to 18 % pre-culling). The highest BLL (7.93 μg/dL) was found in a devil post-culling and this individual had lead isotope signatures that matched the ammunition samples analyzed, suggesting the individual was exposed to lead from scavenging on culled carcasses. While 18 % of the devil blood lead samples had isotope signatures consistent with the ammunition samples, most were measurably different, indicating other sources of lead in the landscape. BLLs in our study landscape were similar to published BLLs for wild devils across Tasmania. That said, lead isotope signatures in the blood of individual devils sampled both before and after culling shifted closer to those of ammunition samples post-culling. Our results indicate that while some individual devils may have been exposed to lead from culling, most devils in the landscape did not show evidence of recent exposure. However, even low lead levels can adversely impact wildlife health and immunity, a particular concern for devils, a species endangered by disease.
Collapse
Affiliation(s)
- Evie M Jones
- School of the Environment, Yale University, New Haven, CT 06511, USA; School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| | - Amelia J Koch
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia; Forest Practices Authority, 30 Patrick St, Hobart, TAS 7001, Australia
| | - James M Pay
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Jordan O Hampton
- Faculty of Science, University of Melbourne, Parkville, Victoria 3052, Australia; Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
6
|
Zhu Y, Liu C, Huo J, Li H, Chen J, Duan Y, Huang K. A novel calibration method for continuous airborne metal measurements: Implications for aerosol source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168274. [PMID: 37924870 DOI: 10.1016/j.scitotenv.2023.168274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Continuous metal monitors have been widely used in environmental monitoring due to the high temporal resolution, high detection limit, and necessity for near real-time source apportionment. However, the reliability of the conventional calibration method, the deviation caused by uncalibrated monitoring data, and the subsequent impact on source identification results are rarely discussed. In this study, a reliable multi-point calibration approach by Primary Standard Aerosol Mass Concentration Calibration System (PAMAS) for the Xact625i Ambient Metals Monitor was developed and applied. The measured data was almost meaningless in the low-concentration range with bias even exceeding 100 % by using the conventional single-point calibration method based on thin-film standards. PAMAS was utilized to generate aerosols with known concentrations of the 20 metal elements including Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Cd, Sn, Sb, Ba, Tl, Pb, and Bi, in two concentration ranges of 150-1200 ng m-3 and 2.5-30 ng m-3 to validate the Xact625i Monitor. The results showed that the elemental concentrations were underestimated, especially in the low-concentration range, only for Cr, As, and Sr with slopes close to unity (1.00 ± 0.03). After calibration by PAMAS, the slopes of the linear relationships between measured and standard concentrations were all unity for the 19 elements in the high-concentration range, and close to unity for the 15 elements in the low-concentration range, and the accuracy of the remaining elements was also improved. After considering the calibration of aerosol metal data, it was found the number of source factors and their contributions to metals and PM2.5 in Chongming Dongtan, China, based on the PMF model significantly changed. This study highlighted the need of developing reliable calibration methods for online aerosol monitoring instruments and implied that the source apportionment results could be biased without careful data calibration.
Collapse
Affiliation(s)
- Yucheng Zhu
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chengfeng Liu
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Juntao Huo
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China
| | - Hao Li
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jia Chen
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China
| | - Yusen Duan
- State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China
| | - Kan Huang
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
7
|
Hutchinson DJ, Jones EM, Pay JM, Clarke JR, Lohr MT, Hampton JO. Further investigation of lead exposure as a potential threatening process for a scavenging marsupial species. Aust Vet J 2023; 101:313-319. [PMID: 37311719 DOI: 10.1111/avj.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/15/2023]
Abstract
There is a growing recognition of the harmful effects of lead exposure on avian and mammalian scavengers. This can lead to both lethal and non-lethal effects which may negatively impact wildlife populations. Our objective was to assess medium-term lead exposure in wild Tasmanian devils (Sarcophilus harrisii). Frozen liver samples (n = 41), opportunistically collected in 2017-2022, were analysed using inductively coupled plasma mass spectrometry (ICP-MS) to determine liver lead concentrations. These results were then used to calculate the proportion of animals with elevated lead levels (>5 mg/kg dry weight) and examine the role of explanatory variables that may have influenced the results. The majority of samples analysed were from the south-east corner of Tasmania, within 50 km of Hobart. No Tasmanian devil samples were found to have elevated lead levels. The median liver lead concentration was 0.17 mg/kg (range 0.05-1.32 mg/kg). Female devils were found to have significantly higher liver lead concentrations than males (P = 0.013), which was likely related to lactation, but other variables (age, location, body mass) were not significant. These results suggest that wild Tasmanian devil populations currently show minimal medium-term evidence of exposure to lead pollution, although samples were concentrated in peri-urban areas. The results provide a baseline level which can be used to assess the impact of any future changes in lead use in Tasmania. Furthermore, these data can be used as a comparison for lead exposure studies in other mammalian scavengers, including other carnivorous marsupial species.
Collapse
Affiliation(s)
- D J Hutchinson
- Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - E M Jones
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - J M Pay
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - J R Clarke
- Tasmanian Museum and Art Gallery (TMAG), Hobart, Tasmania, Australia
| | - M T Lohr
- School of Science, Faculty of Health, Engineering and Science, Edith Cowan University, Joondalup, Western Australia, Australia
- SLR Consulting, Subiaco, Western Australia, Australia
| | - J O Hampton
- Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
8
|
Hampton JO, Lohr MT, Specht AJ, Nzabanita D, Hufschmid J, Berger L, McGinnis K, Melville J, Bennett E, Pay JM. Lead exposure of mainland Australia's top avian predator. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:122004. [PMID: 37302786 DOI: 10.1016/j.envpol.2023.122004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Lead (Pb) toxicity, through ingestion of lead ammunition in carcasses, is a threat to scavenging birds worldwide, but has received little attention in Australia. We analyzed lead exposure in the wedge-tailed eagle (Aquila audax), the largest raptor species found in mainland Australia and a facultative scavenger. Eagle carcasses were collected opportunistically throughout south-eastern mainland Australia between 1996 and 2022. Lead concentrations were measured in bone samples from 62 animals via portable X-ray fluorescence (XRF). Lead was detected (concentration >1 ppm) in 84% (n = 52) of the bone samples. The mean lead concentration of birds in which lead was detected was 9.10 ppm (±SE 1.66). Bone lead concentrations were elevated (10-20 ppm) in 12.9% of samples, and severe (>20 ppm) in 4.8% of samples. These proportions are moderately higher than equivalent data for the same species from the island of Tasmania, and are comparable to data from threatened eagle species from other continents. Lead exposure at these levels is likely to have negative impacts on wedge-tailed eagles at the level of the individual and perhaps at a population level. Our results suggest that studies of lead exposure in other Australian avian scavenger species are warranted.
Collapse
Affiliation(s)
- Jordan O Hampton
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia; Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.
| | - Michael T Lohr
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, Western Australia, 6027, Australia; SLR Consulting, 500 Hay St, Subiaco, Western Australia, 6008, Australia
| | - Aaron J Specht
- Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, United States
| | - Damien Nzabanita
- School of Science, RMIT University, 264 Plenty Road, Bundoora, Victoria, 3083, Australia
| | - Jasmin Hufschmid
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Lee Berger
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Kate McGinnis
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia; Animal Welfare League Queensland, Shelter Road, Coombabah, Queensland, 4216, Australia
| | - Jane Melville
- Museums Victoria Research Institute, 11 Nicholson Street, Carlton, Victoria, 3053, Australia; School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia
| | - Emma Bennett
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia
| | - James M Pay
- University of Tasmania, Churchill Avenue, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
9
|
Hampton JO, Cobb ML, Toop SD, Flesch JS, Hyndman TH. Elevated lead exposure in Australian hunting dogs during a deer hunting season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121317. [PMID: 36828357 DOI: 10.1016/j.envpol.2023.121317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
There is growing recognition of the threat posed by toxic lead-based ammunition. One group of domestic animals known to be susceptible to harmful lead exposure via this route is hunting dogs. Scent-trailing dogs ('hounds') are used to hunt introduced sambar deer (Cervus unicolor) during a prescribed eight-month (April-November) annual hunting season, during which they are fed fresh venison, in Victoria, south-eastern Australia. We used this annual season as a natural experiment to undertake longitudinal sampling of dogs for lead exposure. Blood was collected from 27 dogs owned by four different deer hunters and comprising three different breeds just prior to the start of the hound hunting season (March 2022) and in the middle of the season (August 2022), and blood lead levels (BLLs) (μg/dL) were determined via inductively coupled plasma mass spectrometry (ICP-MS). Using Tobit regression, the expected BLLs across all dogs were significantly lower before the season (0.50 μg/dL, standard error [SE] = 0.32 μg/dL) than during the season (1.39 μg/dL, SE = 0.35 μg/dL) (p = 0.01). However, when the breed of dog was included in the analyses, this effect was only significant in beagles (P < 0.001), not bloodhounds (p = 0.73) or harriers (p = 0.43). For 32% of the dogs before the season, and 56% during the season, BLLs exceeded the established threshold concentration for developmental neurotoxicity in humans (1.2 μg/dL). Time since most recent venison feeding, sex of dog and owner were not associated with BLLs. The finding that BLLs more than doubled during the hunting season indicates that lead exposure is a risk in this context. These results expand the sphere of impact from environmental lead in Australia from wild animals and humans, to include some groups of domestic animals, a textbook example of a One Health issue.
Collapse
Affiliation(s)
- Jordan O Hampton
- Animal Welfare Science Centre, Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia; Harry Butler Institute, Murdoch University, 90 South Street, Western Australia, 6150, Australia.
| | - Mia L Cobb
- Animal Welfare Science Centre, Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Simon D Toop
- Game Management Authority, Level 2, 535 Bourke Street, Melbourne, Victoria, 3000, Australia
| | - Jason S Flesch
- Game Management Authority, Level 2, 535 Bourke Street, Melbourne, Victoria, 3000, Australia
| | - Timothy H Hyndman
- Harry Butler Institute, Murdoch University, 90 South Street, Western Australia, 6150, Australia; School of Veterinary Medicine, Murdoch University, 90 South Street, Western Australia, 6150, Australia
| |
Collapse
|
10
|
Nzabanita D, Hampton JO, Toop SD, Bengsen AJ, Specht AJ, Flesch JS, Hufschmid J, Nugegoda D. Expanding the use of portable XRF to monitor lead exposure in an Australian duck species two decades after a ban on lead shot. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161803. [PMID: 36708833 DOI: 10.1016/j.scitotenv.2023.161803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
There is growing worldwide recognition of the threat posed by toxic lead for wildlife and humans. Lead toxicity from ammunition has been shown to be a threat to waterbirds across the globe. Lead shot was banned for all waterfowl hunting in Victoria, Australia, in 2002. However, no assessments of lead exposure in Australian waterfowl have been published since the 1990s. Our aim was to estimate contemporary lead exposure via measuring bone lead concentrations in a harvested dabbling duck, the Pacific black duck (Anas superciliosa). We collected wings from 77 Pacific black ducks, spanning 2018 (n = 30) and 2021 (n = 47), from nine sites with long-term histories of regular waterfowl hunting. We sought to validate portable X-ray fluorescence (XRF) for this purpose by taking a piece of humerus bone from each bird, and measuring lead concentration (mg/kg), first via non-destructive XRF and then via destructive inductively coupled plasma mass spectrometry (ICP-MS) and validated the relationship via regression analysis. Portable XRF bone lead measurement demonstrated a strong correlation with ICP-MS results using root-transformed regression (R2 = 0.85). Greater than 92 % of ducks had only background lead exposure (<10 mg/kg). When compared to historical studies in the same species at similar field sites from the 1990s, lead exposure levels were considerably lower, with mean lead concentrations ∼2-fold lower (3.7 c.f. 7.7 mg/kg), and the frequency of birds with severe lead exposure (>20 mg/kg) ∼3-fold lower (2.6 c.f. 7.5 %). Our results confirm that portable XRF is a useful option for measurement of bone lead in Australasian waterbird species. Our findings also demonstrate that a ban on the use of lead shot around 20 years ago has been associated with a substantial reduction in lead exposure in at least one species of waterfowl.
Collapse
Affiliation(s)
- Damien Nzabanita
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Jordan O Hampton
- Faculty of Science, University of Melbourne, Parkville, Victoria 3052, Australia; Harry Butler Institute, Murdoch University, 90 South Street, Western Australia 6150, Australia
| | - Simon D Toop
- Game Management Authority, Bourke St, Melbourne, Victoria 3000, Australia
| | - Andrew J Bengsen
- Vertebrate Pest Research Unit, Department of Primary Industries, 1447 Forest Road, Orange, NSW 2800, Australia; Biosphere Environmental Consultants, Tamworth, NSW 2340, Australia
| | - Aaron J Specht
- Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, United States
| | - Jason S Flesch
- Game Management Authority, Bourke St, Melbourne, Victoria 3000, Australia
| | - Jasmin Hufschmid
- Faculty of Science, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Dayanthi Nugegoda
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
11
|
Hampton JO, Pain DJ, Buenz E, Firestone SM, Arnemo JM. Lead contamination in Australian game meat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50713-50722. [PMID: 36797390 PMCID: PMC10104915 DOI: 10.1007/s11356-023-25949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/10/2023] [Indexed: 04/16/2023]
Abstract
Lead-based ammunition (gunshot and bullets) frequently leaves small lead fragments embedded in the meat of wild-shot game animals. Australia produces several commercial game meat products from wild animals harvested with lead-based ammunition and has a growing population of recreational hunters. However, no studies have previously investigated the frequency of lead fragments or lead concentrations in Australian game meat. We examined 133 Australian minced game meat items of four types for evidence of lead contamination. Samples were meat from kangaroos (Macropus and Osphranter spp.; n=36) and Bennett's wallabies (Notamacropus rufogriseus; n=28) sold for human consumption, and deer ('venison'; multiple spp.; n=32) and stubble quail (Coturnix pectoralis; n=37) harvested for private consumption by recreational hunters. All packages were studied by digital radiography to detect the presence of radio-dense fragments, assumed to be lead fragments from ammunition. Visible fragments were absent in commercially available kangaroo products, but were present in 4%, 28% and 35% of wallaby, venison and quail, respectively. Mean meat lead concentrations (mg/kg wet weight) were 0.01 ± 0.01 for kangaroo, 0.02 ± 0.01 for wallaby, 0.12 ± 0.07 for venison, and 1.76 ± 3.76 for quail. The Australian food standards threshold for livestock meat (0.1 mg/kg w.w.) was not exceeded by any kangaroo or wallaby products but was exceeded by 53% and 86% of venison and quail, respectively. Radiography only detected 35% of samples that were above the food safety threshold. While average lead concentrations in commercially available macropod (kangaroo and wallaby) meat were low, those in recreationally harvested game meat may pose health risks for hunters and associated consumers.
Collapse
Affiliation(s)
- Jordan O Hampton
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia.
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Deborah J Pain
- Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK
| | - Eric Buenz
- Nelson Marlborough Institute of Technology, Nelson, 7010, New Zealand
| | - Simon M Firestone
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, Koppang, Norway
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
12
|
Hampton JO, Pay JM, Katzner TE, Arnemo JM, Pokras MA, Buenz E, Kanstrup N, Thomas VG, Uhart M, Lambertucci SA, Krone O, Singh NJ, Naidoo V, Ishizuka M, Saito K, Helander B, Green RE. Managing macropods without poisoning ecosystems. ECOLOGICAL MANAGEMENT & RESTORATION 2022. [DOI: 10.1111/emr.12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Hampton JO, Dunstan H, Toop SD, Flesch JS, Andreotti A, Pain DJ. Lead ammunition residues in a hunted Australian grassland bird, the stubble quail (Coturnix pectoralis): Implications for human and wildlife health. PLoS One 2022; 17:e0267401. [PMID: 35446880 PMCID: PMC9022800 DOI: 10.1371/journal.pone.0267401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Scavenging and predatory wildlife can ingest lead (Pb) from lead-based ammunition and become poisoned when feeding on shot game animals. Humans can similarly be exposed to ammunition-derived lead when consuming wild-shot game animals. Studies have assessed the degree of lead contamination in the carcasses of game animals but this scrutiny has not so far extended to Australia. Stubble quail (Coturnix pectoralis) are one of the only native non-waterfowl bird species that can be legally hunted in Australia, where it is commonly hunted with lead shot. The aim of this study was to characterize lead contamination in quail harvested with lead-based ammunition. The frequency, dimensions, and number of lead fragments embedded in carcasses were assessed through use of radiography (X-ray). From these data, the average quantity of lead available to scavenging wildlife was estimated along with potential risks to human consumers. We radiographed 37 stubble quail harvested by hunters using 12-gauge (2.75”) shotguns to fire shells containing 28 g (1 oz) of #9 (2 mm or 0.08” diameter) lead shot in western Victoria, Australia, in Autumn 2021. Radiographs revealed that 81% of carcasses contained embedded pellets and/or fragments with an average of 1.62 embedded pellets detected per bird. By excising and weighing a sample of 30 shotgun pellets (all had a mass of 0.75 grain or 48.6 mg), we calculated an average lead load of 78 mg/100 g of body mass. This was a conservative estimate, because fragments were not considered. This level of lead contamination was comparable to hunted bird species examined using similar methods in Europe. The quantity and characteristics of lead ammunition residues found suggest that predatory and scavenging wildlife and some groups of human consumers will be at risk of negative health impacts.
Collapse
Affiliation(s)
- Jordan O. Hampton
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- * E-mail:
| | - Heath Dunstan
- Game Management Authority, Melbourne, Victoria, Australia
| | - Simon D. Toop
- Game Management Authority, Melbourne, Victoria, Australia
| | | | - Alessandro Andreotti
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, Ozzano Emilia, Italy
| | - Deborah J. Pain
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|