1
|
Wan L, Bento VA, Qu Y, Qiu J, Song H, Zhang R, Wu X, Xu F, Lu J, Wang Q. Drought characteristics and dominant factors across China: Insights from high-resolution daily SPEI dataset between 1979 and 2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166362. [PMID: 37598959 DOI: 10.1016/j.scitotenv.2023.166362] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Drought, a complex phenomenon exacerbated by climate change, is influenced by various climate factors. The escalating global temperatures associated with climate change, impact precipitation patterns and water cycle processes, consequently intensifying the occurrence and severity of droughts. To effectively address and adapt to these challenges, it is crucial to identify the dominant climate factors driving drought events. In this study, we utilized the 1979-2018 Chinese meteorological forcing dataset to calculate the daily Standardized Precipitation Evapotranspiration Index (SPEI). The Theil-Sen and Mann-Kendall (M-K) tests were employed to analyze the spatial and temporal trends of drought severity and duration. Additionally, partial correlation analysis was conducted to examine the relationship between climate factors (precipitation and potential evapotranspiration (PET)) and drought characteristic (drought severity and duration). Through this comprehensive analysis, we aimed to identify the primary factors influencing drought severity and duration. The findings revealed the following key results: (1) Over the 40-year period from 1979 to 2018, drought trends in China and its seven climate divisions exhibited an increasing pattern. (2) During drought periods, most regions exhibited a positive correlation between PET and drought severity and duration, while precipitation demonstrated a negative correlation. However, certain areas experiencing severe drought displayed a negative correlation between PET and drought severity and duration, precipitation demonstrated a positive correlation with drought severity and duration. (3) PET emerged as the dominant climatic factor for meteorological drought in the majority of China. These findings contribute valuable insights for policymakers in the development of climate change adaptation and mitigation strategies. By understanding the dominant climate factors driving drought events, policymakers can implement effective measures to mitigate the adverse socioeconomic and environmental impacts associated with climate change.
Collapse
Affiliation(s)
- Lingling Wan
- College of Environmental & Safety Engineering, The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350116, China
| | - Virgílio A Bento
- Instituto Dom Luiz, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Yanping Qu
- China Inst Water Resources & Hydropower Res, Res Ctr Flood & Drought Disaster Reduct, Beijing 100038, China
| | - Jianxiu Qiu
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongquan Song
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - RongRong Zhang
- College of Environmental & Safety Engineering, The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350116, China
| | - Xiaoping Wu
- College of Environmental & Safety Engineering, The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350116, China
| | - Feng Xu
- College of Environmental & Safety Engineering, The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350116, China
| | - Jinkuo Lu
- College of Environmental & Safety Engineering, The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350116, China
| | - Qianfeng Wang
- College of Environmental & Safety Engineering, The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350116, China; Key Lab of Spatial Data Mining & Information Sharing, Ministry of Education of China, Fuzhou 350116, China.
| |
Collapse
|
2
|
Liu Y, Liu H, Chen Y, Gang C, Shen Y. Quantifying the contributions of climate change and human activities to vegetation dynamic in China based on multiple indices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156553. [PMID: 35690202 DOI: 10.1016/j.scitotenv.2022.156553] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Distinguishing the respective roles of climate change and anthropogenic activities can provide crucial information for sustainable management of the environment. Here, using the residual trend method (RESTREND), which measures the residue of the actual and potential trends of vegetation, we quantified the relative contributions of human activities (e.g., ecological restoration, overgrazing, and urbanization) and climate change (the warmer and wetter trend) to vegetation dynamics in China during 1988-2018 based on multiple vegetation indices, including the vegetation optical depth (Ku-VOD, C-VOD), normalized difference vegetation index (NDVI), and gross primary productivity (GPP). The results showed that the VOD, NDVI, and GPP exhibited overall increasing trends during 1988-2018. Human activities contributed >70% to the increases in NDVI and GPP in China, whereas a counterbalanced contribution of human activities and climate change was identified for the VOD dynamics (51% vs. 49%). Regions with high contributions from human activities to NDVI, GPP, and VOD were located in northeastern, southern, central, and northwestern China. In northern China, the positive impacts of human activities on NDVI (78%) and BEPS-GPP (83%) were greater than those of climate change. In contrast, human activities contributed 96% to the decrease in Ku-VOD over the same period. Before 2000, climate change promoted increases in GPP and NDVI in most regions of southern China. The increasing rates of GPP and NDVI accelerated after 2000 due to afforestation. However, human activities like overgrazing and urbanization have led to decreases in Ku-VOD in northern and southwestern China, and in C-VOD in northeastern, eastern, central, southwestern, and southern China. In all, the relative roles of climate and human factors varied in different regions when NDVI, GPP, or VOD were individually considered. Our results highlighted that the regional-scale vegetation conditions should be taken into full account to achieve sustainable management of ecosystems.
Collapse
Affiliation(s)
- Yue Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huanhuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengcheng Gang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Yangling, Shaanxi 712100, China.
| | - Yifan Shen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Bai Y, Li S, Liu M, Guo Q. Assessment of vegetation change on the Mongolian Plateau over three decades using different remote sensing products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115509. [PMID: 35751293 DOI: 10.1016/j.jenvman.2022.115509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
As a major component of temperate steppes in the Eurasian continent, the Mongolian Plateau (MP) plays a pivotal role in the East Asian and global carbon cycles. This paper describes the use of five remote sensing indices derived from satellite data to characterize vegetation cover on MP, namely: gross primary production (GPP), net primary production (NPP), normalized difference vegetation index (NDVI), leaf area index (LAI) and fractional vegetation cover (FVC). It is found that GPP, NPP, and NDVI exhibit increasing trends, whereas LAI and FVC present decreasing trends on the MP since 1982. The different indices highlight discrepancies in the spatial pattern of vegetation growth, with the greatest increase in the southeast of MP. Only 3.4% of the total land area of MP exhibited consistent trends in the indices (0.1% degradation and 3.3% growth, P < 0.01), with the synchronous change of both LAI and NPP exhibiting higher consistency than that of raw NDVI and NPP. Understanding of the characteristics and status of vegetation change on the MP has far-reaching implications for its ecological protection management, and climate change mitigation.
Collapse
Affiliation(s)
- Yu Bai
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Shenggong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Menghang Liu
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qun Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
4
|
Monitoring 2019 Drought and Assessing Its Effects on Vegetation Using Solar-Induced Chlorophyll Fluorescence and Vegetation Indexes in the Middle and Lower Reaches of Yangtze River, China. REMOTE SENSING 2022. [DOI: 10.3390/rs14112569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Monitoring drought precisely and evaluating drought effects quantitatively can establish a scientific foundation for understanding drought. Although solar-induced chlorophyll fluorescence (SIF) can detect the drought stress in advance, the performance of SIF in monitoring drought and assessing drought-induced gross primary productivity (GPP) losses from lush to senescence remains to be further studied. Taking the 2019 drought in the middle and lower reaches of the Yangtze River (MLRYR) as an example, this study aims to monitor and assess this drought by employing a new global, OCO-2-based SIF (GOSIF) and vegetation indexes (VIs). Results showed that the GPP, GOSIF, and VIs all exhibited significant increasing trends during 2000–2020. GOSIF was most consistent with GPP in spatial distribution and was most correlated with GPP in both annual (linear correlation, R2 = 0.87) and monthly (polynomial correlation, R2 = 0.976) time scales by comparing with VIs. During July–December 2019, the precipitation (PPT), soil moisture, and standardized precipitation evapotranspiration index (SPEI) were generally below the averages during 2011–2020 and reached their lowest point in November, while those of air temperature (Tem), land surface temperature (LST), and photosynthetically active radiation (PAR) were the contrary. For drought monitoring, the spatial distributions of standardized anomalies of GOSIF and VIs were consistent during August–October 2019. In November and December, however, considering vegetation has entered the senescence stage, SIF had an obvious early response in vegetation physiological state monitoring compared with VIs, while VIs can better indicate meteorological drought conditions than SIF. For drought assessment, the spatial distribution characteristics of GOSIF and its standardized anomaly were both most consistent with that of GPP, especially the standardized anomaly in November and December. All the above phenomena verified the good spatial consistency between SIF and GPP and the superior ability of SIF in capturing and quantifying drought-induced GPP losses. Results of this study will improve the understanding of the prevention and reduction in agrometeorological disasters and can provide an accurate and timely method for drought monitoring.
Collapse
|
5
|
Cao S, Zhang L, He Y, Zhang Y, Chen Y, Yao S, Yang W, Sun Q. Effects and contributions of meteorological drought on agricultural drought under different climatic zones and vegetation types in Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153270. [PMID: 35085634 DOI: 10.1016/j.scitotenv.2022.153270] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Meteorological drought is one of the driving forces behind agricultural drought. The response of agricultural drought to meteorological drought remains poorly understood under different climatic zones and vegetation types in Northwest China (NWC). Furthermore, the contribution of climate factors and human activities to agricultural drought in NWC remains unclear. We combined the Standardized Precipitation Evapotranspiration Index (SPEI) and the satellite Vegetation Condition Index (VCI) to characterize meteorological and agricultural drought, respectively. Based on the trend analysis, Spearman's correlation coefficient and residual trend analysis, we studied the variation characteristics and response relationships of meteorological and agricultural drought under different climatic zones and vegetation types in NWC from 2000 to 2019 and evaluated the contributions of climate factors (SPEI and precipitation) and human activities on the agricultural drought. The results showed that under different climatic zones and vegetation types, the SPEI and VCI all showed an upward trend in NWC, indicating that meteorological and agricultural drought slowed down. It was further pointed out that the climate was humidified and the soil moisture increased in NWC. Meteorological drought has a definite effect on agricultural drought, and the effect varied non-linearly along the drought gradient with the strongest responses in the semiarid ecosystems. Drought resistance of different climatic zones and vegetation types was different, caused by the specific sensitivity and uniqueness of local arid environment. Among them, grasslands dominated the regional SPEI-VCI changes in NWC. The combined effects of climatic factors (SPEI and precipitation) and human activities promoted the variation of agricultural drought in NWC. Climatic factors were the main drivers of agricultural drought change in grasslands, with the contribution rate reaching 76.71%. However, human activities all contributed significantly to agricultural drought than climatic factors, especially in the Loess Plateau, Junggar Basin and northern Tianshan Mountains, where the positive contribution of human activities exceeded 80%. Thus, the SPEI and VCI can effectively reveal the change law of meteorological drought and agricultural drought in NWC. This study provides a theoretical basis for drought disaster relationship assessment.
Collapse
Affiliation(s)
- Shengpeng Cao
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Lifeng Zhang
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Yi He
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China.
| | - Yali Zhang
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Yi Chen
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Sheng Yao
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Wang Yang
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Qiang Sun
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| |
Collapse
|
6
|
Somorowska U. Amplified signals of soil moisture and evaporative stresses across Poland in the twenty-first century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151465. [PMID: 34742798 DOI: 10.1016/j.scitotenv.2021.151465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
In Poland, recent summer droughts have had devastating environmental, social, and economic consequences, but the trend of growing season dryness remains unclear. This study focuses on the soil moisture and evaporative stress conditions, analyzed in a multiyear period between 1981 and 2019. Country scale trends in growing season drought severities are assessed using indices derived from the model-based estimates of soil moisture and evapotranspiration. These are compared with indices derived from meteorological variables. Soil droughts are assessed by the Standardized Soil Index (SSI), while the ecological droughts are related to evapotranspiration by the Standardized Evaporative Stress Ratio (SESR). Moreover, the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and self-calibrating Palmer Drought Severity Index (sc-PDSI) are used for comparison. A Drought-Prone Area (DPA) is delineated based on a criterion defined as simultaneous occurrence of statistically significant drying trends in surface and root zone soil moisture and evaporative stress. It was found that soil and ecological drought severities have remarkably increased in the growing season. This confirms the hypothesis that intensified soil drying is accompanied by intensified water stress imprinted in evapotranspiration. The most severe drought sequence has occurred in recent years, amplified by exceptionally high air temperature, low precipitation, and high deficit in the climatic water balance. The highest correlation is observed between annual growing season drought severities derived from the SSI and SESR; only SPEI approximates an increasing trend, while the SPI and sc-PDSI do not follow such a trajectory. The study shows an almost contiguous spatial pattern of DPA, which takes 42% of the country. One important implication of this study is that soil moisture and evapotranspiration should be considered in assessing drought severity in addition to traditionally used meteorological variables.
Collapse
Affiliation(s)
- Urszula Somorowska
- Department of Hydrology, Faculty of Geography and Regional Studies, University of Warsaw, Krakowskie Przedmieście 30, 00-927 Warsaw, Poland.
| |
Collapse
|