1
|
Laiz I, Foletti N, Teles-Machado A, Plecha S, Peliz Á, Sánchez Leal RF, Bolado-Penagos M. Spatial distribution of microplastics in the Gulf of Cadiz as a function of their density: A Lagrangian modelling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175212. [PMID: 39117237 DOI: 10.1016/j.scitotenv.2024.175212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Microplastics (MPs) are distributed throughout the world oceans and represent one of the greatest environmental concerns of marine pollution. In the Gulf of Cadiz (GoC), MPs are found throughout the water column, on the seafloor, and accumulated within commercial marine species, primarily due to discharges from the main estuaries. The aim of this study was to analyse the transport pathways, spatial distribution, and accumulation regions of MPs in the GoC based on their density and source. For this, a Lagrangian transport model was coupled to a high-resolution hydrodynamic model and four particle sources were considered: Cape San Vicente, Guadiana Estuary, Guadalquivir Estuary, and Bay of Cadiz/Guadalete River. To account for the diversity of plastics detected in the GoC, particles with ten different densities were used, from low-density to high-density polymers. This study indicates that a significant proportion of low-density MPs accumulate near their sources and within the top few centimetres of the water column due to local surface currents. The Guadalquivir and Guadiana estuaries are the primary contributors to the high accumulation of low-density MPs on the GoC eastern shelf, consistent with previous field studies identifying these estuaries as the main sources of MPs into the region, including polyethylene and polypropylene. In contrast, the Bay of Cadiz/Guadalete River seems to be the primary source of low-density MPs in offshore waters within the uppermost meter of the water column, influenced by local mesoscale features. The Guadalquivir Estuary seems to be the main source of high-density MPs into the continental shelves, such as polystyrene, polyamide, and polyvinyl chloride, followed by the Bay of Cadiz/Guadalete River, and to a lesser extent, the Guadiana estuary. These MPs accumulate near their sources at depths of 3.5 to 50 m due to their high sinking rates, but can also be transported offshore by deep currents, either northwards along the Portuguese offshore waters or westwards off the GoC offshore region.
Collapse
Affiliation(s)
- Irene Laiz
- Departamento de Física Aplicada, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real 11519, Cádiz, Spain.
| | - Nadine Foletti
- Departamento de Física Aplicada, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real 11519, Cádiz, Spain.
| | - Ana Teles-Machado
- Instituto Português do Mar e da Atmosfera (IPMA), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; Universdade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisboa, Portugal.
| | - Sandra Plecha
- Universdade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisboa, Portugal.
| | - Álvaro Peliz
- Universdade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisboa, Portugal.
| | - Ricardo F Sánchez Leal
- Physical Oceanography Dept, Spanish Institute of Oceanography, Cádiz Oceanographic Center, Muelle de Levante s/n, Puerto Pesquero, E-11006 Cádiz, Spain.
| | - Marina Bolado-Penagos
- Departamento de Física Aplicada, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real 11519, Cádiz, Spain.
| |
Collapse
|
2
|
Dhineka K, Mishra P, Ikenoue T, Nakajima R, Itoh M, Sambandam M, Kaviarasan T, Marigoudar SR. Arctic threads: Microplastic fibres in Chukchi and Beaufort sea sediments. MARINE POLLUTION BULLETIN 2024; 208:116954. [PMID: 39260143 DOI: 10.1016/j.marpolbul.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The influx of microplastics (MPs) into the Arctic Ocean poses a collective risk, particularly with pronounced sea ice depletion due to global warming. A total of 73 replicate sediment samples were collected at different depths (38 to 79 m) from Chukchi and the Beaufort Seas at 8 stations in the Arctic region during the R/V Mirai cruise (MR22-06C) from August to September 2022. The average concentration of MPs is 79.25 ± 31.08 items/kg d.w. Fibrous MPs of 0-1 mm size range are predominant, with blue being the most prevalent colour. Polymer characterization identified polyethylene (PE) as the predominant polymer. Arctic Ocean regions face heightened health risks from the coexistence of MPs and harmful additives, amplifying concerns over plastic pollution. The alarming surge in MPs within Arctic sediment underscores the urgent need for a proactive, collaborative approach to mitigate this environmental threat and its far-reaching impacts.
Collapse
Affiliation(s)
- K Dhineka
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, Govt. of India, NIOT Campus, Pallikaranai, Chennai 600 100, India
| | - Pravakar Mishra
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, Govt. of India, NIOT Campus, Pallikaranai, Chennai 600 100, India.
| | - Takahito Ikenoue
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Ryota Nakajima
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Motoyo Itoh
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - M Sambandam
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, Govt. of India, NIOT Campus, Pallikaranai, Chennai 600 100, India
| | - T Kaviarasan
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, Govt. of India, NIOT Campus, Pallikaranai, Chennai 600 100, India
| | - S R Marigoudar
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, Govt. of India, NIOT Campus, Pallikaranai, Chennai 600 100, India
| |
Collapse
|
3
|
Pakhomova S, Berezina A, Zhdanov I, Mekhova O, Ilinskaya A, Golyakov A, Polivanova T, Gebruk A, Lusher AL, Yakushev E. Floating microplastics in Svalbard fjords: High spatial variability requires methodological consistency in estuarine systems. MARINE POLLUTION BULLETIN 2024; 207:116803. [PMID: 39116467 DOI: 10.1016/j.marpolbul.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Microplastic pollution was studied in surface waters of Isfjorden, Svalbard in July 2021 as a part of an international regional harmonisation exercise. Surface microplastics (0.5-5 mm) were sampled with a neuston net in triplicate per study site in several branches of Isfjorden, covering populated and unpopulated fjords. High spatial variability of microplastic abundance (0-32,700 items/km2) was observed within a single fjord resulting from the hydrodynamic pattern formed through the interaction of surface currents, freshwater runoff, and wind conditions. Maximum microplastic abundance was not correlated with the distance from the local source and was instead defined by local small-scale hydrodynamics. Future recommendations for correct assessment of surface microplastics concentration in estuarine environments are presented.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
| | - Anfisa Berezina
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Igor Zhdanov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii prosp. 36, Moscow, Russia
| | - Olga Mekhova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii prosp. 36, Moscow, Russia
| | - Alisa Ilinskaya
- Norwegian University of Science and Technology, Larsgårdsvegen 2, 6009 Ålesund, Norway
| | - Alexey Golyakov
- North-West Branch of RPA "Typhoon", Beringa str. 38, 199397 St Petersburg, Russia
| | - Tatiana Polivanova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii prosp. 36, Moscow, Russia; Geography Faculty of Lomonosov Moscow State University, Leninskiye Gory, 119991, Moscow, Russia
| | - Anna Gebruk
- University of Edinburgh, School of GeoSciences, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, UK
| | - Amy L Lusher
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Evgeniy Yakushev
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| |
Collapse
|
4
|
Lefebvre C, Cormier B, Le Bihanic F, Rampazzo Magalhães G, Morin B, Lecomte S, Cachot J. Temporal distribution of microplastics and other anthropogenic particles in four marine species from the Atlantic coast (France). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124440. [PMID: 38936792 DOI: 10.1016/j.envpol.2024.124440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The characterization of microplastic (MP) contamination in marine species is increasing as concerns about environmental and food safety are more and more discussed. Here, we reported a quantitative and qualitative assessment of the contamination by anthropogenic particles (from visual sorting; AP) and MP (plastic-made) in the whole soft body or digestive tract of marine species. Four commercial species were studied, namely the Pacific oyster (Magallana gigas), the spiny spider crab (Maja sp.), the common sole (Solea solea) and seabass (Dicentrarchus labrax or punctatus). AP and MP uptake were studied over three to four seasons depending on the species. After tissues digestion, particles were extracted under a stereomicroscope and morphometric characteristics were reported. Then, polymers were identified by ATR-FTIR spectroscopy. Seasonal variations were mainly described in the Pacific oyster as AP uptake was lower in autumn and MP uptake was higher in spring. These variations may be linked to the reproduction and growth cycles of this species. Moreover, seabass ingestion was lower in autumn compared to winter. Contamination in spider crabs and soles showed either weak or no seasonal trends, both quantitatively and qualitatively. Overall, AP contamination in all studied species ranged from 1.17 ± 1.89 AP.ind-1 (in sole) to 4.07 ± 6.69 AP.ind-1 (in seabass) while MP contamination ranged from 0.10 ± 0.37 MP.ind-1 (in sole) to 1.09 ± 3.06 MP.ind-1 (in spider crab). Fibers were mostly reported in all species (at least 77.7%), along with cellulosic polymers (at least 43.7%). AP and MP uptake were detected in all species and at almost all seasons, with the only exception of the common sole during autumn. Therefore, this study emphasizes the ubiquity of AP and MP contamination in marine species and provides new knowledges about seasonal uptake by commercial species.
Collapse
Affiliation(s)
- Charlotte Lefebvre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France.
| | - Bettie Cormier
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Florane Le Bihanic
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | | | - Bénédicte Morin
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France.
| |
Collapse
|
5
|
Hamilton BM, Harris LN, Maksagak B, Nero E, Gilbert MJH, Provencher JF, Rochman CM. Microplastic and other anthropogenic microparticles in Arctic char (Salvelinus alpinus) and their coastal habitat: A first-look at a central Canadian Arctic commercial fishery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172854. [PMID: 38685419 DOI: 10.1016/j.scitotenv.2024.172854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
In the recent monitoring guidelines released by the Arctic Monitoring and Assessment Program's Litter and Microplastic Expert Group, Arctic salmonids were recommended as an important species for monitoring plastics in Arctic ecosystems, with an emphasis on aligning microplastic sampling and analysis methods in Arctic fishes. This recommendation was based on the minimal documentation of microplastics in Northern fishes, especially Arctic salmonids. In response, we worked collaboratively with local partners to quantify and characterize microplastics in Arctic char, Salvelinus alpinus, and their habitats in a commercial fishery near Iqaluktuuttiaq (Cambridge Bay), Nunavut. We sampled Arctic char, surface water, and benthic sediments within their summer foraging habitat at Palik (Byron Bay). We found microplastics in 95 % of char with an average of 26 (SD ± 19) particles per individual. On average, surface water samples had 23 (SD ± 12) particles/L and benthic sediment <1 particles/gww. This is the first documentation of plastic pollution in Arctic char and their coastal habitats. Future work should evaluate seasonal, temporal and spatial trends for long-term monitoring of microplastics in Arctic fishes and their habitats.
Collapse
Affiliation(s)
- Bonnie M Hamilton
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | - Les N Harris
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Beverly Maksagak
- Ekaluktutiak Hunters and Trappers Organization, Cambridge Bay, NU, Canada
| | - Emilie Nero
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Matthew J H Gilbert
- Department of Biological Sciences, University of New Brunswick, St. John, NB, Canada
| | - Jennifer F Provencher
- Science and Technology Branch, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Teampanpong J, Duengkae P. Using feces to indicate plastic pollution in terrestrial vertebrate species in western Thailand. PeerJ 2024; 12:e17596. [PMID: 38948236 PMCID: PMC11212639 DOI: 10.7717/peerj.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Plastic pollution is a widespread and growing concern due to its transformation into microplastics (MPs), which can harm organisms and ecosystems. This study, aimed to identify plastic pollution in the feces of terrestrial vertebrates using convenience sampling both inside and outside protected areas in Western Thailand. We hypothesized that MPs are likely to be detectable in the feces of all vertebrate species, primarily in the form of small black fragments. We predicted varying quantities of MPs in the feces of the same species across different protected areas. Furthermore, we expected that factors indicating human presence, landscape characteristics, scat weight, and the MP abundance in water, soils, and sediments would influence the presence of plastics in feces. Among 12 terrestrial species studied, potential MPs were found in 41.11% of 90 samples, totaling 83 pieces across eight species including the Asian elephant (Elephas maximus), Eld's deer (Rucervus eldii), Dhole (Cuon alpinus), Gaur (Bos gaurus), Sambar deer (Rusa unicolor), Wild boar (Sus scrofa), Northern red muntjac (Muntiacus vaginalis), and Butterfly lizard (Leiolepis belliana). Specifically, 3.61% of all potential MPs (three pieces) were macroplastics, and the remaining 96.39% were considered potential MPs with the abundance of 0.92 ± 1.89 items.scat-1 or 8.69 ± 32.56 items.100 g-1 dw. There was an association between the numbers of feces with and without potential plastics and species (χ2 = 20.88, p = 0.012). Most potential plastics were fibers (95.18%), predominantly black (56.63%) or blue (26.51%), with 74.70% smaller than two millimeters. Although there were no significant associations between species and plastic morphologies, colors, and sizes, the abundance classified by these characteristics varied significantly. FTIR identified 52.38% as natural fibers, 38.10% as synthetic fibers (rayon, polyurethane (PUR), polyethylene terephthalate (PET), polypropylene (PP), and PUR blended with cotton), and 9.52% as fragments of PET and Polyvinyl Chloride (PVC). Human-related factors were linked to the occurrence of potential plastics found in the feces of land-dwelling wildlife. This study enhances the understanding of plastic pollution in tropical protected areas, revealing the widespread of MPs even in small numbers from the areas distant from human settlements. Monitoring plastics in feces offers a non-invasive method for assessing plastic pollution in threatened species, as it allows for easy collection and taxonomic identification without harming live animals. However, stringent measures to assure the quality are necessitated to prevent exogenous MP contamination. These findings underscore the importance of raising awareness about plastic pollution in terrestrial ecosystems, especially regarding plastic products from clothing and plastic materials used in agriculture and irrigation systems.
Collapse
Affiliation(s)
- Jiraporn Teampanpong
- Department of Conservation, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Prateep Duengkae
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok, Thailand
| |
Collapse
|
7
|
de Deus BCT, Costa TC, Altomari LN, Brovini EM, de Brito PSD, Cardoso SJ. Coastal plastic pollution: A global perspective. MARINE POLLUTION BULLETIN 2024; 203:116478. [PMID: 38735173 DOI: 10.1016/j.marpolbul.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Coastal ecosystems have ecological importance worldwide and require control and prevention measures to mitigate human pollution. The objective of this study was to perform a systematic review to provide a comprehensive overview of the global issue of coastal plastic pollution. 689 articles were eligible for qualitative synthesis and 31 were considered for quantitative analysis. There was an exponential increase in articles addressing coastal plastic pollution over the past 50 years. Studies were mainly carried out on beaches, and plastic bottles were the most found item, followed by cigarette butts. Polyethylene was the predominant plastic polymer, and white microplastic fragments stood out. China published most articles on the topic and Brazil had the highest number of sites sampled. Meta-analysis had significant effect sizes based on the reported data. These findings carry significant implications for environmental policies, waste management practices, and targeted awareness campaigns aimed at mitigating plastic pollution.
Collapse
Affiliation(s)
- Beatriz Corrêa Thomé de Deus
- Postgraduate Program in Biodiversity and Nature Conservation, Institute of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, São Pedro, Juiz de Fora, Minas Gerais, Brazil
| | - Thaiane Cantarino Costa
- Postgraduate Program in Biodiversity and Nature Conservation, Institute of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, São Pedro, Juiz de Fora, Minas Gerais, Brazil
| | - Leslie Nascimento Altomari
- Postgraduate Program in Biodiversity and Nature Conservation, Institute of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, São Pedro, Juiz de Fora, Minas Gerais, Brazil
| | - Emília Marques Brovini
- Postgraduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Universitário, Morro do Cruzeiro, 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Paulo Sérgio Duque de Brito
- VALORIZA Research Centre, Polytechnic Institute of Portalegre, Campus Politécnico, 10, 7300-555 Portalegre, Portalegre, Portugal
| | - Simone Jaqueline Cardoso
- Postgraduate Program in Biodiversity and Nature Conservation, Institute of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, São Pedro, Juiz de Fora, Minas Gerais, Brazil; Department of Zoology, Institute of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, 36036-900, São Pedro, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Collard F, Benjaminsen SC, Herzke D, Husabø E, Sagerup K, Tulatz F, Gabrielsen GW. Life starts with plastic: High occurrence of plastic pieces in fledglings of northern fulmars. MARINE POLLUTION BULLETIN 2024; 202:116365. [PMID: 38608430 DOI: 10.1016/j.marpolbul.2024.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Plastic pollution threatens many organisms around the world. In particular, the northern fulmar, Fulmarus glacialis, is known to ingest high quantities of plastics. Since data are sparse in the Eurasian Arctic, we investigated plastic burdens in the stomachs of fulmar fledglings from Kongsfjorden, Svalbard. Fifteen birds were collected and only particles larger than 1 mm were extracted, characterised and analysed with Fourier Transform InfraRed spectroscopy. All birds ingested plastic. In total, 683 plastic particles were found, with an average of 46 ± 40 SD items per bird. The most common shape, colour and polymer were hard fragment, white, and polyethylene, respectively. Microplastics (< 5 mm) were slightly more represented than mesoplastics (> 5 mm). This study confirms high numbers of ingested plastics in fulmar fledglings from Svalbard and suggests that fulmar fledglings may be suitable for temporal monitoring of plastic pollution, avoiding potential biases caused by age composition or breeding state.
Collapse
Affiliation(s)
- France Collard
- Norwegian Polar Institute, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway; Norwegian Institute for Water Research, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway.
| | - Stine C Benjaminsen
- Norwegian Polar Institute, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway
| | - Dorte Herzke
- The Climate and Environmental Research Institute (NILU), Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway; Department of Arctic and Marine Biology, The Arctic University of Norway (UiT), Hansine Hansens veg 18, Tromsø N-9037, Norway
| | - Eirin Husabø
- Norwegian Polar Institute, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway; GRID-Arendal, Teaterplassen 3, 4836 Arendal, Norway
| | - Kjetil Sagerup
- Akvaplan-niva AS, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway
| | - Felix Tulatz
- Norwegian Polar Institute, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway
| | - Geir W Gabrielsen
- Norwegian Polar Institute, Fram Centre for Climate and the Environment, N-9296 Tromsø, Norway
| |
Collapse
|
9
|
Cebuhar JD, Negrete J, Rodríguez Pirani LS, Picone AL, Proietti M, Romano RM, Della Védova CO, Casaux R, Secchi ER, Botta S. Anthropogenic debris in three sympatric seal species of the Western Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171273. [PMID: 38408675 DOI: 10.1016/j.scitotenv.2024.171273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Litter pollution is a growing concern, including for Antarctica and the species that inhabit this ecosystem. In this study, we investigated the microplastic contamination in three seal species that inhabit the Western Antarctic Peninsula: crabeater (Lobodon carcinophaga), leopard (Hydrurga leptonyx) and Weddell (Leptonychotes weddellii) seals. Given the worldwide ubiquity of this type of contaminant, including the Southern Ocean, we hypothesized that the three seal species would present anthropogenic debris in their feces. We examined 29 scat samples of crabeater (n = 5), leopard (n = 13) and Weddell (n = 11) seals. The chemical composition of the items found were identified using micro-Raman and micro-FTIR spectroscopies. All the samples of the three species presented anthropic particles (frequency of occurrence - %FO - 100 %). Fibers were the predominant debris, but fragments and filaments were also present. Particles smaller than 5 mm (micro debris) were predominant in all the samples. Leopard seals ingested significantly larger micro-debris in comparison with the other seal species. The dominant color was black followed by blue and white. Micro-Raman and micro-FTIR Spectroscopies revealed the presence of different anthropogenic pigments such as reactive blue 238, Indigo 3600 and copper phthalocyanine (blue and green). Carbon black was also detected in the samples, as well as plastic polymers such as polystyrene, polyester and polyethylene terephthalate (PET), polyamide, polypropylene and polyurethane These results confirm the presence of anthropogenic contamination in Antarctic seals and highlight the need for actions to mitigate the effects and reduce the contribution of debris in the Antarctic ecosystem.
Collapse
Affiliation(s)
- Julieta D Cebuhar
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8 s/n, Rio Grande, Brazil; Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil.
| | - Javier Negrete
- Laboratório de Predadores Tope, Instituto Antártico Argentino, Av. 25 de Mayo 1147, Villa Lynch, Buenos Aires, Argentina; Facultad de Ciencias Naturales y Museo, Calle 64 N° 3, Universidad Nacional de La Plata, La Plata 1900, Argentina; Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Godoy Cruz, 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Lucas S Rodríguez Pirani
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - A Lorena Picone
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Maira Proietti
- Laboratório de Ecologia Molecular Marinha and Projeto Lixo Marinho, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8 s/n, Rio Grande, Brasil Rio Grande, Brazil; The Ocean Cleanup, Rotterdam, Netherlands
| | - Rosana M Romano
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Carlos O Della Védova
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Ricardo Casaux
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), Roca 780, 9200 Esquel, Chubut, Argentina
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8 s/n, Rio Grande, Brazil
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8 s/n, Rio Grande, Brazil
| |
Collapse
|
10
|
Pashaei R, Dzingelevičienė R, Węsławski JM, Olenin S. Mussels (Mytilus spp.) in Svalbard contain microplastic particles in tissues: Implications for monitoring. CHEMOSPHERE 2024; 353:141642. [PMID: 38442773 DOI: 10.1016/j.chemosphere.2024.141642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024]
Abstract
We examined the presence of microplastics in blue mussels Mytilus spp. from the intertidal zone of western Spitsbergen in Arctic Svalbard. The optical microscopy technique detected a total of 148 microplastics, with the highest concentration per mussel being 24 particles. Microplastics were found in 84% of the examined mussels. The microplastics ranged in size from <0.5 mm to 5 mm and consisted of fibers (83%), fragments (13%), plates (3%), and spherules (1%). The micro-Raman spectroscopy technique revealed four different types of polymers: polyethylene (67%), nylon-12 (17%), low-density polyethylene (11%), and polypropylene (5%). Our research shows that Arctic coastal waters are polluted with microplastics notwithstanding their remoteness. These findings suggest that microplastic contamination may harm marine life and coastal ecosystems and require further research into long-term environmental effects. We also indicate that intertidal mussels may be beneficial for monitoring microplastics because they can be collected without involving diving.
Collapse
Affiliation(s)
- Reza Pashaei
- Marine Research Institute of Klaipeda University, Klaipeda, Lithuania.
| | - Reda Dzingelevičienė
- Marine Research Institute of Klaipeda University, Klaipeda, Lithuania; Faculty of Health Sciences, Klaipeda University, Klaipeda, Lithuania.
| | | | - Sergej Olenin
- Marine Research Institute of Klaipeda University, Klaipeda, Lithuania.
| |
Collapse
|
11
|
Sun H, Hu J, Wu Y, Gong H, Zhu N, Yuan H. Leachate from municipal solid waste landfills: A neglected source of microplastics in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133144. [PMID: 38056251 DOI: 10.1016/j.jhazmat.2023.133144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Over the past decade or so, microplastics (MPs) have received increasing attention due to their ubiquity and potential risk to the environment. Waste plastics usually end up in landfills. These plastics in landfills undergo physical compression, chemical oxidation, and biological decomposition, breaking down into MPs. As a result, landfill leachate stores large amounts of MPs, which can negatively impact the surrounding soil and water environment. However, not enough attention has been given to the occurrence and removal of MPs in landfill leachate. This lack of knowledge has led to landfills being an underestimated source of microplastics. In order to fill this knowledge gap, this paper collects relevant literature on MPs in landfill leachate from domestic and international sources, systematically summarizes their presence within Asia and Europe, assesses the impacts of landfill leachate on MPs in the adjacent environment, and particularly discusses the possible ecotoxicological effects of MPs in leachate. We found high levels of MPs in the soil and water around informal landfills, and the MPs themselves and the toxic substances they carry can have toxic effects on organisms. In addition, this paper summarizes the potential impact of MPs on the biochemical treatment stage of leachate, finds that the effects of MPs on the biochemical treatment stage and membrane filtration are more significant, and proposes some novel processes for MPs removal from leachate. This analysis contributes to the removal of MPs from leachate. This study is the first comprehensive review of the occurrence, environmental impact, and removal of MPs in leachate from landfills in Asia and Europe. It offers a comprehensive theoretical reference for the field, providing invaluable insights.
Collapse
Affiliation(s)
- Haoyu Sun
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - You Wu
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Huabo Gong
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Lefebvre C, Le Bihanic F, Jalón-Rojas I, Dusacre E, Chassaigne-Viscaïno L, Bichon J, Clérandeau C, Morin B, Lecomte S, Cachot J. Spatial distribution of anthropogenic particles and microplastics in a meso-tidal lagoon (Arcachon Bay, France): A multi-compartment approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165460. [PMID: 37454851 DOI: 10.1016/j.scitotenv.2023.165460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Assessment of microplastic (MP) contamination is still needed to evaluate this threat correctly and tackle this issue. Here, MP contamination was assessed for a meso-tidal lagoon of the Atlantic coast (Arcachon Bay, France). Sea surface, water column, intertidal sediments and wild oysters were sampled. Five different stations were studied to assess the spatial distribution of the contamination. Two were outside of the bay and three were inside the bay (from the inlet to the back). A distinction was made between all anthropogenic particles (AP, i.e. visually sorted) and MP (i.e. plastic polymer confirmed by ATR-FTIR spectroscopy). The length of particles recovered in this study ranged between 17 μm and 5 mm. Concentration and composition in sea surface and water column samples showed spatial variations while sediment and oyster samples did not. At outside stations, the sea surface and the water column presented a blended composition regarding shapes and polymers and low to high concentrations (e.g. 0.16 ± 0.08 MP.m-3 and 561.7 ± 68.5 MP.m-3, respectively for sea surface and water column), which can be due to coastal processes and nearby input sources. The inlet station displayed a well-marked pattern only at the sea surface. High AP and MP concentrations were recorded, and fragments along with polyethylene overwhelmed (respectively 76.0 % and 73.2 %). Higher surface currents could explain this pattern. At the bay back, AP and MP concentrations were lower and fibers were mainly recorded. Weaker hydrodynamics in this area was suspected to drive this contamination profile. Overall, fragments and buoyant particles were mainly detected at the sea surface while fibers and negatively buoyant particles prevailed in other compartments. Most of the studied samples presented an important contribution of fiber-shaped particles (from 31.5 % to 94.2 %). Finally, contamination was ubiquitous as AP and MP were found at all stations in all sample types.
Collapse
Affiliation(s)
- Charlotte Lefebvre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Florane Le Bihanic
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Isabel Jalón-Rojas
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Edgar Dusacre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | | | - Jeyan Bichon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | | | - Bénédicte Morin
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
13
|
Saeed MS, Fahd F, Khan F, Chen B, Sadiq R. Human health risk model for microplastic exposure in the Arctic region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165150. [PMID: 37385486 DOI: 10.1016/j.scitotenv.2023.165150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Microplastics enriched with carcinogens like heavy metals, polycyclic aromatic hydrocarbons (PAHs), and their derivatives are ubiquitous in Arctic waters. They contaminate the local land and sea-based food sources, which is a significant health hazard. It is thus imperative to assess the risk posed by them to the nearby communities, which primarily rely on locally available food sources to meet their energy requirements. This paper proposes a novel ecotoxicity model to assess the human health risk posed by microplastics. The region's geophysical and environmental conditions affecting human microplastic intake, along with the human physiological parameters influencing biotransformation, are incorporated into the developed causation model. It investigates the carcinogenic risk associated with microplastic intake in humans via ingestion in terms of incremental excess lifetime cancer risk (IELCR). The model first evaluates microplastic intake and then uses reactive metabolites produced due to the interaction of microplastics with xenobiotic metabolizing enzymes to assess cellular mutations that result in cancer. All these conditions are mapped in an Object-Oriented Bayesian Network (OOBN) framework to evaluate IELCR. The study will provide a vital tool for formulating better risk management strategies and policies in the Arctic region, especially concerning Arctic Indigenous peoples.
Collapse
Affiliation(s)
- Mohammad Sadiq Saeed
- Centre for Risk, Integrity, and Safety Engineering (C-RISE) Faculty of Engineering & Applied Science, Memorial University, St John's, NL, Canada A1B 3X5; Mary Kay O'Connor Process Safety Center (MKOPSC), Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, College Station TX 77843, USA
| | - Faisal Fahd
- Centre for Risk, Integrity, and Safety Engineering (C-RISE) Faculty of Engineering & Applied Science, Memorial University, St John's, NL, Canada A1B 3X5
| | - Faisal Khan
- Mary Kay O'Connor Process Safety Center (MKOPSC), Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, College Station TX 77843, USA.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control Laboratory (NRPOP Lab), Faculty of Engineering & Applied Science, Memorial University, St John's, NL, Canada A1B 3X5
| | - Rehan Sadiq
- School of Engineering, Okanagan Campus, Faculty of Applied Science University of British Columbia, Okanagan, BC, Canada V1V 1V7
| |
Collapse
|
14
|
Li J, Shan E, Zhao J, Teng J, Wang Q. The factors influencing the vertical transport of microplastics in marine environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161893. [PMID: 36731545 DOI: 10.1016/j.scitotenv.2023.161893] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
There have been numerous studies that have identified the presence of low-density microplastics (MPs) in the water column and sediments. The focus of current MPs research has shifted towards the interaction of MPs with marine organisms and their potential hazards, including the uptake characteristics, biological transport and toxicological effects of MPs, but the processes involved in the deposition behavior of MPs are still poorly understood. In this review, we summarize the current state of knowledge on the vertical transport of MPs influenced by their physicochemical properties and marine organisms, and discuss their potential impact on MPs deposition. The physicochemical properties of MPs determine their initial distribution. The density, shape, and size of MPs influence their settling state in the marine environment. Marine biota play a key role in the transport of MPs to deep marine environment, mainly by changing the density and adsorption of MPs. Biofouling can alter the surface properties of MPs and increase the overall density, thus affecting the vertical flux of the plastic. Macroalgae may trap MPs particles by producing chemicals or by using electrostatic interactions. Marine swimming organisms ingest MPs and excrete them encapsulated in fecal particles, while the activity of marine benthic organisms may contribute to the transfer of MPs from surface sediments to deeper layers. In addition, MPs may be incorporated into organic particles produced by marine organisms such as marine snow or marine aggregates, increasing the vertical flux of MPs. However, due to the complexity of different sea areas and MPs properties, the deposition behavior of MPs may be the result of the interaction of multiple factors. Thus, the effects of MPs properties, marine organisms and the natural environment on MPs deposition in marine environment needs further research to fill this gap.
Collapse
Affiliation(s)
- Jiasen Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
15
|
Wang Y, Jiao M, Li T, Li R, Liu B. Role of mangrove forest in interception of microplastics (MPs): Challenges, progress, and prospects. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130636. [PMID: 37056008 DOI: 10.1016/j.jhazmat.2022.130636] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/19/2023]
Abstract
Mangroves receive microplastics (MPs) from terrestrial, marine and atmospheric sources, acting as a huge filter for environmental MPs between land and sea. Due to the high primary production and complex hydrodynamic conditions in mangroves, MPs are extensively intercepted in various ways while flowing through mangroves, leading to a long-standing but fiercely increasing MPs accumulation. However, current researches mainly focused on the occurrence, source and fate of MPs pollution in mangroves, ignoring the role of mangrove forests in the interception of MPs. Our study firstly demonstrates that mangrove ecosystems have significantly greater MPs interception capacity than their surrounding environments. Then, the current status of studies related to the interception of MPs in mangrove ecosystems is comprehensively reviewed, with the main focus on the interception process and mechanisms. At last, the most pressing shortcomings of current research are highlighted regarding the intercepted flux, interception mechanisms, retention time and ecological risks of MPs in mangrove ecosystems and the relevant future perspectives are provided. This review is expected to emphasize the critical role of mangrove forests in the interception of MPs and provide the foundational knowledge for evaluating the MPs interception effect of mangrove forests globally.
Collapse
Affiliation(s)
- Yijin Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Meng Jiao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Tiezhu Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Beibei Liu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
16
|
Jardine AM, Provencher JF, Insley SJ, Tauzer L, Halliday WD, Bourdages MPT, Houde M, Muir D, Vermaire JC. No accumulation of microplastics detected in western Canadian ringed seals (Pusa hispida). MARINE POLLUTION BULLETIN 2023; 188:114692. [PMID: 36753811 DOI: 10.1016/j.marpolbul.2023.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Ringed seals (Pusa hispida) play a crucial role in Arctic food webs as important pelagic predators and represent an essential component of Inuvialuit culture and food security. Plastic pollution is recognized as a global threat of concern, and Arctic regions may act as sinks for anthropogenic debris. To date, mixed evidence exists concerning the propensity for Canadian Arctic marine mammals to ingest and retain plastic. Our study builds on existing literature by offering the first assessment of plastic ingestion in ringed seals harvested in the western Canadian Arctic. We detected no evidence of microplastic (particles ≥80 μm) retention in the stomachs of ten ringed seals from the Inuvialuit Settlement Region (ISR) in the Northwest Territories, Canada. These results are consistent with previous studies that have found that some marine mammals do not accumulate microplastics in evaluated regions.
Collapse
Affiliation(s)
- Alexander M Jardine
- Aquatic Ecosystems and Environmental Change Laboratory, Department of Geography and Environmental Studies and Institute for Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada.
| | - Jennifer F Provencher
- Aquatic Ecosystems and Environmental Change Laboratory, Department of Geography and Environmental Studies and Institute for Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada; Environment and Climate Change Canada, Science and Technology Branch, 1125 Colonel By Drive, Ottawa K1S 5B6, ON, Canada
| | - Stephen J Insley
- Wildlife Conservation Society Canada (WCS Canada), 169 Titanium Way, Whitehorse, YT Y1A 0E9, Canada; Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Lila Tauzer
- Wildlife Conservation Society Canada (WCS Canada), 169 Titanium Way, Whitehorse, YT Y1A 0E9, Canada
| | - William D Halliday
- Wildlife Conservation Society Canada (WCS Canada), 169 Titanium Way, Whitehorse, YT Y1A 0E9, Canada; School of Earth and Ocean Sciences, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Madelaine P T Bourdages
- Aquatic Ecosystems and Environmental Change Laboratory, Department of Geography and Environmental Studies and Institute for Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
| | - Magali Houde
- Environment and Climate Change Canada, Science and Technology Branch, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Science and Technology Branch, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Jesse C Vermaire
- Aquatic Ecosystems and Environmental Change Laboratory, Department of Geography and Environmental Studies and Institute for Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
17
|
McIvor AJ, Pires R, Lopes C, Raimundo J, Campos PF, Pais MP, Canning-Clode J, Dinis A. Assessing microplastic exposure of the Critically Endangered Mediterranean monk seal (Monachus monachus) on a remote oceanic island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159077. [PMID: 36181822 DOI: 10.1016/j.scitotenv.2022.159077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (<5 mm) are a ubiquitous marine pollutant which are highly bioavailable to marine organisms across all trophic levels. Marine predators are especially vulnerable to microplastic pollution through direct and indirect ingestion (e.g., trophic transfer) due to their high trophic position. In particular, oceanic islands are more susceptible to plastic accumulation, increasing the relative number of microplastics in the environment that are available for consumption. The dynamics of microplastic accumulation in marine predators inhabiting remote islands, however, is sparsely documented. Here we describe microplastic exposure in the Critically Endangered Mediterranean monk seal (Monachus monachus) from the Madeira archipelago (Northeast Atlantic) using scat-based analysis. Microplastics were recovered from 18 scat samples collected between 2014-2021 and were characterized to the polymer level using Fourier-Transform Infrared (u-FTIR) spectroscopy. A total of 390 microplastic particles were recovered, ranging between 0.2-8.6 particles g-1 dry weight (mean 1.84 ± 2.14 particles g-1) consisting mainly of fragments (69 %) of various sizes and polymer composition (e.g., PE, PET, PS). Microplastic prevalence (100 % of samples analysed) was higher than what has been previously recorded using scat-based analysis in other pinniped species. Our results suggest that the levels of microplastic pollution in the coastal food-web in the Madeira archipelago are relatively high, placing higher-trophic level organisms at increased risk of microplastic consumption, including humans. This study provides the first insights into microplastic exposure to Madeira's monk seals that may contribute to future management decisions for the species and their long-term survival.
Collapse
Affiliation(s)
- Ashlie J McIvor
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Rosa Pires
- Instituto das Florestas e Conservação da Natureza, IP-RAM, Funchal, Portugal
| | - Clara Lopes
- IPMA-Portuguese Institute of Sea and Atmosphere, Lisbon, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Joana Raimundo
- IPMA-Portuguese Institute of Sea and Atmosphere, Lisbon, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Paula F Campos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Miguel P Pais
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - João Canning-Clode
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| | - Ana Dinis
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| |
Collapse
|
18
|
Monclús L, McCann Smith E, Ciesielski TM, Wagner M, Jaspers VL. Microplastic Ingestion Induces Size-Specific Effects in Japanese Quail. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15902-15911. [PMID: 36302260 PMCID: PMC9671045 DOI: 10.1021/acs.est.2c03878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 05/19/2023]
Abstract
Plastic pollution can pose a threat to birds. Yet, little is known about the sublethal effects of ingested microplastics (MP), and the effects of MP < 1 mm in birds remain unknown. This study therefore aimed at evaluating the toxicity of environmentally relevant polypropylene and polyethylene particles collected in the Norwegian coast in growing Japanese quail (Coturnix japonica). Birds were orally exposed to 600 mg MP over 5 weeks, covering small (<125 μm) and large (3 mm) MP, both separately and in a mixture. We evaluated multiple sublethal endpoints in quail, including oxidative stress, cytokine levels, blood-biochemical parameters, and reproductive hormones in blood, as well as body mass. Exposure to small MP significantly induced the activities of the antioxidant enzymes catalase, glutathione-S-transferase, and glutathione peroxidase. Exposure to large MP increased the levels of aspartate aminotransferase (liver parameter) and decreased 17β-estradiol levels in females. Body mass was not directly affected by MP ingestion; however, quail exposed to small MP and a mixture of large and small MP had a different growth rate compared to control quail. Our study used similar levels of MP as ingested by wild birds and demonstrated size-dependent effects of MP that can result in sublethal effects in avifauna.
Collapse
|
19
|
An innovative approach for microplastic sampling in all surface water bodies using an aquatic drone. Heliyon 2022; 8:e11662. [DOI: 10.1016/j.heliyon.2022.e11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
|
20
|
Campanale C, Savino I, Massarelli C, Uricchio VF. Assessment of metals associated with virgin pre-production and freshwater microplastics collected by an Italian river. NANOIMPACT 2022; 28:100438. [PMID: 36372349 DOI: 10.1016/j.impact.2022.100438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Recently, microplastics (MPs) have been detected in almost all environmental matrices (water, soil, air, biota). Their presence is of concern due to high environmental persistence and their ability to release or bind pollutants. In light of this, the present work aimed to quantify a poorly studied pollutant category associated with MPs: metals. This analysis was conducted on virgin MPs, used as raw materials in the plastics' production process and on environmental MPs taken from the Ofanto river in Southern Italy. The MP samples were initially grouped for colour, shape and ageing and following mineralised by a microwave digestor. The metals and metalloids Pb, Ba, Sb, Sn, Cd, Mo, Se, Zn, Cu, Ni, Co, Cr, Fe, Mn, Ti, Al, V, Ca, K, Mg, Na were subsequently quantified with ICP-MS. All the analysed elements were found on both types of samples (virgin and environmental MPs), with higher concentrations detected on environmental samples (above 14,400 μg/g-1) rather than on pristine ones (above 5000 μg/g-1). Many of these inorganic compounds are probably adsorbed by the surrounding environment, and others are intentionally added during the plastic production process to improve their properties (e.g. additives). Noticeable differences were detected concerning the metal's distribution and amount observed in the two types of MP particles analysed. Moreover, trace element concentrations were also linked to the colour and shape of the environmental particles analysed. Most abundant levels of metals were quantified on aged black fragments, followed by coloured and transparent fragments and black pellets. Our concluding remarks underline the role of MPs as a vehicle for the transport of metals, with significant differences between the high abundance of these pollutants examined in our particles collected in a freshwater environment and the significantly lower concentrations revealed previously in marine MPs.
Collapse
Affiliation(s)
- Claudia Campanale
- Italian National Council of Research - Water Research Institute, Bari, Italy.
| | - Ilaria Savino
- Italian National Council of Research - Water Research Institute, Bari, Italy; Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Carmine Massarelli
- Italian National Council of Research - Water Research Institute, Bari, Italy
| | | |
Collapse
|
21
|
Plastic and other anthropogenic debris in Arctic fox (Vulpes lagopus) faeces from Iceland. Polar Biol 2022. [DOI: 10.1007/s00300-022-03075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractAnthropogenic debris, including plastic pollution, is a growing concern in the Arctic and negatively impacts both marine and coastal organisms. The aim of this study was to investigate the potential for using Arctic fox (Vulpes lagopus) faeces as a monitoring tool for plastic pollution in the Arctic environment. Arctic fox faeces were collected in different regions of Iceland and analysed for anthropogenic debris presence larger than 300 µm, and diet composition. In total, 235 faecal samples from 1999, 2017, 2018 and 2020 were analysed. The overall frequency of occurrence of plastic and other anthropogenic material was 5.11% and was found in samples across all regions and years. There were no statistical differences in anthropogenic debris ingested, depending on year or region. There were no obvious differences in diet composition between samples that contained anthropogenic debris and samples without. The suitability of Arctic fox faeces as a method to monitor plastic and anthropogenic debris levels in the Arctic environment remains debatable: Whilst the vast distribution range of the Arctic fox and the non-invasive collection methodology of faecal samples could be utilised as a good monitoring tool, the overall low uptake and unclear source of plastic and anthropogenic debris (marine or terrestrial) makes the interpretation of the data difficult. Nevertheless, debris ingestion by Arctic foxes remains a concern and warrants further studies.
Collapse
|
22
|
Wang Y, Baynes A, Renner KO, Zhang M, Scrimshaw MD, Routledge EJ. Uptake, Elimination and Effects of Cosmetic Microbeads on the Freshwater Gastropod Biomphalaria glabrata. TOXICS 2022; 10:toxics10020087. [PMID: 35202273 PMCID: PMC8880069 DOI: 10.3390/toxics10020087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022]
Abstract
The presence of plastic cosmetic microbeads in the environment due to their extensive use in society and inevitable dispersal into wastewater is concerning. Therefore, it is vital to understand the processes of microplastic uptake and elimination by aquatic organisms, and to further assess their potential to cause harmful effects and wider impacts. We therefore investigated the short-term (48-h) and long-term (21-d) uptake, elimination, and effects of exposure to polyethylene microbeads (a mixture of fragments and spheres extracted from commercially available facial scrubs) on the freshwater snail, Biomphalaria glabrata. We found fast uptake in the short-term (75 μg/g/h) and the long-term (6.94 μg/g/h) in B. glabrata exposed to 800 particles/200-mL and 80 particles/200-mL, respectively. Irregular fragments were more easily ingested and egested compared to spheres (ANOVA, p < 0.05) in both 48-h and 21-d exposures. The mean size of the fragments in B. glabrata tissues (413 ± 16 μm) after 48-h exposure was significantly larger than that of the standard sample (369 ± 26 μm) (ANOVA, F3,20 = 3.339, p = 0.033), suggesting that aggregation in the gut may occur. Floating feces containing microbeads were observed in the long-term exposure, which could alter the fate, behavior, and bioavailability of egested microbeads. No significant effects on survival and growth were shown within 48-h or 21-d exposure periods. Thus, further studies on the specific features of microplastics (e.g., their shape and size) influencing uptake and elimination, as well as toxic molecular mechanisms, should be explored in future ecotoxicological studies.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, 42 Linghe Street, Dalian 116023, China;
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK; (A.B.); (K.O.R.); (M.D.S.)
- Correspondence: (Y.W.); (E.J.R.)
| | - Alice Baynes
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK; (A.B.); (K.O.R.); (M.D.S.)
| | - Kofi O. Renner
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK; (A.B.); (K.O.R.); (M.D.S.)
| | - Mingxing Zhang
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, 42 Linghe Street, Dalian 116023, China;
| | - Mark D. Scrimshaw
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK; (A.B.); (K.O.R.); (M.D.S.)
| | - Edwin J. Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK; (A.B.); (K.O.R.); (M.D.S.)
- Correspondence: (Y.W.); (E.J.R.)
| |
Collapse
|
23
|
Lusher AL, Hurley R, Arp HPH, Booth AM, Bråte ILN, Gabrielsen GW, Gomiero A, Gomes T, Grøsvik BE, Green N, Haave M, Hallanger IG, Halsband C, Herzke D, Joner EJ, Kögel T, Rakkestad K, Ranneklev SB, Wagner M, Olsen M. Moving forward in microplastic research: A Norwegian perspective. ENVIRONMENT INTERNATIONAL 2021; 157:106794. [PMID: 34358913 DOI: 10.1016/j.envint.2021.106794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 05/26/2023]
Abstract
Given the increasing attention on the occurrence of microplastics in the environment, and the potential environmental threats they pose, there is a need for researchers to move quickly from basic understanding to applied science that supports decision makers in finding feasible mitigation measures and solutions. At the same time, they must provide sufficient, accurate and clear information to the media, public and other relevant groups (e.g., NGOs). Key requirements include systematic and coordinated research efforts to enable evidence-based decision making and to develop efficient policy measures on all scales (national, regional and global). To achieve this, collaboration between key actors is essential and should include researchers from multiple disciplines, policymakers, authorities, civil and industry organizations, and the public. This further requires clear and informative communication processes, and open and continuous dialogues between all actors. Cross-discipline dialogues between researchers should focus on scientific quality and harmonization, defining and accurately communicating the state of knowledge, and prioritization of topics that are critical for both research and policy, with the common goal to establish and update action plans for holistic benefit. In Norway, cross-sectoral collaboration has been fundamental in supporting the national strategy to address plastic pollution. Researchers, stakeholders and the environmental authorities have come together to exchange knowledge, identify knowledge gaps, and set targeted and feasible measures to tackle one of the most challenging aspects of plastic pollution: microplastic. In this article, we present a Norwegian perspective on the state of knowledge on microplastic research efforts. Norway's involvement in international efforts to combat plastic pollution aims at serving as an example of how key actors can collaborate synergistically to share knowledge, address shortcomings, and outline ways forward to address environmental challenges.
Collapse
Affiliation(s)
- Amy L Lusher
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway; Department of Biological Sciences, University of Bergen, NO-5020 Bergen, Norway.
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevål Stadion, NO-0806 Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Andy M Booth
- SINTEF Ocean, Brattørkaia 17 C, NO-7010 Trondheim, Norway
| | - Inger Lise N Bråte
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Geir W Gabrielsen
- Norwegian Polar Institute (NPI), Fram Centre, NO-9296 Tromsø, Norway
| | - Alessio Gomiero
- Norwegian Research Center (NORCE), Nygårdsporten 112, NO-5008 Bergen, Norway
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Bjørn Einar Grøsvik
- Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Norman Green
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Marte Haave
- Norwegian Research Center (NORCE), Nygårdsporten 112, NO-5008 Bergen, Norway; Department of Chemistry, University of Bergen, Allegaten 41, NO-5007 Bergen, Norway
| | | | | | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Fram Centre, NO-9296 Tromsø, Norway; Institute for Arctic and Marine Biology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Erik J Joner
- Norwegian Institute for Bioeconomy Research (NIBIO), Høyskoleveien 7, NO-1431 Ås, Norway
| | - Tanja Kögel
- Department of Biological Sciences, University of Bergen, NO-5020 Bergen, Norway; Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Kirsten Rakkestad
- The Norwegian Scientific Committee for Food and Environment (VKM), P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Sissel B Ranneklev
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Marianne Olsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| |
Collapse
|