1
|
Li X, Ou X, Sun X, Li H, Li Y, Zheng X. Urban biodiversity conservation: A framework for ecological network construction and priority areas identification considering habit differences within species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121512. [PMID: 38897083 DOI: 10.1016/j.jenvman.2024.121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The construction of ecological networks within the context of urbanization is an effective approach to cope with the challenges of urban biodiversity decline, representing a crucial goal in urban planning and development. However, existing studies often overlook the richness and uniqueness within species communities by homogenizing traits of species in the same class. This study proposes a framework for constructing and optimizing ecological networks focused on differential conservation within the same class. By classifying birds into three groups (specialists of water, forest or urban areas) based on their ecological requirements and urbanization tolerance, we constructed an ecological network tailored to their distinct migratory dispersal patterns. We then identified strategic areas including pinch points, barriers, and breakpoints specific to each bird group. Our findings reveal notable variations in suitable habitat distribution among different bird groups in urban environments. Corridor layouts varied according to habitat preferences and migratory dispersal patterns. Despite these differences, urban built-up areas persist as central hubs for the distribution of suitable habitats for 75% of bird species, with peripheral mountain-plain transition areas constituting 63% of crucial dispersal corridors. This emphasizes the critical role of urban built-up areas in maintaining biodiversity and ecological connectivity. Prioritizing connectivity between central urban areas and distant natural spaces is imperative. Our approach innovatively classifies and constructs networks to identify strategic areas with diverse species-specific attributes, providing valuable spatial information for land planning and guiding solutions to enhance target species. While the primary focus is on bird conservation in Beijing, our framework is broadly applicable to global biodiversity management and green planning under urbanization challenges. Overall, this study offers innovative insights for urban planning development and serves as decision support for prioritizing urban actions.
Collapse
Affiliation(s)
- Xiaoxi Li
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyang Ou
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xingyue Sun
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Haoran Li
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yixiao Li
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xi Zheng
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Duo L, Castellet EB, Juny MS, Ramos MS. Delineation of riparian areas based on the application of two-dimension hydraulic modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170809. [PMID: 38336048 DOI: 10.1016/j.scitotenv.2024.170809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
This paper presents a proposal for riparian area delineation relying on topographical, hydrological, vegetation, and soil data together with numerical modelling of the river hydrodynamics. The two-dimensional model Iber is used to simulate 2.5, 10, 50, and 100-years return period flood events, and new code is developed to simulate the main hydrological processes of the river-riparian system to generate riparian zone maps. Results show that changes in topography and discharge direction between river and groundwater both influence the riparian area extent, and that temporal evolution of the riparian zone is much slower than that of the flood, and its extension can continue to increase while the flood recedes, but only to a certain extent, conditioned by topography, soil characteristics, and vegetation. A simple but efficient numerical code for understanding and simulating the riparian dynamics has been developed, which constitutes a proposal for a new riparian delineation approach useful for research and management applications, and which can also be a useful tool for gaining a better understanding of the riparian boundary behavior under different ecohydrological conditions.
Collapse
Affiliation(s)
- Lan Duo
- Flumen Institute, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
| | - Ernest Bladé Castellet
- Flumen Institute, Universitat Politècnica de Catalunya (UPC) - Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain.
| | - Martí Sánchez Juny
- Flumen Institute, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
| | - Marcos Sanz Ramos
- Flumen Institute, Universitat Politècnica de Catalunya (UPC) - Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain.
| |
Collapse
|
3
|
Ma Y, Wang P, Hua Z, Dong Y, Yu L, Huang S. Field study on endogenous perfluoroalkyl acid release and their spatiotemporal distribution processes induced by inland navigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170394. [PMID: 38280584 DOI: 10.1016/j.scitotenv.2024.170394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Dense populations and industries in regions with developed inland waterways have caused the significant discharge of perfluoroalkyl acids (PFAAs) into surrounding waterways. Despite being the dominant energy input in the waterways, the impact of ship navigation on endogenous PFAA release is unclear. In this study, a field experiment was carried out in the Wangyu River (Taihu Basin, China) to investigate the spatiotemporal distribution processes of PFAAs in the water column after passage of ships with different tonnages, speeds, and draughts. The results showed that the PFAA contents did not decrease continuously with time but increased with a lag after the passing ship triggered a transient massive dissolution of PFAAs into the overlying water. In addition, PFAA contents in suspended particulate matter (SPM) exhibited a fluctuating downward trends after their peak at the moment of ship passage. Vertically, the PFAA concentrations among the layers of overlying water were relatively homogeneous, whereas SPM exhibited substantial heterogeneity in its distribution and adsorption of PFAAs. Moreover, the differences in jet scouring velocity (u), disturbance duration (t), and draught (h) of ships resulted in large variability in PFAA contents in the water column. Variance partitioning analysis further quantified the effects of u, t, and h on total PFAAs in the water column, with individual contributions of 53 %, 12 %, and 6 %, respectively. Furthermore, the release of endogenous PFAAs induced by ship passage involved rapid and slow processes, the former determining the overall PFAA release and the latter affecting PFAA concentration recovery in the water column. The findings provide in-situ observational data on spatiotemporal variations of PFAAs in multiphase media following ship passage, enhancing our understanding of endogenous pollution in inland waterways.
Collapse
Affiliation(s)
- Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Peng Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Yueyang Dong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Shanheng Huang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
4
|
Lin Q, Song Y, Zhang Y, Hao JL, Wu Z. Strategies for Restoring and Managing Ecological Corridors of Freshwater Ecosystem. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15921. [PMID: 36497995 PMCID: PMC9740539 DOI: 10.3390/ijerph192315921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Along with accelerating urbanization and associated anthropogenic disturbance, the structure and function of freshwater ecosystems worldwide are substantially damaged. To improve ecosystem health, and thus enhance the ecosystem security of the urban ecosystem, numbers of management approaches and engineering projects have been applied to mitigate the degradation of freshwaters. Nevertheless, there is still a lack of comprehensive and systematic research on the ecological corridor restoration of freshwater ecosystems; especially for Suzhou Grand Canal, one section of the world's longest and ancient Grand Canal which is inclined to severe ecosystem degradation. Through investigating the adjacent land use characteristics, habitat quality, vegetation cover, instream water quality, and habitat composition, we aimed to: (i) assess the water quality of the Suzhou Grand Canal; (ii) evaluate the ecological characteristics of the canal ecosystem; (iii) develop strategic countermeasures to restore the ecological corridors for the mitigation of ecological problems. The results demonstrated: a large built area, a smaller ecological zone, a low habitat quality and habitat connectivity, and a high degree of habitat fragmentation within the canal corridor, also a simplified instream habitat composition, and greater nutrient and COD concentrations in the surface water-especially in the upstream and midstream canal. All urbanization-induced multiple stressors, such as land use changes, altered hydrology, and the simplified riparian zone et al., contributed synergistically to the degradation of the canal ecosystem. To alleviate the ecosystem deterioration, three aspects of recommendations were proposed: water pollution control, watershed ecosystem restoration, and ecological network construction. Basically, building a comprehensive watershed ecological network-on the basis of associated ecosystem restoration, and the connection of multi-dimensional ecological corridors-would dramatically increase the maintenance of aquatic-terrestrial system biodiversity, and improve the regional ecological security pattern and watershed resilience toward stochastic future disturbances. This study contributes to the understanding of the ecological challenges and related causes of the canal ecosystem. The integrated strategy introduced in this study provides policymakers, water resource managers, and planners with comprehensive guidelines to restore and manage the ecological corridor of the canal ecosystem. This can be used as a reference in freshwater ecosystems elsewhere, to improve ecosystem stability for supporting the sustainable development of urban ecosystems.
Collapse
Affiliation(s)
- Qiaoyan Lin
- The XIPU Institution, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yu Song
- The XIPU Institution, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of China Studies, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yixin Zhang
- Department of Landscape Architecture, Gold Mantis School of Architecture, Soochow University, Suzhou 215123, China
| | - Jian Li Hao
- Department of Civil Engineering, Design School, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Zhijie Wu
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, RIET, Suzhou 215163, China
| |
Collapse
|
5
|
Jing X, Su W, Fan S, Luo H, Chu H. Ecological strategy of Phyllostachys heteroclada oliver in the riparian zone based on ecological stoichiometry. FRONTIERS IN PLANT SCIENCE 2022; 13:974124. [PMID: 36388549 PMCID: PMC9659970 DOI: 10.3389/fpls.2022.974124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
The abnormality of seasonal water level fluctuation in the riparian zone causes various ecological and environmental problems, such as vegetation degradation, biodiversity reduction, soil erosion, and landscape transformation, thereby critically modifying the ecosystem structure and functions. This necessitates the development of a dominant vegetation zone with competitive potential. In this study, we investigated the content and distribution pattern of nutrient elements in each organ of the dominant bamboo species, Phyllostachys heteroclada, in the riparian zone. We also analyzed the morphological characteristics, root aeration tissue structure, root oxygen exchange capacity, ATP supply situation, and leaf PSII photosynthetic mechanism of two bamboo species (P. heteroclada and P. nigra) in the riparian zone. Compared with P. nigra, the roots of P. heteroclada formed well-developed oxygen storage and transport structure, i.e., aeration tissue, and exhibited root oxygen secretion in the waterlogging environment of the riparian zone, whereas the roots maintained a high ATP content through energy metabolism, thus benefiting mineral absorption and transport. Moreover, the accumulation of N, P, Ca, Mg, and Fe in the leaves of P. heteroclada was greater under waterlogging conditions than under non-waterlogging conditions, which is the basis for the efficient operation of the photosynthetic mechanism of the leaves. Compared with waterlogged P. nigra, the PSII electron acceptor QA of P. heteroclada leaves had a vigorous reducing ability and showed higher efficiency of light uptake energy as well as higher quantum yield indexes ϕ(Eo) and ϕ(Po). This study demonstrates that the ecological adaptive regulation strategies of P. heteroclada in the riparian zone are intrinsic driving factors affecting their stoichiometric characteristics, including changes in the absorption and transport of minerals caused by root aeration structure and energy metabolism. Moreover, carbon production and allocation may be caused by the stable photosynthetic mechanism and source-sink relationship of leaves. Through the synergistic regulation of different organs realizing their roles and functions, P. heteroclada developed ecological stoichiometry characteristics adapted to the riparian zone.
Collapse
|
6
|
Arif M, Behzad HM, Tahir M, Li C. The impact of ecotourism on ecosystem functioning along main rivers and tributaries: Implications for management and policy changes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115849. [PMID: 35961139 DOI: 10.1016/j.jenvman.2022.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Tourism along river basins benefits both tourists and the economy, but its management necessitates trade-offs between nature-based recreation and ecological functioning. Despite ecosystem services being helpful in managing environmental challenges, there are limited data on the impact of tourism activities on ecosystem functioning across different river types globally. This study investigates how people's recreational activities and values affect ecosystem functioning in high-order rivers. The original field data were collected from 308 transects along the main river and tributaries of the Three Gorges Dam Reservoir in China during 2019. Kruskal-Wallis tests (p < 0.01) revealed that the ecosystem functioning indices were significantly higher than the recreational activity and value indices around the rivers and that ecosystem functioning was highest around tributaries. The critical variables of ecotourism activities and ecosystem functioning identified by principal component analysis accounted for 66.49% of the total variance. The Pearson correlation coefficient strengths among tourism and ecosystem functioning parameters were correlated mildly to moderately, but they exhibited positive and negative connections with a range of r = -0.27 to 0.37 (p < 0.05). Furthermore, the distribution patterns of these parameters that were determined by hierarchical cluster analysis were diverse for both the main river and its tributaries. The findings suggest that the development and enforcement of zoning may be necessary for the long-term use of natural resources by all sectors of society. Therefore, it is imperative to raise public awareness and urge governments to adopt more progressive ecotourism policies.
Collapse
Affiliation(s)
- Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| | - Hamid M Behzad
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| | | | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Arif M, Behzad HM, Tahir M, Changxiao L. Nature-based tourism influences ecosystem functioning along waterways: Implications for conservation and management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156935. [PMID: 35753461 DOI: 10.1016/j.scitotenv.2022.156935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 05/22/2023]
Abstract
Nature-based tourism has an influence on ecosystem functioning around watercourses, but this influence lacks scientific evidence. Additionally, strategic and operational management of streams necessitates trade-offs between the recreational activities and values of tourists and riparian zone hospitality services. This paper aims to assist environmentalists and planners by exploring the effects of tourism-based recreational activities on ecosystem functioning along the drawdown zone. The study uses multivariate statistical techniques to delineate the relevant global tourism issues for planners. Kruskal-Wallis tests (p < 0.01) were conducted using quantitative data from 284 transects within the Three Gorges Dam Reservoir in China. The results revealed higher ecosystem function indices than tourism indices. Indicators of tourism contributed both positively and negatively to ecological indicators, with the Pearson correlation coefficients ranging from minor to moderate (r = ̶ 0.24 to 0.38, p < 0.05). Principal component analysis revealed that the critical variables of ecosystem functioning and tourism activities explained 72.26 % of the overall variance. Nevertheless, hierarchical cluster analysis revealed that these indicators responded differently in the upstream, midstream, and downstream sections. Our findings suggest that policymakers should consider the different characteristics of riparian zones in future planning, as doing so will improve both national and global strategic and operational management.
Collapse
Affiliation(s)
- Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| | - Hamid M Behzad
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| | | | - Li Changxiao
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Arif M, Behzad HM, Tahir M, Changxiao L. Environmental literacy affects riparian clean production near major waterways and tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155476. [PMID: 35472339 DOI: 10.1016/j.scitotenv.2022.155476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 05/20/2023]
Abstract
Although environmental illiteracy threatens the functioning of landscapes throughout the world, it is frequently ignored. The traditional wisdom assumes that suspicions will evaporate when the public and government authorities are provided with new information. Despite significant efforts to enhance riparian corridor output, limited data are available on the effect of environmental literacy metrics (ELMs) on clean production elements (CPEs) across various streams (e.g., main rivers and tributaries) within impoundments. This study examined such effects within the China Three Gorges Dam Reservoir area (TGDRA) by collecting 336 transects that assessed the breadth of effects on 58,000 km2 in 2019. The network visualization revealed 7234 papers published over the last 121 years, each of which focused on themes such as plant cover, regeneration, exotics, erosion, habitat, and stressors. The bar graph showed that the general public lacked understanding of environmental literacy (e.g., knowledge, attitudes, and behavior), which influenced plant cover elements most in tributary zones but had little direct effect on regeneration. Locals' environmental literacy had the greatest impact on CPEs, with Pearson correlation coefficients ranging from -0.69 <r < 0.96 in the main river zones. Moreover, public employees' environmental literacy had a stronger correlation with CPEs (-0.58 <r < 0.83) within the main river regions. Farming systems, exposed soil, dominant grass regeneration, and instream structures, including pollution, were among the most notable CPEs within the TGDRA. According to hierarchical approaches, CPEs and ELMs change substantially across stream types. CPEs and ELMs vary significantly around main rivers and tributaries, requiring efforts to raise the public understanding of the worldwide impacts of stream health on humans.
Collapse
Affiliation(s)
- Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| | - Hamid M Behzad
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| | | | - Li Changxiao
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Huo J, Shi Z, Zhu W, Li T, Xue H, Chen X, Yan Y, Ma R. Construction and Optimization of an Ecological Network in Zhengzhou Metropolitan Area, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138066. [PMID: 35805723 PMCID: PMC9265322 DOI: 10.3390/ijerph19138066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023]
Abstract
Rapid urbanization aggravates issues related to protection and optimization of the ecological environment. Constructing an ecological network system, including ecological values in planning, and using landscape effects efficiently are important for adjusting regional ecological space and promoting local sustainable development. Land use data from eight time points between 1980 and 2020 in the Zhengzhou Metropolitan Area were used to identify the local ecological sources, corridors and nodes and to identify an ecological network with high structural integrity. The study used the FLUS, MSPA, MCR, and gravity models, hydrological analysis, and network structure evaluation by applying tools such as ArcGIS, Guidos Toolbox and Conefor. The results indicated that: (1) among the nine major ecological sources, those in the Yellow River Basin connected the large−scale sources in the east and west of the network, and the rest were located in the northeast, southeast and southwest of the research area, semi−enclosing the main urban area of Zhengzhou. (2) There were 163 least−cost paths and 58 ecological corridors, mainly distributed along the Yellow River Basin. (3) There were 70 ecological nodes, divided into 10 strategic, 27 natural ecological and 33 artificial environment nodes, distributed in key locations such as the core of each source and the intersection of corridors. (4) The ecological network included all the landscape elements in the research area and connected the main ecological substrates in a semi−enclosing network structure with one horizontal and two vertical corridors and four clusters.
Collapse
Affiliation(s)
- Jingeng Huo
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (J.H.); (W.Z.); (T.L.); (H.X.); (X.C.); (Y.Y.); (R.M.)
| | - Zhenqin Shi
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (J.H.); (W.Z.); (T.L.); (H.X.); (X.C.); (Y.Y.); (R.M.)
- Research Center of Regional Development and Planning, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Region, Henan University, Ministry of Education, Kaifeng 475004, China
- Correspondence:
| | - Wenbo Zhu
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (J.H.); (W.Z.); (T.L.); (H.X.); (X.C.); (Y.Y.); (R.M.)
- Research Center of Regional Development and Planning, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Region, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Tianqi Li
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (J.H.); (W.Z.); (T.L.); (H.X.); (X.C.); (Y.Y.); (R.M.)
- Research Center of Regional Development and Planning, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Region, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Hua Xue
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (J.H.); (W.Z.); (T.L.); (H.X.); (X.C.); (Y.Y.); (R.M.)
| | - Xin Chen
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (J.H.); (W.Z.); (T.L.); (H.X.); (X.C.); (Y.Y.); (R.M.)
| | - Yanhui Yan
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (J.H.); (W.Z.); (T.L.); (H.X.); (X.C.); (Y.Y.); (R.M.)
| | - Ran Ma
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (J.H.); (W.Z.); (T.L.); (H.X.); (X.C.); (Y.Y.); (R.M.)
| |
Collapse
|
10
|
Hu X, Arif M, Ding D, Li J, He X, Li C. Invasive Plants and Species Richness Impact Litter Decomposition in Riparian Zones. FRONTIERS IN PLANT SCIENCE 2022; 13:955656. [PMID: 35873999 PMCID: PMC9301390 DOI: 10.3389/fpls.2022.955656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 05/03/2023]
Abstract
Natural ecosystems generally include litter decomposition as part of the natural cycle since the material properties and the environment greatly influence the decomposition rate. The invasion of exotic plants alters the species diversity and growth characteristics of plant communities, but its impact on litter decomposition is unknown in the riparian zone. This study examines how invasive plants affect the early stages of litter decomposition and how species richness impacts them. This experiment involved a random litter mixture of exotic (Alternanthera philoxeroides and Bidens pilosa) and native species in the riparian zone of the Three Gorges Dam Reservoir in China. There were 43 species mixture types, with various species richness ranging from 1 to 6. Litterbags were placed in the hydro-fluctuation zone and terrestrial zone, where they decomposed over the course of 55 days. Invasive plants decompose rapidly compared to native plants (35.71% of the remaining mass of the invasive plant). The invasive plant A. philoxeroides has the potential to accelerate native plant decomposition (0.29 of non-added synergetic effect), but Bidens pilosa cannot. Nonetheless, species richness had little effect on the decomposition rate. These effects are dependent upon differences in chemical functional characteristics among the species. The initial traits of the plants, specifically C, N, and C/N, were significantly and linearly correlated with the loss of mixed litter mass and mixing effect strength (P < 0.01). In addition, submergence decomposition conditions reduce the disturbance of invasive plants and predict decomposition rates based on litter characteristics. Invasive plants can therefore impact the material cycle of an ecosystem. There is a need to examine decomposition time, which may also involve considering other factors.
Collapse
Affiliation(s)
- Xin Hu
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| | - Dongdong Ding
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Jiajia Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Xinrui He
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
- *Correspondence: Changxiao Li
| |
Collapse
|
11
|
Zheng J, Arif M, Zhang S, Yuan Z, Zhang L, Li J, Ding D, Li C. Dam inundation simplifies the plant community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149827. [PMID: 34467924 DOI: 10.1016/j.scitotenv.2021.149827] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 05/20/2023]
Abstract
The construction of dams has caused riparian habitat degradation and ecosystem service loss globally. It is critical to assess the response of riparian plant communities to inundation gradients for their conservation. Recent evidence suggests that plant community assemblages are governed by flooding stress, soil nutrient availability, climate (environmental filtering) and dispersal, speciation, local extinction (dispersal filtering), but it remains unclear which dominates the riparian ecosystem regulated by a dam. Thus, this article aims to elucidate the relative importance of environmental and dispersal filtering to variations in plant communities to understand community assembly mechanisms in riparian ecosystems. Here we used plant community data related to four elevations in the riparian zone of the Three Gorges Dam Reservoir in China to show that species richness and diversity, community height, and the cover of total, annual, and exotic plant categories decreased, while the cover of perennial and native plant groups increased under higher flooding stress. Community composition varied substantially with elevation, and species composition tended to converge with increased inundation, characterized by flood-tolerant species. The community composition underwent stronger environmental filtering at low elevations and stronger dispersal filtering at high elevations, with stronger environmental filtering across riparian ecosystems. Therefore, we conclude that dam inundation drives community assemblages of riparian plants by the combined effects of environmental and dispersal filtering. Still, their relative contribution varies between elevations, and environmental filtering is more important in shaping community assembly. This study is the first to confirm that plant community assembly in the dam-regulated riparian area is determined by both niche-based and stochastic processes. Thus, we highlighted the importance of considering inundation intensity, propagule sources, and river connectivity when implementing restoration projects.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Muhammad Arif
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Songlin Zhang
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Zhongxun Yuan
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Limiao Zhang
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Jiajia Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Dongdong Ding
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Changxiao Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
12
|
Response of Annual Herbaceous Plant Leaching and Decomposition to Periodic Submergence in Mega-Reservoirs: Changes in Litter Nutrients and Soil Properties for Restoration. BIOLOGY 2021; 10:biology10111141. [PMID: 34827134 PMCID: PMC8614921 DOI: 10.3390/biology10111141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary This research focuses on the leaching and decomposition of riparian zone plants, which lose mass and release nutrients due to changing water levels during their vigorous growth period. While different factors greatly influence litter decomposition, the change in soil characteristics over various depths and their relationship to litter are largely unknown in mega-reservoir settings. Current research explores how annual plants decompose and release nutrients while they are submerged in soggy circumstances. Flooding circumstances can hasten plant mass loss and nutrient release, as well as change soil and water characteristics. This research found that sediment hindered the loss of mass and C, N, and P elements while stimulating the release of the K element. The litter decomposition of annual herbaceous plants has minimal impact on the overall amount of carbon and nutrients in the soil when the soil is saturated with water. This is linked to water leaching and soil element transformation. However, this does not imply that the significance of litter for soil nutrition is minor. It is essential to investigate the continuing production of residual soil litter nutrients after the water level has receded. Abstract Litter decomposition is an important soil nutrient source that promotes vegetation in deteriorated riparian zones worldwide. The periodic submergence and sediment burial effects on two prominent annual herbaceous plants (Echinochloa crusgali and Bidens tripartite) are little known in mega-reservoir settings. Our study focuses on the mass and carbon loss and nutrient release from E. crusgali and B. tripartitle litter and changes in soil properties, which are important for riparian zone rehabilitation in the Three Gorges Dam Reservoir, China. This study adopted the litter bag method to explore the nutrient change characteristics and changes in soil properties at different sediment burial depths under flooding scenarios. Three burial depths (0 cm, 5 cm, and 10 cm) were used for these two plants, and the experiment lasted for 180 days. The results revealed that the litter decay rate was high at first in the incubation experiment, and the nutrient loss rate followed the pattern of K > P > N > C. The relationship between % C remaining and % mass remaining was nearly 1:1, and the total amount of P exhibited a leaching–enrichment–release state in the decomposition process. Nutrients were changed significantly in the soil and overlying water at the first decomposition stage. Still, the total soil nutrient change was insignificant at the end, except for the 10 cm burial of B. tripartitle. Moreover, oxidation–reduction potential was the main factor in the litter decomposition process at different burial depths. This study indicated that sediment deposition reduced litter mass loss, slowed down the release of N and P, and retained more C, but promoted the release of K. Conclusively, in litter decomposition under waterlogging, the total soil nutrient content changed little. However, litter does more to the soil than that. Therefore, it is necessary to study the residual soil litter’s continuous output after the water level declines for restoration purposes.
Collapse
|
13
|
Responses of Ecological Stoichiometric Characteristics of Carbon, Nitrogen, and Phosphorus to Periodic Submergence in Mega-Reservoir: Growth of Taxodium distichum and Taxodium ascendens. PLANTS 2021; 10:plants10102040. [PMID: 34685849 PMCID: PMC8540895 DOI: 10.3390/plants10102040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/03/2022]
Abstract
Ecological stoichiometric studies can be useful for managing the deteriorated riparian zones of mega-reservoirs in which nutrients significantly impact the balanced vegetation cover. The present study aims to explore the effects of periodic submergence on the stoichiometric ecological characteristics of carbon (C), nitrogen (N), and phosphorus (P), as well as the growth conditions of two leading conifer species (Taxodium distichum and Taxodium ascendens) in the hydro-fluctuation zone of the Three Gorges Reservoir (TGR) region, China. The stoichiometrical contents of C, N, and P in fine roots, leaves, and branches, and the growth conditions of T. distichum and T. ascendens were measured in July 2019. The results showed that periodic submergence affected the stoichiometric characteristics and growth conditions of these two woody species, and the impact was restrained, but both grew well. The effects of inundation on the C, N, and P ecological stoichiometric characteristics differed in different parts of trees. In general, the C contents showed the following pattern: leaves > branches > fine roots. The N and P content showed the following pattern: leaves > fine roots > branches, while the C/N and C/P ratios showed an opposite trend to that of N and P. The N and P content in all parts of T. distichum (with means of 17.18 and 1.70 g/kg for leaves, 4.80 and 0.57 g/kg for branches, and 6.88 and 1.10 g/kg for fine roots, respectively) and T. ascendens (with means of 14.56 and 1.87 g/kg for leaves, 5.03 and 0.63 g/kg for branches, and 8.17 and 1.66 g/kg for fine roots, respectively) were higher than the national average level (with means of 14.14 and 1.11 g/kg for leaves, 3.04 and 0.31 g/kg for branches, and 4.85 and 0.47 g/kg for fine roots, respectively). Except for N and P contents in the leaves of T. distichum, there was a significant correlation between N and P elements in other parts (p < 0.05). Nevertheless, the N/P ratio (10.15, 8.52, 6.44, and 7.93, 8.12, 5.20 in leaves, branches, and fine roots of T. distichum and T. ascendens, respectively) was lower than the critical ratio of 14. The growth conditions of T. distichum and T. ascendens were significantly negatively correlated with their leaf C contents and significantly positively correlated with their fine root N and P contents. This study showed that T. distichum and T. ascendens could maintain their normal growth needs by properly allocating nutrients between different organs to adapt to the long periodic submergence in the hydro-fluctuation zone of the TGR region.
Collapse
|
14
|
Artificial Plantation Responses to Periodic Submergence in Massive Dam and Reservoir Riparian Zones: Changes in Soil Properties and Bacterial Community Characteristics. BIOLOGY 2021; 10:biology10080819. [PMID: 34440051 PMCID: PMC8389660 DOI: 10.3390/biology10080819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 01/03/2023]
Abstract
Simple Summary This study focuses on plants in riparian zones that are very vulnerable due to water stress and anthropogenic disturbances, which are particularly important regarding their ecological and environmental role. Although plants and microbiome interactions are necessary for plant nutrient acquisition, relatively little is known about the responses of roots, bulk, and rhizosphere soil microbial communities of different artificial vegetation types in riparian areas of massive dams and reservoirs. Therefore, this study aims to assess the responses of woody and herbaceous plants in the riparian zones of the Three Gorges Dam Reservoir, China. Results revealed that the weight of dominant soil bacteria in different periods, including Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Cyanobacteria, was higher, and their composition was different in the rhizosphere, bulk soil, and endophyte. In the soil co-occurrence networks, the weight of soil physical properties was higher than chemical properties in the early emergence stage. The current study provides knowledge about bacteria in bulk, rhizosphere soils, and within roots in different emergence phases. Additionally, these results provide valuable information to inoculate the soil with key microbiota members by applying fertilizers, potentially improving plant and soil production and health. Abstract Plant and microbiome interactions are necessary for plant nutrient acquisition. However, relatively little is known about the responses of roots, bulk, and rhizosphere soil microbial communities in different artificial vegetation types (woody and herbaceous) in riparian areas of massive dams and reservoirs. Therefore, this study aims to assess such responses at elevations of 165–170 m a.s.l. in the riparian zones of the Three Gorges Dam Reservoir, China. The samples were collected containing the rhizosphere soil, bulk soil, and roots of herbaceous and woody vegetation at different emergence stages in 2018. Then, all the samples were analyzed to quantify the soil properties, bacterial community characteristics, and their interaction in the early and late emergence phases. In different periods, the weight of dominant soil bacteria, including Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Cyanobacteria, was higher, and their composition was different in the rhizosphere, bulk soil, and endophytes. Moreover, the soil co-occurrence networks indicated that the weight of soil physical properties was higher than chemical properties in the early emergence stage. In contrast, the weight of chemical properties was relatively higher in the late emergence stage. Furthermore, the richness and diversity of the bacterial community were mainly affected by soil organic matter. This study suggests that these herbaceous and woody vegetation are suitable for planting in reservoir areas affected by hydrology and human disturbance in light of soil nutrients and soil microbial communities, respectively. Additionally, these results provide valuable information to inoculate the soil with key microbiota members by applying fertilizers, potentially improving plant health and soil production.
Collapse
|
15
|
Yuan Z, Ni X, Arif M, Dong Z, Zhang L, Tan X, Li J, Li C. Transcriptomic Analysis of the Photosynthetic, Respiration, and Aerenchyma Adaptation Strategies in Bermudagrass ( Cynodon dactylon) under Different Submergence Stress. Int J Mol Sci 2021; 22:ijms22157905. [PMID: 34360668 PMCID: PMC8347729 DOI: 10.3390/ijms22157905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Submergence impedes photosynthesis and respiration but facilitates aerenchyma formation in bermudagrass. Still, the regulatory genes underlying these physiological responses are unclear in the literature. To identify differentially expressed genes (DEGs) related to these physiological mechanisms, we studied the expression of DEGs in aboveground and underground tissues of bermudagrass after a 7 d treatment under control (CK), shallow submergence (SS), and deep submergence (DS). Results show that compared with CK, 12276 and 12559 DEGs were identified under SS and DS, respectively. Among them, the DEGs closely related to the metabolism of chlorophyll biosynthesis, light-harvesting, protein complex, and carbon fixation were down-regulated in SS and DS. Meanwhile, a large number of DEGs involved in starch and sucrose hydrolase activities, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation were down-regulated in aboveground tissues of bermudagrass in SS and DS. Whereas in underground tissues of bermudagrass these DEGs were all up-regulated under SS, only beta-fructofuranosidase and α-amylase related genes were up-regulated under DS. In addition, we found that DEGs associated with ethylene signaling, Ca2+-ROS signaling, and cell wall modification were also up-regulated during aerenchyma formation in underground tissues of bermudagrass under SS and DS. These results provide the basis for further exploration of the regulatory and functional genes related to the adaptability of bermudagrass to submergence.
Collapse
Affiliation(s)
- Zhongxun Yuan
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Xilu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), Ningxia University, Yinchuan 750021, China;
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Zhi Dong
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Limiao Zhang
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Xue Tan
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Jiajia Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
| | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; (Z.Y.); (M.A.); (Z.D.); (L.Z.); (X.T.); (J.L.)
- Correspondence:
| |
Collapse
|