1
|
Liu J, Li R, Qin L, Fu D, Wang M, Liu W, Liu X. Carbon dot-based molecularly imprinted polymer fluorescent sensor for the detection of propranolol in plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125590. [PMID: 39693707 DOI: 10.1016/j.saa.2024.125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Propranolol, a medication used to treat cardiovascular diseases, can be harmful when overdosed and hazardous to ecosystems if released into the environment. Here, a new molecularly imprinted fluorescent sensor was developed from carbon dots through a sol-gel method. Carbon dots served as both the fluorescent signal and the carrier, with propranolol as the template molecule and 3-aminopropyltriethoxysilane as the functional monomer to be grafted on carbon dots' surface. A novel detection method was established for the efficient, rapid, and cost-effective detection of propranolol in human plasma through quantitative analysis by using a fluorescence spectrophotometer and an ultraviolet spectrophotometer. Under the optimal conditions, the detection range of 0.5-4 mg L-1, the detection limit of 0.092 mg L-1, the imprinting factor of 2.42, and the detection response time of 2 min were achieved. The prepared carbon dot-based molecularly imprinted fluorescent sensor was proved to have a wide accurate linear range, low detection limit, and very short response time, and can detect lower analyte concentrations with higher detection accuracy.
Collapse
Affiliation(s)
- Jialin Liu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruizhen Li
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Qin
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
| | - Dongju Fu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Moeiling Wang
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Weifeng Liu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xuguang Liu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
2
|
Love D, Slovisky M, Costa KA, Megarani D, Mehdi Q, Colombo V, Ivantsova E, Subramaniam K, Bowden JA, Bisesi JH, Martyniuk CJ. Toxicity Risks Associated With the Beta-Blocker Metoprolol in Marine and Freshwater Organisms: A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2530-2544. [PMID: 39291828 DOI: 10.1002/etc.5981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024]
Abstract
The detection of pharmaceuticals in aquatic ecosystems has generated concern for wildlife and human health over the past several decades. β-adrenergic blocking agents are a class of drugs designed to treat cardiovascular diseases and high blood pressure. Metoprolol is a second-generation β1-adrenergic receptor inhibitor detected in effluent derived from sewage treatment plants. Our review presents an updated survey of the current state of knowledge regarding the sources, occurrence, and toxicity of metoprolol in aquatic ecosystems. We further aimed to summarize the current literature on the presence of metoprolol in various classes of aquatic species and to consider the trophic transfer of these contaminants in marine mammals. The biological impacts of metoprolol have been reported in 20 aquatic organisms, with a primary focus on cardiac function and oxidative stress. Our review reveals that concentrations of metoprolol that cause toxicity in aquatic species are above levels that are typical of marine and freshwater environments. Future studies should investigate the effects of metoprolol at lower concentrations in aquatic organisms. Other recommendations include (1) a further focus on noncardiac endpoints, because computational assessments of currently available molecular data identify gonadotropins, vitellogenin, collagen, and cytokines as potential targets of modulation, and (2) development of adverse outcome pathways for cardiac dysfunction in aquatic species to improve our understanding of molecular interactions and outcomes following exposure. As the next generation of β-blockers is developed, continued diligence is needed for assessing environmental impacts in aquatic ecosystems to determine their potential accumulation and long-term effects on wildlife and humans. Environ Toxicol Chem 2024;43:2530-2544. © 2024 SETAC.
Collapse
Affiliation(s)
- Deirdre Love
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Megan Slovisky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kaylie Anne Costa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Dorothea Megarani
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Qaim Mehdi
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Vincent Colombo
- Department of Animal Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Emma Ivantsova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Chemistry, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Sarabyar S, Farahbakhsh A, Tahmasebi HA, Mahmoodzadeh Vaziri B, Khosroyar S. Enhancing photocatalytic degradation of beta-blocker drugs using TiO 2 NPs/zeolite and ZnO NPs/zeolite as photocatalysts: optimization and kinetic investigations. Sci Rep 2024; 14:27390. [PMID: 39521784 PMCID: PMC11550835 DOI: 10.1038/s41598-024-73888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study delves into the development and optimization of photocatalysts, namely ZnO NPs/Zeolite and TiO2 NPs/Zeolite, for the degradation of two beta-blocker drugs, including Atenolol (AT) and Metoprolol (ME). Structural and morphological analyses of the catalysts were conducted, and optimal conditions for drug degradation were determined using a Box-Behnken design. The results underscored the significant influence of pH, catalyst amount, drug concentration, and H2O2 concentration on the degradation process using ZnO NPs/Zeolite and TiO2 NPs/Zeolite as the catalysts. The optimal values of drug concentration, pH, catalyst amount, and H2O2 concentration, were determined to be 32 and 33 mg L-1, 4.2 and 4.6, 428 and 386 mg, and 2.6 and 2.5 mM utilizing ZnO NPs/Zeolite and TiO2 NPs/Zeolite as the catalyst, respectively. Following optimization, the kinetics of the photodegradation process were investigated, revealing promising rates and half-life times for both drugs. The pseudo-first-order rate constants for Atenolol and Metoprolol degradation were 0.064 ± 0.007 min-1 and 0.065 ± 0.004 min-1 with ZnO NPs/Zeolite and 0.071 ± 0.007 min-1 and 0.071 ± 0.006 min-1 with TiO2 NPs/Zeolite, respectively. Furthermore, ZnO NPs/Zeolite and TiO2 NPs/Zeolite demonstrated reusability up to 5 and 6 times, respectively, without significant activity loss. The comparative analysis highlighted the superior performance of TiO2 NPs/Zeolite over ZnO NPs/Zeolite, attributed to lower consumption, shorter degradation time, improved reusability, and compatibility with milder acidic conditions. Overall, the research showcases the potential of ZnO NPs/Zeolite and TiO2 NPs/Zeolite as an effective and sustainable solution for removing Metoprolol and Atenolol contaminants.
Collapse
Affiliation(s)
- Sara Sarabyar
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Afshin Farahbakhsh
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.
| | - Hamzeh Ali Tahmasebi
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| | | | - Susan Khosroyar
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran
| |
Collapse
|
4
|
Choudhury A, Ojha PK, Ray S. Hazards of antiviral contamination in water: Dissemination, fate, risk and their impact on fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135087. [PMID: 38964042 DOI: 10.1016/j.jhazmat.2024.135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.
Collapse
Affiliation(s)
- Abhigyan Choudhury
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Probir Kumar Ojha
- Drug Discovery and Development (DDD) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
5
|
Järvinen P, Kakko M, Sikanen T. Cytotoxicity of pharmaceuticals and their mixtures toward scaffold-free 3D spheroid cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes. Eur J Pharm Sci 2024; 199:106817. [PMID: 38797439 DOI: 10.1016/j.ejps.2024.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Pharmaceutical residues are widely detected in surface waters all around the world, causing a range of adverse effects on environmental species, such as fish. Besides population level effects (mortality, reproduction), pharmaceutical residues can bioaccumulate in fish tissues resulting in organ-specific toxicities. In this study, we developed in vitro 3D culture models for rainbow trout (Oncorhynchus mykiss) liver cell line (RTH-149) and cryopreserved, primary rainbow trout hepatocytes (RTHEP), and compared their spheroid formation and susceptibility to toxic impacts of pharmaceuticals. The rapidly proliferating, immortalized RTH-149 cells were shown to form compact spheroids with uniform morphology in just three days, thus enabling higher throughput toxicity screening compared with the primary cells that required acclimation times of about one week. In addition, we screened the cytotoxicity of a total of fourteen clinically used human pharmaceuticals toward the 3D cultures of both RTH-149 cells (metabolically inactive) and primary RTHEP cells (metabolically active), to evaluate the impacts of the pharmaceuticals' own metabolism on their hepatotoxicity in rainbow trout in vitro. Among the test substances, the azole antifungals (clotrimazole and ketoconazole) were identified as the most cytotoxic, with hepatic metabolism indicatively amplifying their toxicity, followed by fluoxetine, levomepromazine, and sertraline, which were slightly less toxic toward the metabolically active primary cells than RTH-149 spheroids. Besides individual pharmaceuticals, the 3D cultures were challenged with mixtures of the eight most toxic substances, to evaluate if their combined mixture toxicities can be predicted based on individual substances' half-maximal effect (EC50) concentrations. As a result, the classical concentration addition approach was concluded sufficiently accurate for preliminarily informing on the approximate effect concentrations of pharmaceutical mixtures on a cellular level. However, direct read-across from human data was proven challenging and inexplicit for prediction of hepatotoxicity in fish in vitro.
Collapse
Affiliation(s)
- Päivi Järvinen
- Faculty of Pharmacy, Drug Research Program, P.O. Box 56 (Viikinkaari 5E), FI-00014 University of Helsinki, Helsinki, Finland
| | - Maija Kakko
- Faculty of Pharmacy, Drug Research Program, P.O. Box 56 (Viikinkaari 5E), FI-00014 University of Helsinki, Helsinki, Finland
| | - Tiina Sikanen
- Faculty of Pharmacy, Drug Research Program, P.O. Box 56 (Viikinkaari 5E), FI-00014 University of Helsinki, Helsinki, Finland; Helsinki Institute of Sustainability Science, P.O. Box 4 (Yliopistonkatu 3), FI-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Ahkola H, Äystö L, Sikanen T, Riikonen S, Pihlaja T, Kauppi S. Current uncertainties and challenges of publicly available pharmaceutical environmental risk assessment data. Eur J Pharm Sci 2024; 197:106769. [PMID: 38631463 DOI: 10.1016/j.ejps.2024.106769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Pharmaceutical residues are widely detected in aquatic environment worldwide mainly arising from human excretions in sewage systems. Presently, publicly available, high quality environmental risk assessment (ERA) data for pharmaceuticals are limited. However, databases like the Swedish Fass offer valuable resources aiding healthcare professionals and environmental scientists in identifying substances of significant concern. In this review, we provide a concise overview of the regulatory ERA process for medicinal products intended for human use. We explore its key assumptions and uncertainties using a subset of 37 pharmaceuticals. First, we compare the consistency of their predicted no-effect concentrations reported in the Fass database with those by marketing authorisation holders. Second, we compare the predicted environmental concentrations (PEC) calculated based on sales data between European and national drug consumption statistics as well as with measured environmental concentrations (MEC), to demonstrate their impact on the regional risk quotients. Finally, we briefly discuss the prevailing uncertainties and challenges of current ecotoxicity testing, especially outcomes of chronic and nonlethal effects.
Collapse
Affiliation(s)
- H Ahkola
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.
| | - L Äystö
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - T Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - S Riikonen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - T Pihlaja
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - S Kauppi
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| |
Collapse
|
7
|
Biales AD, Bencic DC, Flick RW, Toth GP. Effects of Age and Exposure Duration on the Sensitivity of Early Life Stage Fathead Minnow (Pimephales promelas) to Waterborne Propranolol Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:807-820. [PMID: 38146914 PMCID: PMC11683668 DOI: 10.1002/etc.5814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Propranolol is a heavily prescribed, nonspecific beta-adrenoceptor (bAR) antagonist frequently found in wastewater effluents, prompting concern over its potential to adversely affect exposed organisms. In the present study, the transcriptional responses of 4, 5, and 6 days postfertilization (dpf) ±1 h fathead minnow, exposed for 6, 24, or 48 h to 0.66 or 3.3 mg/L (nominal) propranolol were characterized using RNA sequencing. The number of differentially expressed genes (DEGs) was used as an estimate of sensitivity. A trend toward increased sensitivity with age was observed; fish >7 dpf at the end of exposure were particularly sensitive to propranolol. The DEGs largely overlapped among treatment groups, suggesting a highly consistent response that was independent of age. Cluster analysis was performed using normalized count data for unexposed and propranolol-exposed fish. Control fish clustered tightly by age, with fish ≥7 dpf clustering away from younger fish, reflecting developmental differences. When clustering was conducted using exposed fish, in cases where propranolol induced a minimal or no transcriptional response, the results mirrored those of the control fish and did not appreciably cluster by treatment. In treatment groups that displayed a more robust transcriptional response, the effects of propranolol were evident; however, fish <7 dpf clustered away from older fish, despite having similar numbers of DEGs. Increased sensitivity at 7 dpf coincided with developmental milestones with the potential to alter propranolol pharmacokinetics or pharmacodynamics, such as the onset of exogenous feeding and gill functionality as well as increased systemic expression of bAR. These results may have broader implications because toxicity testing often utilizes fish <4 dpf, prior to the onset of these potentially important developmental milestones, which may result in an underestimation of risk for some chemicals. Environ Toxicol Chem 2024;43:807-820. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Adam D. Biales
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - David C. Bencic
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Robert W. Flick
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| | - Gregory P. Toth
- Center for Computational Toxicology and Chemistry, US Environmental Protection Agency, Cincinnati, Ohio
| |
Collapse
|
8
|
Sumpter JP, Johnson AC, Runnalls TJ. Pharmaceuticals in the Aquatic Environment: No Answers Yet to the Major Questions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:589-594. [PMID: 35770719 DOI: 10.1002/etc.5421] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The presence of pharmaceuticals in the environment, especially the aquatic environment, has received a lot of attention in the last 20 plus years. Despite that attention, the two most important questions regarding pharmaceuticals in the environment still cannot be answered. It is not possible to put the threat posed by pharmaceuticals into perspective with the many other threats (stressors) facing aquatic organisms, such as low flows due to over-abstraction of water, inhibited passage of migratory species due to dams and weirs, diseases, algal blooms causing low oxygen levels and releasing toxins, eutrophication, climate change, and so on. Nor is it possible to identify which pharmaceuticals are of concern and which are not. Not only can these key questions not be answered presently, they have received extremely little attention, despite being identified 10 years ago as the two most important questions to answer. That situation must change if resources and expertise are to be effectively used to protect the environment. Environ Toxicol Chem 2024;43:589-594. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- John P Sumpter
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Tamsin J Runnalls
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| |
Collapse
|
9
|
Unnikrishan A, Khalid NK, Rayaroth MP, Thomas S, Nazim A, Aravindakumar CT, Aravind UK. Occurrence and distribution of steroid hormones (estrogen) and other contaminants of emerging concern in a south indian water body. CHEMOSPHERE 2024; 351:141124. [PMID: 38211796 DOI: 10.1016/j.chemosphere.2024.141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Steroid hormones (SHs) are among the important classes of Contaminants of Emerging Concern (CECs) whose detection in aquatic environments is vital due to their potential adverse health impacts. Their detection is challenging because of their lower stability in natural conditions and low concentrations. This study reports the presence of steroid hormones in a major river system, the Periyar River, in Kerala (India). Water samples were collected from thirty different river locations in the case of SHs and five locations within these in the case of other CECs. These were subjected to LC-MS/MS and LC-Q-ToF/MS analyses. Five SHs, estriol, estrone, 17 β estradiol, progesterone, and hydroxy progesterone, were separated and targeted using MS techniques. The studies of the water samples confirmed the presence of the first three estrogens in different sampling sites, with estrone present in all the sampling sites. The concentration of estrone was detected in the range from 2 to 15 ng/L. Estriol and estradiol concentrations ranged from 1.0 to 5 ng/L and 1-6 ng/L, respectively. The hormones at some selected sites were continuously monitored for seven months. The chosen areas include the feed water sites for the drinking water treatment plants across the river. The monthly data revealed that estrone is the only SHs detected in all the samples in the selected months. The highest concentration of SH was found in August. Twelve CECs belonging to pharmaceuticals and personal care products were identified and quantified. In addition, 31 other CECs were also identified using non-target analysis. A detailed study of the hormone mapping reported here is the first from any South Indian River.
Collapse
Affiliation(s)
- Amitha Unnikrishan
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi, 682022, Kerala, India
| | - Nejumal K Khalid
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Manoj P Rayaroth
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Shiny Thomas
- Sophisticated Analytical Instrument Facilities (SAIFs), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Akhil Nazim
- Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; Sophisticated Analytical Instrument Facilities (SAIFs), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi, 682022, Kerala, India.
| |
Collapse
|
10
|
Rodrigues EA, Violin DS, Mastelaro VR, de Figueiredo Neves T, Prediger P. Removal of propranolol by membranes fabricated with nanocellulose/proanthocyanidin/modified tannic acid: The influence of chemical and morphologic features and mechanism study. Int J Biol Macromol 2024; 256:128268. [PMID: 38007017 DOI: 10.1016/j.ijbiomac.2023.128268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Polymer-based membranes containing nanocellulose and natural macromolecules have potential to treat water, however few works have associated the changes in chemical and morphological membrane's features with their performance as adsorbent. Herein, a new green composite based on nanocellulose (NC) and alkylated tannic acid (ATA) and cross-linked with proanthocyanidin was produced and incorporated into polyacrylonitrile (PAN) membranes to eliminate propranolol (PRO) from water. Characterizations revealed that the increasing of NC-ATA content reduced the pore size of the membrane's upper surface and made the finger like structure of the sublayer disappear, due to the formation of hydrophilic domains of NC/ATA which speeds up the external solidification step. The presence of NC-ATA reduced the hydrophilicity, from a water contact angle of 3.65° to 16.51°, the membrane roughness, from 223.5 to 52.0 nm, and the zeta potential from -25.35 to -55.20 mV, improving its features to be a suitable adsorbent of organic molecules. The membranes proved to be excellent green adsorbent, tridimensional, and easy to remove after use, and qmax for PRO was 303 mg·g-1. The adsorption mechanism indicates that H-bonds, ion exchange, and π-π play important role in adsorption. NC-ATA@PAN kept high removal efficiencies after four cycles, evidencing the potential for water purification.
Collapse
Affiliation(s)
| | - Daniel Silva Violin
- School of Technology, University of Campinas-UNICAMP, CEP: 13484-332 Limeira, São Paulo, Brazil
| | | | | | - Patricia Prediger
- School of Technology, University of Campinas-UNICAMP, CEP: 13484-332 Limeira, São Paulo, Brazil.
| |
Collapse
|
11
|
Ivantsova E, Martyniuk CJ. A synthesis on the sub-lethal toxicity of atenolol, a beta-blocker, in teleost fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104236. [PMID: 37481051 DOI: 10.1016/j.etap.2023.104236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Blood pressure medications like atenolol are detected in aquatic ecosystems. The objectives here were to (1) map the global presence of atenolol in surface water and sewage; (2) present current knowledge regarding removal efficiency and degradation of atenolol; (3) identify biological endpoints sensitive to exposure; (4) reveal molecular biomarkers that may be useful for exposure studies in fish; (5) determine whether toxicology studies are within environmental relevance. In fish, atenolol exposure affects endocrine and immune systems, metabolism, and epigenetics. Fewer than half of all studies measuring biological responses use environmentally-relevant concentrations. Heart rate appeared most sensitive to atenolol exposure relative to other endpoints. Data are lacking for behavioral responses to atenolol. Molecular biomarkers for atenolol may include those associated with acute kidney injury, cholestasis, and hypertriglyceridemia. Head kidney and liver may therefore be useful for detecting atenolol-induced effects. This review synthesizes knowledge regarding atenolol-induced toxicity in fish.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
12
|
Luo Y, Yang L, Jiang L, Huang C, Shen X. Preparation of wax-based molecularly imprinted monolith for pipette-tip solid-phase extraction: a hybrid method. Mikrochim Acta 2023; 190:151. [PMID: 36952093 DOI: 10.1007/s00604-023-05726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
The development of molecularly imprinted monolith (MIM) for pipette-tip solid-phase extraction (PT-SPE) for sample pretreatment is challenging . In this work, a wax-based molecularly imprinted monolith (WMIM) was successfully prepared with a hybrid method by integration of the traditional packing SPE column and MIM, including preparation of the salt column inside the pipette, polymerization of wax-based imprinted column (WIC) outside the pipette, and immobilization of WIC inside the pipette tip. To ensure the penetration of samples and solvents during the PT-SPE, micrometer-range interconnected macropores were tailor-made via the salt-template sacrifice method. For the production of high affinity imprinted sites within the WIC, octadecanoic acid was used as functional monomer in the paraffin matrix. In terms of the adsorption property, the synthesized WIC exhibited a specific affinity to cardiovascular drugs, with an imprinting factor (IF) of 4.8 for the target analyte. Moreover, the WMIM-based PT-SPE was coupled with fluorescence spectrophotometry for the target propranolol determination (the excitation and emission wavelengths were 294 nm and 343 nm, respectively). This analytical method showed high recovery of target detection in different real samples (R > 90%), good sensitivity, and accuracy (R2 = 0.99, LOD = 0.03 ng mL-1). We believe this work could provide a significant contribution for the fabrication of MIM and promote an emerging trend of developing elution-free materials for sample pretreatment.
Collapse
Affiliation(s)
- Yaoyu Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liuqian Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Long Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
13
|
Sumpter JP, Runnalls TJ, Johnson AC, Barcelo D. A 'Limitations' section should be mandatory in all scientific papers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159395. [PMID: 36257434 DOI: 10.1016/j.scitotenv.2022.159395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
It is unusual, and can be difficult, for scientists to reflect in their publications on any limitations their research had. This is a consequence of the extreme pressure that scientists are under to 'publish or perish'. The inevitable consequence is that much published research is not as good as it could, and should, be, leading to the current 'reproducibility crisis'. Approaches to address this crisis are required. Our suggestion is to include a 'Limitations' section in all scientific papers. Evidence is provided showing that such a section must be mandatory. Adding a 'Limitations' section to scientific papers would greatly increase honesty, openness and transparency, to the considerable benefit of both the scientific community and society in general. This suggestion is applicable to all scientific disciplines. Finally, we apologise if our suggestion has already been made by others.
Collapse
Affiliation(s)
- John P Sumpter
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - Tamsin J Runnalls
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic ITecnol'ogic de La Universitat de Girona, C/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
| |
Collapse
|
14
|
Wołowiec Ł, Grześk G, Osiak J, Wijata A, Mędlewska M, Gaborek P, Banach J, Wołowiec A, Głowacka M. Beta-blockers in cardiac arrhythmias-Clinical pharmacologist's point of view. Front Pharmacol 2023; 13:1043714. [PMID: 36699057 PMCID: PMC9868422 DOI: 10.3389/fphar.2022.1043714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
β-blockers is a vast group of antiarrhythmic drugs which differ in their pharmacokinetic and chemical properties. Some of them block β-adrenergic receptors selectively while the others work non-selectively. Consequently, they reduce the influence of the sympathetic nervous system on the heart, acting negatively inotropic, chronotropic, bathmotropic and dromotropic. Although they have been present in medicine since the beginning of the 1960s, they still play a crucial role in the treatment of cardiac arrhythmias. They are also first-line group of drugs used to control the ventricular rate in patients with the most common arrhythmia-atrial fibrillation. Previous reports indicate that infection with SARS-CoV-2 virus may constitute an additional risk factor for arrhythmia. Due to the aging of the population in developed countries and the increase in the number of patients with cardiac burden, the number of people suffering from cardiac arrhythmias will increase in the upcoming years. As a result the role of above-mentioned beta-blockers will remain significant. Particularly noteworthy is propranolol-the oldest beta adrenergic antagonist, which in recent years has found additional applications due to its unique properties. In this article, we reviewed the accessible literature and summarized the current guidelines on the use of beta-blockers in the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Osiak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Aleksandra Wijata
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Martyna Mędlewska
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Patryk Gaborek
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Banach
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Wołowiec
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | | |
Collapse
|
15
|
Xu J, Wang Y, Sun H, Zhang W. Adsorption and leaching of β-blockers in fluvo-aquic and black soil: Behavior characteristic and enantiomer selectivity. ENVIRONMENTAL RESEARCH 2022; 214:114062. [PMID: 35961549 DOI: 10.1016/j.envres.2022.114062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
β-blockers are widely used chiral pharmaceuticals to treat hypertension and cardiovascular diseases, which are ubiquitously detected in the water-soil environment. However, little is known about their biogeochemical behaviors and enantiomer selectivity during soil migration and transformation. In this study, the adsorption and leaching behaviors of β-blockers in fluvo-aquic soil and black soil were investigated. The adsorption of β-blockers was fit well by the Freundlich adsorption isotherm (R2 > 0.913) and the adsorption affinity of β-blockers decreased in the following order: propranolol (logarithm of Freundlich adsorption coefficient log Kf = 1.46-2.55) > atenolol (log Kf = 0.53-1.04) > sotalol (log Kf = 0.32-1.01). An increase in ionic strength and dissolved organic matter (DOM) inhibited their soil adsorption. Ionic change is the main driving force for adsorption. Besides, hydrophobic partitioning and hydrogen bonding played key roles in the adsorption of propranolol and atenolol, respectively. The leaching behaviors of β-blockers are related to their hydrophobicity. An increase in ionic strength enhanced the migration of β-blockers to deeper soil layers, and the presence of DOM accelerated the migration of sotalol and propranolol. The migration potential of β-blockers in black soil is lower than that in fluvo-aquic soil, which could be ascribed to the higher organic matter content and strong ion exchange ability of black soil. Further, more significant enantiomer selectivity of β-blockers was found in black soil (e.g. enantiomer fraction of atenolol = 0.61) than in fluvo-aquic soil (e.g. enantiomer fraction of atenolol = 0.53) during the leaching process. The microbial activity might influence the enantiomer selectivity of studied β-blockers during soil leaching.
Collapse
Affiliation(s)
- Jiayao Xu
- MOE Key Laboratory of Regional Environment and Eco-restoration, College of Environment, Shenyang University, Shenyang, 110044, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Weiwei Zhang
- MOE Key Laboratory of Regional Environment and Eco-restoration, College of Environment, Shenyang University, Shenyang, 110044, China
| |
Collapse
|
16
|
Sumpter JP, Johnson AC, Runnalls TJ. Renewing and improving the environmental risk assessment of chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157256. [PMID: 35820522 DOI: 10.1016/j.scitotenv.2022.157256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The processes underpinning the environmental risk assessment (ERA) of chemicals have not changed appreciably in the last 30 years. It is unclear how successful these processes are in protecting the environment from any adverse effects of chemicals. To ascertain if the current methodology can be improved, and if so, how, we invited experts to suggest how the current ERA process could be improved. They were not asked to select from a list of suggestions. The 36 experts made 109 suggestions for improvement, which could be grouped into 33 categories. The category that received the most support, from 12 experts, was to utilise a broader range of scientific information, including all up-to-date information, in ERAs. The second most popular category, supported by 10 experts, was the suggestion to regulate mixtures of chemicals; the current regulatory process involves chemical-by-chemical assessment. Two quite radical proposals were suggested. One was to replace the regulator with artificial intelligence. The other was to establish a new competent authority that would appoint groups of experts, each including representatives of the range of stakeholders, to decide which studies were required, commission those studies, then conduct the ERA based on the results of those studies. These two radical proposals, which the authors support strongly, are not necessarily mutually exclusive. We conclude that the present ERA process could be improved to better protect the environment from the myriad of chemicals in use.
Collapse
Affiliation(s)
- John P Sumpter
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom(.).
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Tamsin J Runnalls
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom(.)
| |
Collapse
|
17
|
Environmental Occurrence and Predicted Pharmacological Risk to Freshwater Fish of over 200 Neuroactive Pharmaceuticals in Widespread Use. TOXICS 2022; 10:toxics10050233. [PMID: 35622646 PMCID: PMC9143194 DOI: 10.3390/toxics10050233] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
There is a growing concern that neuroactive chemicals released into the environment can perturb wildlife behaviour. Among these chemicals, pharmaceuticals such as antidepressants and anxiolytics have been receiving increasing attention, as they are specifically prescribed to modify behavioural responses. Many laboratory studies have demonstrated that some of these compounds can affect various aspects of the behaviour of a range of aquatic organisms; however, these investigations are focused on a very small set of neuroactive pharmaceuticals, and they often consider one compound at a time. In this study, to better understand the environmental and toxicological dimension of the problem, we considered all pharmaceuticals explicitly intended to modulate the central nervous system (CNS), and we hypothesised that these compounds have higher probability of perturbing animal behaviour. Based on this hypothesis, we used the classification of pharmaceuticals provided by the British National Formulary (based on their clinical applications) and identified 210 different CNS-acting pharmaceuticals prescribed in the UK to treat a variety of CNS-related conditions, including mental health and sleep disorders, dementia, epilepsy, nausea, and pain. The analysis of existing databases revealed that 84 of these compounds were already detected in surface waters worldwide. Using a biological read-across approach based on the extrapolation of clinical data, we predicted that the concentration of 32 of these neuroactive pharmaceuticals in surface waters in England may be high enough to elicit pharmacological effects in wild fish. The ecotoxicological effects of the vast majority of these compounds are currently uncharacterised. Overall, these results highlight the importance of addressing this environmental challenge from a mixture toxicology and systems perspective. The knowledge platform developed in the present study can guide future region-specific prioritisation efforts, inform the design of mixture studies, and foster interdisciplinary efforts aimed at identifying novel approaches to predict and interpret the ecological implications of chemical-induced behaviour disruption.
Collapse
|
18
|
Nájera-Aguilar HA, Mayorga-Santis R, Gutiérrez-Hernández RF, Santiesteban-Hernández A, Rodríguez-Valadez FJ, Ulloa-Gutiérrez DA, Araiza-Aguilar JA, Cruz-Salomón A. Propranolol degradation through processes based on the generation of hydroxyl free radical. JOURNAL OF WATER AND HEALTH 2022; 20:216-226. [PMID: 35100169 DOI: 10.2166/wh.2021.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pharmaceutical substances such as propranolol (PRO) are an emerging class of aquatic contaminants that have increasingly been detected in ground and surface water. For this reason, the aim of this study was to evaluate the efficiency of advanced oxidation systems for the PRO degradation. The tests started with anodic oxidation (AO), using 0.01, 0.05, and 0.1 M Na2SO4 as the supporting electrolyte and 16, 32, 48, and 64 mA cm-2 as current density. Under the best conditions obtained in AO, the electro-Fenton (EF) process was reviewed, where the effect of Fe2+ was analyzed with 5, 10, 15, and 20 mg Fe2+ L-1. The Fenton reaction (FR) was studied using the Fe2+ concentration that promoted the highest percentage of PRO removal and initial concentration of 16 mg L-1 of H2O2, in addition to these conditions, in the photo-Fenton (PF) system, the effect of UV light with wavelengths 254 and 365 nm were evaluated. The results obtained showed that the degradation efficiency of the EF > AO > PF > FR system along with a percent removal of 94.52, 90.4, 25.97, and 4.4%, respectively. The results showed that PRO can be removed through the studied systems, with the EF system being the most efficient.
Collapse
Affiliation(s)
- Hugo Alejandro Nájera-Aguilar
- Facultad de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente No. 1150, Col. Lajas, Maciel, Tuxtla Gutiérrez, Chiapas 29000, México
| | - Rosario Mayorga-Santis
- Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México Campus Tapachula, Km. 2 carretera a Puerto Madero s/n., Tapachula, Chiapas 30700, México E-mail:
| | - Rubén Fernando Gutiérrez-Hernández
- Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México Campus Tapachula, Km. 2 carretera a Puerto Madero s/n., Tapachula, Chiapas 30700, México E-mail:
| | - Antonio Santiesteban-Hernández
- El Colegio de la Frontera Sur, Grupo de Ecología de Artrópodos y Manejo de Plagas, carretera antiguo aeropuerto km 2.5, Tapachula, Chiapas 30700, México
| | - Francisco J Rodríguez-Valadez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C., Parque Tecnológico Querétaro Sanfandila, P.O. Box 064, Pedro Escobedo, Querétaro 76703, México
| | | | - Juan Antonio Araiza-Aguilar
- Facultad de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente No. 1150, Col. Lajas, Maciel, Tuxtla Gutiérrez, Chiapas 29000, México
| | - Abumalé Cruz-Salomón
- Escuela de Ciencias Químicas, sede Ocozocoautla, Universidad Autónoma de Chiapas (UNACH), Carretera Panamericana Ocozocoautla-Cintalapa Km. 2.5, Ocozocoautla de Espinosa, Chiapas 29140, México
| |
Collapse
|
19
|
Pusceddu FH, Guimarães MM, Lopes LO, Souza LS, Cortez FS, Pereira CDS, Choueri RB, Cesar A. Biological effects of the antihypertensive losartan under different ocean acidification scenarios. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118329. [PMID: 34634406 DOI: 10.1016/j.envpol.2021.118329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Since the last decade, several studies have reported the presence and effects of pharmaceutical residues in the marine environment, especially those of the antihypertensive class, such as losartan. However, there is little knowledge about the physiological effects of losartan in marine invertebrates regarding its behavior under possible coastal ocean acidification scenarios. The objective of this study was to evaluate biological effects on marine organisms at different levels of the biological organization caused by the compound losartan in water and sediment under coastal ocean acidification scenarios. Water and sediment samples were collected at five sites around the Santos Submarine Sewage outfall (SSO) and two sites around the Guarujá Submarine Sewage Outfall (GSO). Losartan was found in concentrations ranging from <LOD to 7.63 ng/L in water and from <LOQ to 3.10 ng/g in sediments. Statistical analysis showed interactive effects pH and losartan on the toxicity results. The water toxicity test with Echinometra lucunter embryos/larvae showed LOECs 50-100 mg/L, with values decreasing as the pH decreased. In the sediment assays, LOEC value for sea urchin embryo-larval development was 1.0 μg/g for all tested pHs. Regarding the lysosomal membrane stability assays with adult bivalves, a LOEC of 3000 ng/L was found for Perna perna in water exposure (both at pH 8.0 and 7.6). Effects for Mytella guyanensis were observed at environmentally relevant concentrations in sediment (LOEC = 3 ng/g at pH 8.0 and 7.6). This study demonstrated that coastal ocean acidification by itself causes effects on marine invertebrates, but can also increase the negative effects of losartan in waterborne exposure. There is a need to deepen the studies on the ecotoxicity of pharmaceutical residues and acidification of the marine environment.
Collapse
Affiliation(s)
- F H Pusceddu
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil; Ecotoxicology Laboratory, Santa Cecília University, Santos, São Paulo, Brazil
| | - M M Guimarães
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil
| | - L O Lopes
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil
| | - L S Souza
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil
| | - F S Cortez
- Ecotoxicology Laboratory, Santa Cecília University, Santos, São Paulo, Brazil
| | - C D S Pereira
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil; Ecotoxicology Laboratory, Santa Cecília University, Santos, São Paulo, Brazil
| | - R B Choueri
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil.
| | - A Cesar
- Sea Institute, Federal University of São Paulo (Unifesp), Santos, São Paulo, Brazil
| |
Collapse
|