1
|
Yoon M, Park J, Jang J, Choi H, Jeon H, Kim J. Facile fabrication of shape-controllable and reusable nanoporous catalytic aerogels based on Co-MOF and agarose for efficient decomposition of organic pollutants in water. Carbohydr Polym 2024; 345:122559. [PMID: 39227098 DOI: 10.1016/j.carbpol.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs) have been studied to date by utilizing metal-organic frameworks as efficient catalysts to generate sulfate radicals by peroxymonosulfate (PMS) activation in water purification. It is important to select high-performance and reliable catalysts for efficient water remediation, and separation and recovery of catalysts are essential in the practical application of MOFs. Herein, we adapted thermally curable, shape-controllable, and cost-effective agarose (AG) as a smart matrix and ZIF-67, as a powerful catalyst to prepare nanoarchitectured aerogel (Z67@AG). This nanoporous aerogel composite can efficiently generate sulfate radicals and hydroxyl radicals by activating PMS in the nanopores. Z67@AG aerogel could be easily fabricated in various molds to make desired shapes. This approach enables its utilization for different filtering systems and demonstrates cost-effective and stable performance by mass production and reusability. In the SR-AOP, aerogel exhibited excellent catalytic decomposition performances of 95 % and 88 % efficiencies within 8 and 10 min for dye and levofloxacin, respectively. It is believed that the proposed highly catalytic nanoporous aerogel nanocomposite having cost-effectiveness, excellent catalytic activity, facile fabrication of desired shapes, and an excellent porous structure can be extended to the synthesis of various nanocomposites and emerging applications.
Collapse
Affiliation(s)
- Minsoo Yoon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jisoo Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jieun Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hojoon Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunuk Jeon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
2
|
Těšínská P, Škarohlíd R, Kroužek J, McGachy L. Environmental fate of organic UV filters: Global occurrence, transformation, and mitigation via advanced oxidation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125134. [PMID: 39419468 DOI: 10.1016/j.envpol.2024.125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Organic UV filters are used in personal care products, plastics, paints, and textiles to protect against UV radiation. Despite regulatory limits, these compounds still enter the environment through direct wash-off during swimming, evaporation, leaching from products, and incomplete removal in wastewater treatment plants. They have been detected in various environmental matrices worldwide. Once in the environment, organic UV filters can undergo phototransformation and biotransformation, forming transformation products that, together with parent substances, pose health risks to humans and wildlife and harm marine ecosystems, especially coral reefs. The increasing concern over water scarcity and the environmental impact of pollutants underscores the importance of eliminating these contaminants from aquatic environments. This review primarily focuses on organic UV filters approved for use in sunscreens, many of which are also utilized in other materials, with a few exceptions including UV stabilizer UV-328. It includes an in-depth analysis of 155 peer-reviewed articles published from 2015 to 2024, assessing the concentrations of these filters in various environmental matrices, including water and solid matrices, air and biota. Moreover, this review explores the environmental transformation of these chemicals and assesses the effectiveness of advanced oxidation processes (AOPs) in removing these pollutants. The findings highlight the pervasive presence of organic UV filters in the environment and the promising potential of AOPs to mitigate the associated environmental challenges.
Collapse
Affiliation(s)
- Pavlína Těšínská
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Radek Škarohlíd
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Jiří Kroužek
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.
| |
Collapse
|
3
|
Yogarathinam LT, Abba SI, Usman J, Lawal DU, Aljundi IH. Predicting micropollutant removal through nanopore-sized membranes using several machine-learning approaches based on feature engineering. RSC Adv 2024; 14:19331-19348. [PMID: 38887641 PMCID: PMC11181297 DOI: 10.1039/d4ra02475c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Predicting the efficacy of micropollutant separation through functionalized membranes is an arduous endeavor. The challenge stems from the complex interactions between the physicochemical properties of the micropollutants and the basic principles underlying membrane filtration. This study aimed to compare the effectiveness of a modest dataset on various machine learning tools (ML) tools in predicting micropollutant removal efficiency for functionalized reverse osmosis (RO) and nanofiltration (NF) membranes. The inherent attributes of both the micropollutants and the membranes are utilized as input factors. The chosen ML tools are supervised algorithm (adaptive network-based fuzzy inference system (NF), linear regression framework (linear regression (LR)), stepwise linear regression (SLR) and multivariate linear regression (MVR)), and unsupervised algorithm (support vector machine (SVM) and ensemble boosted tree (BT)). The feature engineering and parametric dependency analysis revealed that characteristics of micropollutants, such as maximum projection diameter (MaxP), minimal projection diameter (MinP), molecular weight (MW), and compound size (CS), exhibited a notably positive impact on the correlation with removal efficiency. Model combination with key variables demonstrated high prediction accuracy in both supervised and unsupervised ML for micropollutant removal efficiency. An NF-grid partitioning (NF-GP) model achieved the highest accuracy with an R 2 value of 0.965, accompanied by low error metrics, specifically an RMSE and MAE of 3.65. It is owed to the handling of the complex spatial and temporal aspects of micropollutant data through division into consistent subsets facilitating improved identification of rejection efficiency and relationships. The inclusion of inputs with both negative and positive correlations introduces variability, amplifies the system responsiveness, and impedes the precision of predictive models. This study identified key micropollutant properties, including MaxP, MinP, MW, and CS, as crucial factors for efficient micropollutant rejection during real-time filtration applications. It also allowed the design of pore size of self-prepared membranes for the enhanced separation of micropollutants from wastewater.
Collapse
Affiliation(s)
- Lukka Thuyavan Yogarathinam
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Sani I Abba
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Jamilu Usman
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Dahiru U Lawal
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Isam H Aljundi
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
4
|
Li J, Lu Y, Chen H, Zheng D, Yang Q, Campos LC. Synthetic musks in the natural environment: Sources, occurrence, concentration, and fate-A review of recent developments (2010-2023). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171344. [PMID: 38432391 DOI: 10.1016/j.scitotenv.2024.171344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Synthetic musks (SMs) have served as cost-effective substitutes for natural musk compounds in personal care and daily chemical products for decades. Their widespread use has led to their detection in various environmental matrices, raising concerns about potential risks. Despite numerous studies on SM levels in different natural environments, a systematic review of their contemporary presence is lacking. This review aims to address this gap by summarising recent research developments on SMs in diverse natural environments, including river water, lake water, seawater, estuarine water, groundwater, snow, meltwater, sediments, aquatic suspended matter, soils, sands, outdoor air, and atmospheric particulate matter. Covering the period from 2010 to 2023, the review focuses on four SM categories: nitro, polycyclic, macrocyclic, and alicyclic. It systematically examines their sources, occurrences, concentrations, spatial and temporal variations, and fate. The literature reveals widespread detection of SMs in the natural environment (freshwater and sediments in particular), with polycyclic musks being the most studied group. Both direct (e.g., wastewater discharges) and indirect (e.g., human recreational activities) sources contribute to SM presence. Levels of SMs vary greatly among studies with higher levels observed in certain regions, such as sediments in Southeast Asia. Spatial and temporal variations are also evident. The fate of SMs in the environment depends on their physicochemical properties and environmental processes, including bioaccumulation, biodegradation, photodegradation, adsorption, phase exchange, hydro-dilution effects. Biodegradation and photodegradation can decrease SM levels, but may produce more persistent and eco-toxic products. Modelling approaches have been employed to analyse SM fate, especially for indirect processes like photodegradation or long-distance atmospheric transport. Future studies should further investigate the complex fate if SMs and their environmental influence. This review enhances understanding of SM status in the natural environment and supports efforts to control environmental contamination.
Collapse
Affiliation(s)
- Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yu Lu
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; Department of Structural Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0085, USA
| | - Huanfa Chen
- Centre for Advanced Spatial Analysis, University College London, London WC1E 6BT, UK
| | - Duan Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qinlin Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Luiza C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Beggio G, Bonato T, Marangoni S, Bravin MN, Fantinato E, Nigris S, Pivato A, Piazza R. Uptake and translocation of brominated flame retardants in tomato plants (Solanum lycopersicum L.): Results from a standard soil-based biotest. CHEMOSPHERE 2024; 353:141594. [PMID: 38432467 DOI: 10.1016/j.chemosphere.2024.141594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The uptake and translocation of four polybrominated diphenyl ethers (PBDEs) and four novel brominated flame retardants (NBFRs) in tomato plants (Solanum lycopersicum L.) were investigated via the RHIZOtest, a standard soil-based biotest, optimized for organic compounds. Tomato plants were exposed to soil samples spiked with 0 (i.e. control), 5.00 or 50.00 ng g-1dw of each compound. Compared of those of the control, exposure to increasing spiking concentrations resulted in average reductions of 13% and 26% (w/w) in tomato plant biomass. Higher concentrations of NBFRs were analyzed both in roots, ranging from 0.23 to 8.01 ng g-1dw for PBDEs and from 1.25 to 18.51 ng g-1dw for NBFRs, and in shoots, ranging from 0.09 to 5.58 ng g-1dw and from 0.47 to 7.78 ng g-1dw for PBDEs and NBFRs, respectively. This corresponded to an average soil uptake of 5% for PBDEs and 9% for NBFRs at the lower soil-spiking level, and 3% for PBDEs and 6% for NBFRs at the higher soil spiking level. Consequently, among both initial spiking levels, the soil-root concentration factor (RCF) values were lower on average for PBDEs (0.13 ± 0.05 g dw soil g-1dw roots) than for NBFRs (0.33 ± 0.16 g dw soil g-1dw roots). Conversely, nondifferent values of the root-shoot transfer factor (TF) were calculated for both PBDEs (0.54 ± 0.13 g dw roots g-1dw shoots) and NBFRs (0.49 ± 0.24 g dw roots g-1dw shoots). The differences and similarities reported in the RCF and TF between and within the two groups of compounds can be explained by their properties. The calculated RCF and TF values of the PBDEs exhibited a decreasing trend as the number of bromine atoms increased. Additionally, a robust negative linear correlation was observed between RCF values and the respective logKow values for the PBDEs, at both soil-spiking levels. The root uptake of NBFRs exhibited a negative correlation with their hydrophobicity; however, this was not observed in the context of root-to-shoot transfer. The presence of a second aromatic ring appears to be the key factor influencing the observed variations in NBFRs, with biphenyl NBFRs (BTBPE and DBDPE) characterized by lower uptake and reduced translocation potential than monophenyl PBEB and HBB. Understanding the transfer of these compounds to crops, especially near plastic recycling waste sites, is crucial for understanding the risks of their potential inclusion in the human food chain.
Collapse
Affiliation(s)
- Giovanni Beggio
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.
| | - Tiziano Bonato
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, I-30172 Venice, Italy; Società Estense Servizi Ambientali S.E.S.A., Este, PD, Via Comuna, 5/B, 35042 Este, Padova, Italy
| | - Simone Marangoni
- Società Estense Servizi Ambientali S.E.S.A., Este, PD, Via Comuna, 5/B, 35042 Este, Padova, Italy
| | - Matthieu N Bravin
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France; Recyclage et risque, Univ Montpellier, CIRAD, Avenue Agropolis, 34398, Montpellier, Cedex 5, France
| | - Edy Fantinato
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, I-30172 Venice, Italy
| | - Sebastiano Nigris
- Department of Biology, University of Padova, Via U.Bassi 58/ B Italy; Botanical Garden Department of Biology, University of Padova, Via Orto Botanico, 15, 35123 Padova, Italy
| | - Alberto Pivato
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, I-30172 Venice, Italy
| |
Collapse
|
6
|
Masinga P, Simbanegavi TT, Makuvara Z, Marumure J, Chaukura N, Gwenzi W. Emerging organic contaminants in the soil-plant-receptor continuum: transport, fate, health risks, and removal mechanisms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:367. [PMID: 38488937 DOI: 10.1007/s10661-023-12282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 03/17/2024]
Abstract
There is a lack of comprehensive reviews tracking emerging organic contaminants (EOCs) within the soil-plant continuum using the source-pathway-receptor-impact-mitigation (SPRIM) framework. Therefore, this review examines existing literature to gain insights into the occurrence, behaviour, fate, health hazards, and strategies for mitigating EOCs within the soil-plant system. EOCs identified in the soil-plant system encompass endocrine-disrupting chemicals, surfactants, pharmaceuticals, personal care products, plasticizers, gasoline additives, flame retardants, and per- and poly-fluoroalkyl substances (PFAS). Sources of EOCs in the soil-plant system include the land application of biosolids, wastewater, and solid wastes rich in EOCs. However, less-studied sources encompass plastics and atmospheric deposition. EOCs are transported from their sources to the soil-plant system and other receptors through human activities, wind-driven processes, and hydrological pathways. The behaviour, persistence, and fate of EOCs within the soil-plant system are discussed, including sorption, degradation, phase partitioning, (bio)transformation, biouptake, translocation, and bioaccumulation in plants. Factors governing the behaviour, persistence, and fate of EOCs in the soil-plant system include pH, redox potential, texture, temperature, and soil organic matter content. The review also discusses the environmental receptors of EOCs, including their exchange with other environmental compartments (aquatic and atmospheric), and interactions with soil organisms. The ecological health risks, human exposure via inhalation of particulate matter and consumption of contaminated food, and hazards associated with various EOCs in the soil-plant system are discussed. Various mitigation measures including removal technologies of EOCs in the soil are discussed. Finally, future research directions are presented.
Collapse
Affiliation(s)
- Privilege Masinga
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Willis Gwenzi
- Biosystems and Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
| |
Collapse
|
7
|
D'Amico M, Kallenborn R, Scoto F, Gambaro A, Gallet JC, Spolaor A, Vecchiato M. Chemicals of Emerging Arctic Concern in north-western Spitsbergen snow: Distribution and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168401. [PMID: 37939944 DOI: 10.1016/j.scitotenv.2023.168401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Personal care products contain chemicals that are considered of emerging concern in the Arctic. In this study, a selected group of personal care products was investigated in the snowpack on north-western Spitsbergen. We report a preliminary study on the spatial and seasonal distribution of 13 ingredients commonly found in personal care products, including fragrance materials, UV filters, BHT and BPA. Possible sources and deposition processes are discussed. Experimental analyses utilizing GC-MS/MS, were complemented with outputs from the HYSPLIT transport and dispersion model. The results reveal the presence of all selected compounds in the snow, both in proximity to and distant from the research village of Ny-Ålesund. For some of these chemicals this is the first time their presence is reported in snow in Svalbard. These chemicals show different partitioning behaviours between the particulate and dissolved phases, affecting their transport and deposition processes. Additionally, concentrations of certain compounds vary across different altitudes. It is observed the relevance of long-range atmospheric transport during winter at most sites, and, regardless of the proximity to human settlements, snow concentrations can be influenced by long-distance sources. This study highlights the need for detailed information on CEACs' physical-chemical properties, considering their potential impact on fresh and marine waters during the snowmelt under climate change.
Collapse
Affiliation(s)
- Marianna D'Amico
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Department of Arctic Technology (AT), University Centre in Svalbard (UNIS), 9176 Longyearbyen, Svalbard, Norway
| | - Federico Scoto
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Atmospheric Sciences and Climate - National Research Council (ISAC-CNR), Campus Ecotekne, 73100 Lecce, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | | | - Andrea Spolaor
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | - Marco Vecchiato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy.
| |
Collapse
|
8
|
Singh A, Yadav VK, Gautam H, Rathod L, Chundawat RS, Singh G, Verma RK, Sahoo DK, Patel A. The role of plant growth promoting rhizobacteria in strengthening plant resistance to fluoride toxicity: a review. Front Microbiol 2023; 14:1271034. [PMID: 37901824 PMCID: PMC10603187 DOI: 10.3389/fmicb.2023.1271034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
A wide variety of bacteria are present in soil but in rhizospheric area, the majority of microbes helps plant in defending diseases and facilitate nutrient uptake. These microorganisms are supported by plants and they are known as plant growth-promoting rhizobacteria (PGPR). The PGPRs have the potential to replace chemical fertilizers in a way that is more advantageous for the environment. Fluoride (F) is one of the highly escalating, naturally present contaminants that can be hazardous for PGPRs because of its antibacterial capacity. The interactions of F with different bacterial species in groundwater systems are still not well understood. However, the interaction of PGPR with plants in the rhizosphere region reduces the detrimental effects of pollutants and increases plants' ability to endure abiotic stress. Many studies reveal that PGPRs have developed F defense mechanisms, which include efflux pumps, Intracellular sequestration, enzyme modifications, enhanced DNA repair mechanism, detoxification enzymes, ion transporter/antiporters, F riboswitches, and genetic mutations. These resistance characteristics are frequently discovered by isolating PGPRs from high F-contaminated areas or by exposing cells to fluoride in laboratory conditions. Numerous studies have identified F-resistant microorganisms that possess additional F transporters and duplicates of the well-known targets of F. Plants are prone to F accumulation despite the soil's low F content, which may negatively affect their growth and development. PGPRs can be used as efficient F bioremediators for the soil environment. Environmental biotechnology focuses on creating genetically modified rhizobacteria that can degrade F contaminants over time. The present review focuses on a thorough systemic analysis of contemporary biotechnological techniques, such as gene editing and manipulation methods, for improving plant-microbe interactions for F remediation and suggests the importance of PGPRs in improving soil health and reducing the detrimental effects of F toxicity. The most recent developments in the realm of microbial assistance in the treatment of F-contaminated environments are also highlighted.
Collapse
Affiliation(s)
- Anamika Singh
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Hemant Gautam
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Lokendra Rathod
- ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Rajendra Singh Chundawat
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Gulab Singh
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Rakesh Kumar Verma
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
9
|
Bonato T, Picone M, Beggio G, Vecchiato M, Feltracco M, Pivato A, Piazza R. Fragrance materials affect life history parameters and gene expression in Daphnia magna: An emerging issue for freshwater ecosystems. CHEMOSPHERE 2023; 331:138786. [PMID: 37121283 DOI: 10.1016/j.chemosphere.2023.138786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
A chronic toxicity test (21 d exposure) with the model organism Daphnia magna was performed to study the single-compound and combined effects of four fragrance materials (FMs), including musk xylene (MX), Celestolide™ (ADBI), Galaxolide™ (HHCB), and ethylene brassylate (MT). Furthermore, the transcriptional responses of ten target genes related to detoxification, molting and reproduction (DHR96, P-gp, CYP360A8, GST, CYP314, EcRb, Vtg, CAT, GPX, and GCLC) were determined by performing a quantitative real-time polymerase chain reaction (qRT‒PCR) after juvenile D. magna was exposed for 48 h. The results showed that MX, ADBI and HHCB affected development and reproduction after chronic exposure at a concentration of 10 μg L-1. Conversely, MT did not affect reproduction, growth or molting during the 21 d exposure. In juvenile D. magna, gene expression was significantly altered by ADBI (DHR96, CYP260A8, and GCLC) and MX (DHR96, CYP360A8, EcRb, Vtg, CYP314, and GCLC) but not by HHCB. These results suggest that compared to biochemical measures, conventional biological endpoints provide more informative data regarding the effects of this FM. Compared to single substances in the chronic test, the mixture of the four FMs showed effects at lower concentrations and increased gene expression for EcRb and CYP314 during juvenile exposure, indicating a possible additive or synergistic effect of the four FMs compared to single compound exposure.
Collapse
Affiliation(s)
- Tiziano Bonato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy; Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042, Este, Italy.
| | - Marco Picone
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| | - Giovanni Beggio
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Marco Vecchiato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy; Institute of Polar Sciences of the National Research Council of Italy (ISP-CNR), Via Torino 155, 30172, Venice, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| | - Alberto Pivato
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| |
Collapse
|
10
|
Recent trends in the determination of organic UV filters by gas chromatography-mass spectrometry in environmental samples. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
11
|
Occurrence of the UV-filter 2-Ethylhexyl 4-methoxycinnimate (EHMC) in Antarctic snow: First results. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Fernandes AS, Azevedo T, Rocha F, Nunes E, Homem V. Uptake and translocation of synthetic musk fragrances by pea plant grown in sewage sludge-amended soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119908. [PMID: 35963392 DOI: 10.1016/j.envpol.2022.119908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Sewage sludges are rich in organic matter and several essential nutrients for plant growth, making them very appealing for application in agricultural soils. However, they may also contain a wide range of emerging pollutants, which has raised concerns about the potential risks of this practice to crops, the environment, and public health - accumulation in soils and/or plant uptake and translocation of contaminants. Therefore, there is a need to study plant-soil interactions and assess the uptake potential of these contaminants by food crops to better understand these risks. The main aim of this work was to assess the possible drawbacks of sludge application to cropland, by observing the impact on the growth and yield of a model crop (pea plant - Pisum sativum) grown over an 86-day greenhouse experiment and by assessing the uptake potential of synthetic musk fragrances. Different sewage sludge application rates (4-30-ton ha-1) and initial concentrations of contaminants were tested. The application of sludge yielded benefits to the cultivated plants, finding improved crop productivity with an application rate of 30-ton ha-1. At the end of the experiment, soil samples and plants separated into sections were analysed using a QuEChERS extraction methodology followed by gas chromatography-mass spectrometry (GC-MS) quantification. Galaxolide (HHCB) and tonalide (AHTN) underwent uptake by the plant roots, having been detected in concentrations up to 346 ng g-1 on a dry weight basis (dw), but only HHCB was detected in above ground tissues. At the end, a decrease in the levels of synthetic musks in the amended soils (>80% in several instances) was observed. Assuming the worst-case scenario, no risk to human health was observed from the ingestion of peas grown on sewage sludge-amended soils. However, a soil hazard quotient analysis yielded worryingly high quotient values for AHTN in nearly all tested conditions.
Collapse
Affiliation(s)
- Ana Sofia Fernandes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Tomé Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Filipe Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Eugénia Nunes
- GreenUPorto, Sustainable Agrifood Production, Campus de Vairão, Rua da Agrária 747, 4485-646, Portugal
| | - Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal.
| |
Collapse
|
13
|
Nataraj B, Maharajan K, Malafaia G, Hemalatha D, Ahmed MAI, Ramesh M. Gene expression profiling in liver of zebrafish exposed to ethylhexyl methoxycinnamate and its photoproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154046. [PMID: 35217044 DOI: 10.1016/j.scitotenv.2022.154046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, the ecotoxicological potential of organic ultraviolet filters (OU-VFs) has received growing attention. However, the toxicity of its photoproducts or transformation products on freshwater vertebrates has been little explored. Therefore, the aim of the present study is to evaluate the possible adverse effects of ethylhexyl methoxycinnamate (EHMC) and its photoproducts [2-ethylhexanol (2-EH) and 4-methoxybenzaldehyde (4-MBA)] on the expression of stress-responsive and antioxidant genes. For this, zebrafish (Danio rerio) adults were exposed to pollutants at an environmentally relevant concentration (3 μg/L) and evaluated after 7, 14, and 21 days of exposure. The results of the principal component analysis (PCA) and two-way repeated measures (RM) ANOVA revealed that EHMC, 2-EH, and 4-MBA exposure caused significant downregulation of the genes hsp70, nrf2, cyp1a, ahr, sod1, sod2, cat, gstp1, gpx1a, gss, and gsr (on all trial days) in the liver of the animals. On the other hand, taken together, our data did not show significant differences between the effects induced by EHMC and its photoproducts. The genes evaluated in the present study play a major role in regulating the defensive antioxidant response against EHMC and its photoproducts. Additionally, our study provides an insight into the mechanisms of those OU-VFs in freshwater fish.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Guilherme Malafaia
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Devan Hemalatha
- Department of Zoology, PSG College of Arts & Science, Coimbatore, Tamil Nadu - 641014, India
| | | | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
14
|
Environmental Pollution in Geopark Management: A Systematic Review of the Literary Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084748. [PMID: 35457619 PMCID: PMC9027568 DOI: 10.3390/ijerph19084748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
Abstract
Dozens of geoparks have been created in the world since the beginning of the 21st century. Their environmental impact is yet to be fully understood. A bibliographical survey was undertaken to systematically review the journal articles devoted to environmental pollution in geoparks. The considered literature focuses on 10 geoparks (many of them are the members of the UNESCO Global Geoparks network) from eight countries, namely, China, Italy, Malaysia, Poland, Portugal, Romania, Russia, and South Korea. Significant pollution was registered in half of these geoparks. Trace metals and metalloids such as arsenic and cadmium are often reported as pollutants. Water pollution is the most common. In many cases, environmental pollution is not related to geoparks, but results from agricultural and industrial activities. Sometimes, this pollution is inherited from past mining activities, and the latter are related to the geoheritage represented in the geoparks. However, there are also examples of pollution triggered by tourist activities in geoparks and the related infrastructural failures. Various mitigation approaches are considered in the literature (establishing monitoring networks, installing filtration membranes, etc.). It is argued that environmental pollution can be used in geoparks for eco-education and eco-awareness initiatives. Research in environmental pollution in geoparks is an emerging field, and does not avoid multiple biases. Nonetheless, the actual importance of this research is undisputable, and it will be demanded in the future.
Collapse
|
15
|
Zhu W, Han M, Kim D, Zhang Y, Kwon G, You J, Jia C, Kim J. Facile preparation of nanocellulose/Zn-MOF-based catalytic filter for water purification by oxidation process. ENVIRONMENTAL RESEARCH 2022; 205:112417. [PMID: 34856164 DOI: 10.1016/j.envres.2021.112417] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs) have recently attracted much attention due to their potential in degrading organic pollutants. Metal-organic frameworks (MOFs) have been reported as effective materials to generate SO4•-. However, it is challenging to separate and recover the dispersed MOF particles from the reaction solution when MOFs are used alone. We used cellulose nanofibers (CNFs) as a porous filter template to immobilize Zn-based MOF, zeolitic imidazolate framework-8 (ZIF-8), and obtained a catalytic composite membrane having peroxymonosulfate (PMS) activating function to produce SO4•-. The CNF was effective in holding ZIF-8 nanoparticle and making a durable porous filter. The activated PMS-produced •OH and SO4•- radicals from ZIF-8 play an important role in the catalytic reaction. More than 90% of methylene blue and rhodamine B was degraded by ZIF-8/CNFs composite membrane in the PMS environment within 60 min. The ZIF-8/CNFs catalytic filters can be used several times without performance reduction for organic dye degradation. The results show that ZIF-8/CNFs catalytic membrane can be separated from organic pollution system quickly and used for the efficient separation and recovery of MOF particle-based catalytic materials. Therefore, this study provides a new perspective for fabricating the MOFs particles-immobilized catalytic filter by biomass nanocellulose-based materials for water purification. This method can be used for facile fabrication of the cellulose-based porous functional filter and open diverse applications.
Collapse
Affiliation(s)
- Wenkai Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China; Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minsu Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Donggyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Goomin Kwon
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jungmok You
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Chong Jia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
16
|
Bonato T, Beggio G, Pivato A, Piazza R. Maize plant (Zea mays) uptake of organophosphorus and novel brominated flame retardants from hydroponic cultures. CHEMOSPHERE 2022; 287:132456. [PMID: 34606891 DOI: 10.1016/j.chemosphere.2021.132456] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The root uptake and root-shoot translocation of seven organophosphorus flame retardants (OPFRs) and four novel brominated flame retardants (NBFRs) were assessed in this investigation using hydroponic grown maize plants (Zea mays). Three initial liquid concentrations for each considered compound were examined (i.e., 0.3 μg L-1, 3 μg L-1, 30 μg L-1). The results indicated that the 30 μg L-1 treatments were phytotoxic, as they resulted in a significant decrease in shoot dry weight. Plant-driven removal of the tested FRs decreased with the increasing initial spiking level and were reportedly higher for the NBFRs (range 42%-10%) than OPFRs (range 19%-7%). All the considered FRs were measured in the roots (range 0.020-6.123 μg g-1 dry weight -DW-) and shoots (range 0.012-1.364 μg g-1 DW) of the tested plants, confirming that there was uptake. Linear relationships were identified between the chemical concentrations in the plant parts and the tested hydroponic concentrations. Root concentration factors were positively correlated with the specific lipophilicity (i.e., logKow) of the tested FRs and were determined to be higher for the NBFRs than the OPFRs. The NBFRs had a higher root uptake rate than the OPFRs, and this trend was more significant with the increasing treatment concentrations. Shoot/root concentration factors were found to be lower than the unity value for 10 of the 11 tested compounds. These results can be related to the specific molecular configurations and the occurrence of different functional groups in the tested compounds. The results will help to improve risk assessment procedures and fine tune our understanding of human receptor responses to the ingestion of maize crops grown on agricultural sites irrigated with water contaminated by FRs.
Collapse
Affiliation(s)
- Tiziano Bonato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| | - Giovanni Beggio
- Department of Civil, Environmental and Architectural Engineering (DICEA), University of Padova, Via Marzolo 9, 35131, Padova, Italy.
| | - Alberto Pivato
- Department of Civil, Environmental and Architectural Engineering (DICEA), University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| |
Collapse
|