1
|
Jia Z, Xu Y, Xu R, Xiang R, Sun S, Nai C, Liu Y. Release dynamics, risk evolution and driving mechanisms of heavy metals in superalkaline fly ash co-disposed by MSW landfill. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124410. [PMID: 38936793 DOI: 10.1016/j.envpol.2024.124410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Fly ash from waste incineration is growing rapidly and has become a global problem. Landfill is the main treatment method, but the release behavior of ultra-alkaline fly ash needs further study. In this study, the release pattern of heavy metals from fly ash, the long-term risk after seepage, and the main control mechanisms were explored by indoor simulation experiments and process simulation modeling. The results show that carbonation is the main control mechanism for the release rate of heavy metals from super-alkaline fly ash, and the release rate is slow at the initial stage, but the release concentration of Zn and Pb may increase tens of times with the continuous reaction between the acidic substances in the leachate and the alkaline substances in the fly ash. The heavy metals released into the leachate can cause the concentration of Zn, Cd and Pb in the groundwater to exceed the standard by 39.50, 6.70 and 5.99 times due to seepage. Furnace type is the key controlling factor for background concentrations of heavy metals in ultra-alkaline fly ash, and the exposure concentrations of Cu, Cd, Zn, and Pb in ultra-alkaline fly ash from grate furnaces as well as the GT1 facility are 4.19, 4.19, 4.14, and 37.5 times greater than those of fluidized beds, respectively, with a higher risk of long-term landfill. Regionally, the regional occupancy rate of heavy metal concentrations indicated that the risk of adequate rainfall was high in the southeastern coastal region, which was five times higher than that in the inland northwest. Therefore, the long-term dynamics and risk evolution of Zn, Cd, and Pb in the groundwater around MSWLs in the coastal area should be paid attention to after the landfilling of ultra-alkaline fly ash in order to ensure the safety of the shallow groundwater environment after landfilling.
Collapse
Affiliation(s)
- Zhaozhi Jia
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Shandong Technology and Business University, Yantai, Shandong, 264005, China
| | - Ya Xu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Rongbin Xu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Rui Xiang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shuna Sun
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; China University of Geosciences, Wuhan, Hubei, 430078, China
| | - Changxin Nai
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Shandong Technology and Business University, Yantai, Shandong, 264005, China
| | - Yuqiang Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Tong Y, Cheng S, Guo F, Gao J, Li G, Yue T. Non-negligible environmental risks of typical hazardous trace elements in wastes from Chinese coal-fired industrial boilers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173779. [PMID: 38844231 DOI: 10.1016/j.scitotenv.2024.173779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Coal-fired industrial boilers (CFIBs) that provide heat for industrial production operate to produce large quantities of wastes containing hazardous trace elements (HTEs), threatening the quality of the environment. Based on the established facility-level material flow inventory of five typical HTEs (Hg, As, Cd, Cr, and Pb) of Chinese CFIBs in 2020, we explored the enrichment characteristics and environmental risks of HTEs in wastes at the regional scale from the perspective of substance flow and enrichment levels. Results showed that the shares of HTEs entering the waste stream were 2.2-16.8 % higher in the focus regions of continuous improvement of air quality compared to the non-focus regions, explained by the higher synergistic control efficiencies of their air pollution control facilities (ACPFs), at 86.6-90.4 % (Hg), 98.6-99.1 % (As), 95.1-95.9 % (Cd), 93.2-94.8 % (Cr), and 97.1-98.0 % (Pb), respectively. In addition, the national averages of HTEs in slag, fly ash, and flue gas desulphurisation (FGD) were simulated to be 0.15-0.87 g/t, 3.25-18.44 g/t, 0.30-0.96 g/t, 19.76-70.11 g/t, and 15.85-73.74 for Hg, As, Cd, Cr, and Pb, respectively. Nationally, the integrated environmental risks of the five HTEs in slag, fly ash, and FGD residue exhibited Considerable, Very High, and Very High level of environmental risk, with the cumulative environmental risk indexes of 171, 317, and 281, respectively. Hg and Cd were the major contributors to the environmental risks of slag, fly ash, and FGD residue, with environmental risk contributions ranging from 23.8 to 82.3 % and 16.0 to 66.1 %, respectively. Results can provide data support for modelling the environmental release of HTEs from wastes and formulating control strategies for environmental management agencies.
Collapse
Affiliation(s)
- Yali Tong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Sihong Cheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fenghui Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiajia Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guoliang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tao Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Liu Q, Gao J, Li G, Zheng Y, Li R, Yue T. Bibliometric analysis on mercury emissions from coal-fired power plants: a systematic review and future prospect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19148-19165. [PMID: 38379043 DOI: 10.1007/s11356-024-32369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Coal-fired power plants (CFPPs) are one of the most significant sources of mercury (Hg) emissions certified by the Minamata Convention, which has attracted much attention in recent years. In this study, we used the Web of Science and CiteSpace to analyze the knowledge structure of this field from 2000 to 2022 and then reviewed it systematically. The field of Hg emissions from coal-fired power plants has developed steadily. The research hotspots can be divided into three categories: (1) emission characterization research focused on speciation changes and emission calculations; (2) emission control research focused on control technologies; (3) environmental impact research focused on environmental pollution and health risk. In conclusion, using an oxygen-rich atmosphere for combustion and installing high-efficiency air pollution control devices (APCDs) helped to reduce the formation of Hg0. The average Hg removal rates of APCDs and modified adsorbents after ultra-low emission retrofit were distributed in the range of 82-93% and 41-100%, respectively. The risk level of Hg in combustion by-products was highest in desulfurization sludge (RAC > 10%) followed by fly ash (10% < RAC < 30%) and desulfurization gypsum (1% < RAC < 10%). Additionally, we found that the implementation of pollution and carbon reduction policies in China had reduced Hg emissions from CFPPs by 45% from 2007 to 2015, increased the efficiency of Hg removal from APCDs to a maximum of 96%, and reduced global transport and health risk of atmospheric Hg. The results conjunctively achieved by CiteSpace, and the literature review will enhance understanding of CFPP Hg emission research and provide new perspectives for future research.
Collapse
Affiliation(s)
- Qi Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiajia Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guoliang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rui Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tao Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
4
|
Slavković-Beškoski L, Ignjatović L, Ćujić M, Vesković J, Trivunac K, Stojaković J, Perić-Grujić A, Onjia A. Ecological and Health Risks Attributed to Rare Earth Elements in Coal Fly Ash. TOXICS 2024; 12:71. [PMID: 38251026 PMCID: PMC10818428 DOI: 10.3390/toxics12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
The occurrence and distribution of yttrium and rare earth elements (REYs), along with major elements and heavy metal(loid)s (HMs) in coal fly ash (CFA) from five coal-fired power plants (CFPPs), were analyzed, and the REY-associated ecological and health risks were assessed. The individual REYs in CFA were abundant in the following order: Ce > La > Nd > Y > Pr > Gd > Sm > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The total REY content ranged from 135 to 362 mg/kg, averaging 302 mg/kg. The mean light-to-heavy REY ratio was 4.1, indicating prevalent light REY enrichment in CFA. Significantly positive correlations between the REYs suggested that they coexist and share similar origins in CFA. REYs were estimated to pose low to moderate ecological risks, with risk index (RI) values ranging from 66 to 245. The hazard index (HI) and target cancer risk (TCR) of REYs from CFA, estimated to be higher for children (HIc = 0.15, TCRc = 8.4 × 10-16) than for adults (HIa = 0.017, TCRa = 3.6 × 10-16), were well below the safety limits (HI = 1, TCR = 1.0 × 10-6). However, the danger to human health posed by HMs in the same CFA samples (HIc = 5.74, TCRc = 2.6 × 10-4, TCRa = 1.1 × 10-4) exceeded the safe thresholds (excl. HIa = 0.63). The mean RI and HI attributed to REYs in CFA were 14% and 2.6%, respectively, of the total risks that include HMs.
Collapse
Affiliation(s)
| | - Ljubiša Ignjatović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Mirjana Ćujić
- Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Serbia
| | - Jelena Vesković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Katarina Trivunac
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Jelena Stojaković
- Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Aleksandra Perić-Grujić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
5
|
Li J, Yan Y, Wang Y, Wang J, Cao Z, Hu K, Li M, Lu X. Multifactor configurations of coal power technology in China substantially differ in life-cycle environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168132. [PMID: 37890626 DOI: 10.1016/j.scitotenv.2023.168132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The expansion of coal power in China has led to a coexistence of multiple technologies, whereas differences in environmental impacts of each other remain hitherto unclear. This gap is largely a result of the difficulty of fully covering the factors that significantly affect environmental performances and the lack of fine data inventory. The limitation welcomes an approach that can go well beyond characterizing coal power technology with a single factor. To this end, we surveyed the information data for all coal power units in China to couple four factors (viz. operating parameter, boiler type, cooling approach, and turbine mode) into 22 types of multifactor technology configurations, as well as the first-hand operating data of nearly half of all coal power units in China to compile an elaborate data inventory that each configuration includes 88 input and output data. These fine data were modeled by the life cycle assessment method of CML 2016 to quantify twelve environmental impact categories. The results show substantial differences in environmental impacts exist for different technology configurations. High operating parameters gain environmental friendliness but the diversification of boiler type and cooling approach to improve the applicability of coal quality and water resources increases environmental impacts. The insignificant impact of the turbine mode is owning to the exergy allocation that eliminates the quality gap in electrical and thermal energy. The technology-level differences are aggregated into the provincial level by various configuration structures, which show markedly spatial heterogeneity varying by impact categories. This implies a great potential for structural adjustment and an overall improvement requires cleaner production beyond that, focused on the coal power generation process and its upstream coal supply process. Our modeling shows a majority of results with an uncertainty of lower than 10 %, which is robust for the proposal of policy suggestions.
Collapse
Affiliation(s)
- Junjie Li
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China; School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China.
| | - Yulong Yan
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Yirong Wang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jia Wang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Zimeng Cao
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Kexin Hu
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Menggang Li
- National Academy of Economic Security, Beijing Jiaotong University, Beijing 100044, China; Beijing Laboratory of National Economic Security Early-warning Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xi Lu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Xu X, Guo L, Wang S, Ren M, Zhao P, Huang Z, Jia H, Wang J, Lin A. Comprehensive evaluation of the risk system for heavy metals in the rehabilitated saline-alkali land. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119117. [PMID: 37806271 DOI: 10.1016/j.jenvman.2023.119117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
A comprehensive assessment of the heavy metal system in the rehabilitated saline-alkali land holds significant importance, as the in-situ remediation process utilizing amendments substantially alters the initial physicochemical properties of the soil, which could lead to the migration or reactivation of previously stabilized heavy metals. In this context, the present study aims to evaluate the heavy metal content and health risk within the improved saline-alkali soil-plant system. Moreover, a comprehensive evaluation based on the TOPSIS-RSR method is carried out to accurately gauge the soil health status. The findings indicate that the modification process has an impact on the concentrations of heavy metals in the soil and crops, causing either an increase or decrease. However, the level of heavy metal pollution in the improved saline-alkali soil and rape remains within safe limits. The results of the migration of heavy metals after amendment application indicated that the migration of heavy metals in the soil was influenced by the properties of the heavy metals, the composition of the amendment, and leaching. Furthermore, the total non-carcinogenic hazard quotients in the soil and rape were within the safe threshold for all populations. The findings provided novel insights into the status and risk assessment of the pollution of improved saline-alkali soil.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lin Guo
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Shaobo Wang
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ziyi Huang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongjun Jia
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
7
|
Kolar V, Chmelová E, Bílková M, Borovec J, Carreira BM, Černý M, Ditrich T, Horká P, Hrivniak Ľ, Hrubý F, Jan J, Landeira-Dabarca A, Lepšová-Skácelová O, Musilová Z, Otáhalová Š, Poláková M, Polášková V, Sacherová V, Špaček J, Sroka P, Vebrová L, Boukal DS, Tropek R. Muddying the unexplored post-industrial waters: Biodiversity and conservation potential of freshwater habitats in fly ash sedimentation lagoons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165803. [PMID: 37499824 DOI: 10.1016/j.scitotenv.2023.165803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/08/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Deposits of fly ash and other coal combustion wastes are common remnants of the energy industry. Despite their environmental risks from heavy metals and trace elements, they have been revealed as refuges for threatened terrestrial biodiversity. Surprisingly, freshwater biodiversity of fly ash sedimentation lagoons remains unknown despite such lack of knowledge strongly limits the efficient restoration of fly ash deposits. We bring the first comprehensive survey of freshwater biodiversity, including nekton, benthos, zooplankton, phytoplankton, and macrophytes, in fly ash lagoons across industrial regions of the Czech Republic. To assess their conservation potential, we compared their biodiversity with abandoned post-mining ponds, the known strongholds of endangered aquatic species in the region with a shortage of natural ponds. Of 28 recorded threatened species, 15 occurred in the studied fly ash lagoons, some of which were less abundant or even absent in the post-mining ponds. These are often species of nutrient-poor, fishless waters with rich vegetation, although some are specialised extremophiles. Species richness and conservation value of most groups in the fly ash lagoons did not significantly differ from the post-mining ponds, except for species richness of benthos, zooplankton, and macrophytes, which were slightly lower in the fly ash lagoons. Although the concentrations of some heavy metals (mainly Se, V, and As) were significantly higher in the fly ash lagoons, they did not significantly affect species richness or conservation value of the local communities. The differences in species composition therefore does not seem to be caused by water chemistry. Altogether, we have shown that fly ash lagoons are refuges for threatened aquatic species, and we thus suggest maintaining water bodies during site restoration after the cessation of fly ash deposition. Based on our analyses of environmental variables, we discuss suitable restoration practices that efficiently combine biodiversity protection and environmental risk reduction.
Collapse
Affiliation(s)
- Vojtech Kolar
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia; University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Eliška Chmelová
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia; Charles University, Faculty of Science, Department of Ecology, Viničná 7, 12844 Prague, Czechia
| | - Martina Bílková
- Masaryk University, Faculty of Science, Department of Botany and Zoology, Kotlářská 2, 61137 Brno, Czechia
| | - Jakub Borovec
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia; University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Bruno M Carreira
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia; University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences of the University of Lisbon, Edifício C2, Campo Grande, 1749-016 Lisbon, Portugal
| | - Martin Černý
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 12844 Prague, Czechia
| | - Tomáš Ditrich
- University of South Bohemia, Faculty of Education, Department of Biology, Jeronýmova 10, 37112 České Budějovice, Czechia
| | - Petra Horká
- Charles University, Faculty of Science, Institute for Environmental Studies, Benátská 2, 12801 Prague, Czechia
| | - Ľuboš Hrivniak
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia
| | - František Hrubý
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Jiří Jan
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia; University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Andrea Landeira-Dabarca
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia; University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Olga Lepšová-Skácelová
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Zuzana Musilová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 12844 Prague, Czechia
| | - Šárka Otáhalová
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia
| | - Martina Poláková
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia; Masaryk University, Faculty of Science, Department of Botany and Zoology, Kotlářská 2, 61137 Brno, Czechia
| | - Vendula Polášková
- Masaryk University, Faculty of Science, Department of Botany and Zoology, Kotlářská 2, 61137 Brno, Czechia
| | - Veronika Sacherová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 12844 Prague, Czechia
| | - Jan Špaček
- Povodí Labe State Enterprise, Víta Nejedlého 951/8, Slezské Předměstí, 50003 Hradec Králové, Czechia
| | - Pavel Sroka
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia
| | - Lucie Vebrová
- University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia
| | - David S Boukal
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia; University of South Bohemia, Faculty of Science, Departments of Ecosystem Biology and Botany, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Robert Tropek
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 37005 České Budějovice, Czechia; Charles University, Faculty of Science, Department of Ecology, Viničná 7, 12844 Prague, Czechia.
| |
Collapse
|
8
|
Wang Z, Dai S, Cowan EA, Dietrich M, Schlesinger WH, Wu Q, Zhou M, Seramur KC, Das D, Vengosh A. Isotopic Signatures and Outputs of Lead from Coal Fly Ash Disposal in China, India, and the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12259-12269. [PMID: 37556313 DOI: 10.1021/acs.est.3c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Despite extensive research and technology to reduce the atmospheric emission of Pb from burning coal for power generation, minimal attention has been paid to Pb associated with coal ash disposal in the environment. This study investigates the isotopic signatures and output rates of Pb in fly ash disposal in China, India, and the United States. Pairwise comparison between feed coal and fly ash samples collected from coal-fired power plants from each country shows that the Pb isotope composition of fly ash largely resembles that of feed coal, and its isotopic distinction allows for tracing the release of Pb from coal fly ash into the environment. Between 2000 and 2020, approx. 236, 56, and 46 Gg Pb from fly ash have been disposed in China, India, and the U.S., respectively, posing a significant environmental burden. A Bayesian Pb isotope mixing model shows that during the past 40 to 70 years, coal fly ash has contributed significantly higher Pb (∼26%) than leaded gasoline (∼7%) to Pb accumulation in the sediments of five freshwater lakes in North Carolina, U.S.A. This implies that the release of disposed coal fly ash Pb at local and regional scales can outweigh that of other anthropogenic Pb sources.
Collapse
Affiliation(s)
- Zhen Wang
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Shifeng Dai
- College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Ellen A Cowan
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Matthew Dietrich
- The Polis Center, IU Luddy School of Informatics, Computing, and Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - William H Schlesinger
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University 100084 Beijing, China
| | - Mingxuan Zhou
- College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Keith C Seramur
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Debabrata Das
- Department of Geology, Panjab University, Chandigarh 160014, India
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Tang Q, Zhang H, Zhao X, Zheng L, Miao C, Liu Y, Liu G, Chen L, Fu B. Chromium in Chinese coals: geochemistry and environmental impacts associated with coal-fired power plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2241-2262. [PMID: 35918576 PMCID: PMC9345389 DOI: 10.1007/s10653-022-01337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/17/2022] [Indexed: 05/11/2023]
Abstract
Chromium (Cr), one of the prime hazardous trace elements in coals, may engender adverse effects on eco-environment and threaten human health during utilization of coal. Based on the samples obtained in our laboratory and published literature, the abundance and modes of occurrence of Cr in Chinese coals, and the environmental impacts associated with coal-fired power plants (CFPPs) were elucidated in this study. With a total of 1397 sets of data, the mean concentration of Cr in Chinese coals was calculated as 21.33 μg/g by the "reserve-concentration" weighted calculation method. Spatially, the average Cr contents increased gradually from North China to South China. Temporally, coals from T3, E-N and P2 were relatively enriched in Cr compared to the other geological time. The Cr concentration in coal varied with different coal ranks. The geological factors accounted for Cr enrichment in coals could be divided into the primary, secondary and epigenetic processes. Higher percentages of organically Cr occurred in low-rank coals, while inorganically associated Cr was mainly found in clay minerals. After coal combustion, most of Cr was enriched in solid wastes (e.g., fly ash and bottom ash). The leaching of Cr from solid wastes in the rainy season (especially acid rain) needs to be a concern for CFPPs. It was estimated that the atmospheric emission of Cr from CFPPs increased annually from 2015 to 2019 and reached approximately 159 tons in 2019.
Collapse
Affiliation(s)
- Quan Tang
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Huiming Zhang
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Xiaohu Zhao
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Liugen Zheng
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Chunhui Miao
- State Grid Anhui Electric Power Corporation Research Institute, Hefei, 230601, China
| | - Yuan Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Guijian Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Lai Chen
- School of Business, Anhui University, Hefei, 230601, China
| | - Biao Fu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
10
|
Ruan S, Liu L, Zhu M, Shao C, Xie L, Hou D. Application of desulfurization gypsum as activator for modified magnesium slag-fly ash cemented paste backfill material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161631. [PMID: 36657671 DOI: 10.1016/j.scitotenv.2023.161631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Recycling industrial solid waste for mine backfill is one of the best ways to achieve green production in multiple industries. In this paper, the desulfurization gypsum (DG) as an activator is combined with the modified magnesium slag-fly ash cementitious paste backfill (MFPB) technology for the co-disposal of solid waste and goaf treatment, and the influence of DG on the performance of MFPB was comprehensively analyzed through rheological properties, mechanical properties, durability, microscopic analysis and environmental characteristics experiments. The results show that the fresh MFPB mortar conforms to the Herschel-Bulkley model at different maximum shear rate (γ̇max) conditions. When the γ̇max is 100 s-1, the mortar exhibits shear-thickening properties. The apparent viscosity, yield stress and static yield stress of mortar decreased first and then increased with the increase of DG content, and all had the minimum value when DG was 2.5 %. The thixotropy of the mortar was significantly increased with the addition of DG, and the change in thixotropy was significantly correlated with the difference between the two yield stresses. Both the rheological and mini-slump results demonstrate that DG can improve the flowability of MFPB mortars. In addition, the UCS of D0 under steam curing and standard water curing conditions for 28 d were 4.342 MPa and 2.827 MPa, and the sample containing DG were 6.109-8.241 MPa and 6.669-9.492 MPa, respectively. The addition of DG not only improves the strength of MFPB, but also improves the durability of MFPB. Microscopic analysis (XRD, SEM, and TG-DTG) indicated that this was mainly because DG promoted the hydration reaction of the MMS-FA system and accelerated the generation of C-S(A)-H and AFt. Finally, in the results of in situ leaching based on durability and leaching based on standard HJ 557, all the indexes of MFPB meet the standard of class III groundwater in GB/T 14848-2017, and it has an effective stabilization/solidification effect on heavy metals (As, Cu, Ni, Ba, Zn and Mo, etc.). To sum up, the collaboration of DG and MFPB technology can not only efficiently clean and utilize a variety of solid wastes (MMS, FA and DG), but also greatly improve the performance of MFPB to promote its application.
Collapse
Affiliation(s)
- Shishan Ruan
- Energy School, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Lang Liu
- Energy School, Xi'an University of Science and Technology, Xi'an 710054, China; Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi'an 710054, China.
| | - Mengbo Zhu
- Energy School, Xi'an University of Science and Technology, Xi'an 710054, China; Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi'an 710054, China.
| | - Chengcheng Shao
- Energy School, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Lei Xie
- Energy School, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Dongzhuang Hou
- Xi'an Fill Green Innovation Mining Technology Co., Ltd., Xi'an 710054, China.
| |
Collapse
|
11
|
Bourliva A, Kelepertzis E, Papadopoulou L, Patinha C, Kantiranis N. Enhanced Gastric/Lung Arsenic Bioaccessibility from Lignite Fly Ashes: Comparing Bioaccessibility Rates with Multiple Environmental Matrices. TOXICS 2023; 11:358. [PMID: 37112585 PMCID: PMC10143711 DOI: 10.3390/toxics11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Inorganic arsenic (As), a carcinogenic element to humans, is among the most dangerous and flammable substances that coal-burning plants could release. When coal is burned, large portions of arsenic are captured on fly-ash (FA) particles, but it could also contribute significantly to stack emissions of fine fly-ash particles. The aim of this study was to evaluate the oral and respiratory bioaccessibility of arsenic in lignite fly-ash (LFA) samples, and their contribution to total As exposure. Arsenic bioaccessibility fractions via ingestion and inhalation showed significant differences, suggesting the presence of highly soluble As-bearing phases in the studied LFA samples. The bioaccessible As fractions (BAF%) in the simulated gastric fluids (UBM protocol, ISO 17924:2018) showed a range of 45-73%, while the pulmonary bioaccessibility rates in the simulated lung fluid (artificial lung fluid (ALF)) exhibited significantly enhanced levels ranging from 86% to 95%. The obtained arsenic bioaccessibility rates were compared with previous data for multiple environmental matrices such as soil and dust-related materials, revealing that LFA exhibited significantly higher bioaccessibility (%) for the inhalation pathway.
Collapse
Affiliation(s)
- Anna Bourliva
- Directorate of Secondary Education of Western Thessaloniki, 56430 Thessaloniki, Greece
| | - Efstratios Kelepertzis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece;
| | - Lamprini Papadopoulou
- Department of Mineralogy-Petrology-Economic Geology, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.P.); (N.K.)
| | - Carla Patinha
- GEOBIOTEC, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal;
| | - Nikolaos Kantiranis
- Department of Mineralogy-Petrology-Economic Geology, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.P.); (N.K.)
| |
Collapse
|
12
|
Han D, Wu Q, Wen M, Tang Y, Li G, Ren Y, Cui Y, Li Z, Shi J, Zhang Q, Yin X, Wang S. Isotopic Fractionation Characteristics of Speciated Mercury from Local Biomass Combustion in the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4775-4783. [PMID: 36926863 DOI: 10.1021/acs.est.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As the Third Pole of the world, the Tibetan Plateau (TP) is sensitive to anthropogenic influences. Biomass combustion is one of the most important anthropogenic sources of mercury (Hg) emissions in the TP. However, due to the lack of knowledge about Hg emission characteristics and activity levels in the plateau, atmospheric Hg emissions from biomass combustion in the TP are under large uncertainties. Here, based on pilot-scale experiments, we found that particle-bound mercury (PBM; mean of 83.1-87.7 ng/m3) occupied 17.93-49.31% of the total emitted Hg and the PBM δ202Hg values (average -1.65‰ to -0.77‰) were significantly higher than those of the corresponding feeding biomass. The Δ200Hg values of total gaseous mercury and PBM were more negative (-0.08‰ to -0.05‰) than other anthropogenic emissions, providing unique isotopic fingerprints for this sector. Together with the investigated local activity levels, Hg emissions from biomass combustion reached 402 ± 74 kg/a, which were dozens of times higher than previous estimates. The emissions were characterized by conspicuous spatial heterogeneity, concentrated in the northern and central TP. Specialized Hg emissions and the Hg isotope fingerprint of local biomass combustion can aid in evaluating the influence of this sector on the fragile ecosystems of the TP.
Collapse
Affiliation(s)
- Deming Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310000 Hangzhou China
| | - Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, 100084 Beijing, China
| | - Minneng Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yi Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Guoliang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yujia Ren
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Yuying Cui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Zhijian Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310000 Hangzhou China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiufeng Yin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, 100084 Beijing, China
| |
Collapse
|
13
|
Tong Y, Gao J, Yue T, Zhang X, Liu J, Bai J. Distribution, chemical fractionation, and potential environmental risks of Hg, Cr, Cd, Pb, and As in wastes from ultra-low emission coal-fired industrial boilers in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130606. [PMID: 36603419 DOI: 10.1016/j.jhazmat.2022.130606] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
This study conducted a comprehensive investigation of the distribution, chemical fractionation, and potential environmental risks of Hg, Cd, Cr, Pb, and As in waste based on new data from five ultra-low emission (ULE) coal-fired industrial boilers (CFIBs). The results showed that fly ash was enriched with Cd, Pb, As, and Hg, while its Cr contents were not invariably higher than those of slag. Fly ash was the predominant output flow for Hg, Cd, Cr, Pb, and As in the tested ULE boilers, with higher proportions of HTEs in the fly ash and lower proportions of HTEs in the flue gas than in the non-ULE boilers. The average proportions of residual Hg, Cd, Cr, Pb, and As in wastes revealed the following order: slag > fly ash > flue gas desulfurization (FGD) by-products. The potential environmental risks of Hg, Cd, Cr, Pb, and As in the fly ash, slag, and FGD by-products of CFIBs at the county level in the Beijing-Tianjin-Hebei Air Pollution Transmission Channel Cities ("2 +26 cities") region showed spatial heterogeneity. It is predicted that the potential release of Pb, Cr, and Cd in the fly ash would increase and that of the FGD by-products would decrease after the implementation of the ULE retrofitting of all CFIBs.
Collapse
Affiliation(s)
- Yali Tong
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiajia Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tao Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoxi Zhang
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Jieyu Liu
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; The Key Laboratory of Marine Environmental Science and Ecology, Ministry Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
14
|
Yang P, Liu L, Suo Y, Qu H, Xie G, Zhang C, Deng S, Lv Y. Basic characteristics of magnesium-coal slag solid waste backfill material: Part I. preliminary study on flow, mechanics, hydration and leaching characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117016. [PMID: 36586328 DOI: 10.1016/j.jenvman.2022.117016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The environmental damage caused by surface subsidence and coal-based solid waste (CBSW) is a common problem in the process of coal mining. Backfill mining can control the mining-induced subsidence and solve the problem of bulk solid waste storage. In the present work, a magnesium-coal slag solid waste backfill material (MCB) with modified magnesium slag (MS) as binder and CBSW (fly ash (FA), flue gas desulfurization gypsum (FDG) and coal gasification slag (CGS)) as supplementary cementitious material/aggregate was proposed to meet the needs of coal mining in Northern Shaanxi, China, to realize the comprehensive treatment of goaf and CBSW. The results show that: (1) The rheological curve of the fresh MCB slurry is highly consistent with the Herschel-Bulkley (H-B) model, and its fluidity meets the basic requirements of mine backfill pumping. With the addition of FDG and MS, the yield stress, apparent viscosity and thixotropy of MCB slurry increase, while the pseudoplastic index and slump decrease. (2) The strength of MCB develops slowly in the early stage (0∼14 days) and increases rapidly in the later stage (14∼90 days). Except for the ratio of M20F1 and FDG = 0%, the strength of samples at other ratios (at 28 days) is between 6.06∼11.68 MPa, which meets the strength requirement of 6 MPa for coal mine backfill. The addition of MS and appropriate amount of FDG is beneficial to the development of strength. In contrast, MS exhibits a significant improvement in early strength, and FDG has a significant improvement in late-age strength. (3) Corresponding to the compressive strength, the hydration products C-S(A)-H and AFt of MCB are less in the early stage and greatly increased in the later stage. The active substance in FA/CGS will undergo pozzolanic reaction with the MS hydration product CH. The addition of FDG and MS can promote the reaction and increase the amount of hydration product, but in contrast, the promotion effect of FDG is more significant. (4) The amount of heavy metal leaching of MCB meets the requirements of national standards. The hardened MCB has a solidification/stabilization effect on heavy metal elements, which can significantly reduce the amount of heavy metal leaching. The results imply that MCB is a safe, reliable, and eco-friendly solid waste backfill material, and its application is conducive to the coordinated development of coal resource mining and environmental protection.
Collapse
Affiliation(s)
- Pan Yang
- Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Lang Liu
- Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China; Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi'an, 710054, China.
| | - Yonglu Suo
- Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China; Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi'an, 710054, China.
| | - Huisheng Qu
- Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Geng Xie
- Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Caixin Zhang
- Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Shunchun Deng
- Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Yin Lv
- Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
15
|
Tang Q, Zhang H, Zhao X, Miao C, Yang P, Zhou Z, Ji Q, Chen L. Speciation, bioaccessibility and human health risk assessment of chromium in solid wastes from an ultra-low emission coal-fired power plant, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120400. [PMID: 36228856 DOI: 10.1016/j.envpol.2022.120400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Chromium (Cr) in solid wastes from ultra-low emission (ULE) coal-fired power plants (CFPPs) could engender adverse effects on environment and human health. Hence, solid waste samples containing bottom ash, fly ash, gypsum and sludge were collected from a typical ULE CFPP in China to study the distribution, speciation, bioaccessibility and human health risk of Cr. The results showed that Cr was depleted in gypsum, whereas significantly enriched in bottom ash, fly ash and sludge comparing with feed coal. The ratios of Cr(VI) to total Cr in solid wastes were relatively low, but the increase of flow fractions in Cr chemical binding forms implied the deterioration of environmental stability. Based on the in vitro simulated digestion methods of solubility bioavailability research consortium (SBRC) and physiologically based extraction test (PBET), the bioaccessibility of Cr in the gastric and intestinal phases reached the highest values in either gypsum or sludge. After incorporating bioaccessibility in human health risk assessment, the carcinogenic risk (CR) within acceptable limits of Cr in solid wastes to adults and children was concluded, with the non-carcinogenic hazard quotient (HQ) was all within the safety threshold. The Monte Carlo model was applied to evaluate the uncertainty analysis of human health risk assessment at 5% and 95% confidence interval, and the fitting results were consistent with the calculation results of the carcinogenic and non-carcinogenic risk for adults and children. This study is expected to provide insights for the integration of bioaccessibility into the health risk assessment of Cr in solid wastes from ULE CFPPs, thus is conducive to the disposal of solid wastes and human health protection.
Collapse
Affiliation(s)
- Quan Tang
- School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Huiming Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Xiaohu Zhao
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Chunhui Miao
- Anhui Xinli Power Technology Consulting Company with Limited Liability, State Grid Anhui Electric Power Corporation Research Institute, Hefei, 230601, China
| | - Pengpeng Yang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Zhongkang Zhou
- Anhui Xinli Power Technology Consulting Company with Limited Liability, State Grid Anhui Electric Power Corporation Research Institute, Hefei, 230601, China
| | - Qiaozhen Ji
- Anhui Xinli Power Technology Consulting Company with Limited Liability, State Grid Anhui Electric Power Corporation Research Institute, Hefei, 230601, China
| | - Lai Chen
- School of Business, Anhui University, Hefei, 230601, China
| |
Collapse
|
16
|
Liu Z, Zhao J, Huo J, Ma H, Chen Z. Influence of planting yellowhorn ( Xanthoceras sorbifolium Bunge) on the bacterial and fungal diversity of fly ash. PeerJ 2022; 10:e14015. [PMID: 36172497 PMCID: PMC9512002 DOI: 10.7717/peerj.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023] Open
Abstract
Phytoremediation is a low-cost solution to fly ash pollution and the rhizosphere interactions between plant roots and the fly ash microbiome were important for the phytoremediation. To analyze the dynamic changes of the rhizosphere microbiome during yellowhorn cultivation in fly ash, the bacterial 16S rRNA gene V3-V4 region and the fungal ITS region of the rhizosphere microbiome were sequenced using Illumina MiSeq technology. The changes in fly ash physicochemical properties and the heavy metal content of different yellowhorn tissues were also analyzed. The results showed that both the bacterial and fungal communities were noticeably different after yellowhorn cultivation compared with the control sample. Proteobacteria and Acidobacteria levels increased (p < 0.05) and Firmicutes and Actinobacteria decreased (p < 0.05) in the bacterial community after yellowhorn cultivation. In the fungal community, Ascomycota and Mortierellomycota decreased (p < 0.05), while Chytridiomycota increased (p < 0.05). The levels of four heavy metals (Cr, Cd, Hg, Pb and As) decreased in the fly ash after yellowhorn cultivation. These metals were absorbed by the yellowhorn plants and accumulated in the fibrous root, taproot, stem and leaf tissues of these plants. Accordingly, the abundance of bacteria that could solubilize heavy metals increased (p < 0.05). In summary, the cultivation of yellowhorn affected the composition of the rhizosphere microbial communities in fly ash, which is of great significance for the biological remediation of fly ash.
Collapse
Affiliation(s)
- Zehui Liu
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Jianguo Zhao
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Jinxian Huo
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Hongfang Ma
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Zhiwen Chen
- Institute of Carbon Materials Science, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China,Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| |
Collapse
|
17
|
Wu J, Tou F, Guo X, Liu C, Sun Y, Xu M, Liu M, Yang Y. Vast emission of Fe- and Ti-containing nanoparticles from representative coal-fired power plants in China and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156070. [PMID: 35597359 DOI: 10.1016/j.scitotenv.2022.156070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Coal combustion is considered an important source of atmospheric nanoparticles (NPs). However, the underlying information on the emission of NPs from coal-fired power plants (CFPPs) is still lacking. Along these lines, in this study, coal fly ashes (CFAs) were collected from different multi-stage particulate emission control devices (PECDs) in three representative CFPPs in China. The particle size and particle number concentration (PNC) of typical metal-containing NPs (Fe- and Ti-containing NPs) were analyzed by using the single-particle inductively coupled plasma mass (SP-ICP-MS) technology. By increasing the stage of PECDs, the mean particle sizes of NPs gradually declined and the PNCs of Fe- and Ti-containing NPs increased significantly. Specifically, the PNC of final-stage CFA was 3 - 8 times that of the first-stage CFA. A comparison of the electrostatic precipitators (ESPs), fabric filters (FFs), and electrostatic-fabric-integrated precipitators (EFIPs) showed that the state-of-the-art EFIPs exhibited a relatively good NP-removal efficiency with the highest PNCs. In addition, NP hourly emissions in all coal combustion by-products (CCPs) were further calculated in a typical CFPP. The total emissions of Fe- and Ti-containing NPs in all CCPs were 1.87 × 1018 and 1.57 × 1018 particles/h, respectively. NPs were mainly enriched in CFA trapped by PECDs (80% of total emissions). Although the mass of the CFA that escaped through the stack was extremely low, it contained the highest PNCs of Fe- and Ti-containing NPs of all CCPs, accounting for 3.41% and 1.67% of the corresponding total NP emissions. These NPs may also coexist with various toxic metals, such as Zn and Pb, and be released directly into the atmosphere, where they pose a potential risk to human health.
Collapse
Affiliation(s)
- Jiayuan Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feiyun Tou
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingpan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chang Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yuan Sun
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
18
|
Yong MT, Babla M, Karan S, Katwal U, Jahandari S, Matta P, Chen ZH, Tao Z. Coal tailings as a soil conditioner: evaluation of tailing properties and effect on tomato plants. PLANT GROWTH REGULATION 2022; 98:439-450. [PMID: 35892116 PMCID: PMC9302870 DOI: 10.1007/s10725-022-00870-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/04/2022] [Indexed: 06/02/2023]
Abstract
The global coal industry yields a vast amount of tailings waste, and the utilisation of these tailings necessitates innovative efforts contributing to the United Nations Sustainable Development Goals. One of such novel initiatives is to reuse coal tailings (CT) safely, ecofriendly, and cost-effectively in agroecosystems as a soil conditioner to enhance the productivity of lands. This study aimed to evaluate the potential utilisation of coal tailings waste in the soil amelioration to improve plant performance. The physico-chemical characteristics of coal tailings from two Australian mining sites (CT1 and CT2) showed that the tailings samples are alkaline with loamy and loamy sand textures, respectively. The tailings have ~ 3% of macronutrients, high carbon (C), and low heavy metals and metalloids (As, Cd, Se, Cu, Zn, and Pb). The germination rate of tomato seeds was improved in the low-rate CT treatment. Greenhouse tomato plants exhibited an increase in leaf's K, Ca, and Mg contents in CT1 and CT2 treatments. More importantly, the CT treatment-induced accumulation of heavy metals in plants was mostly insignificant in both CT treatments. Therefore, we highlight the potential application of coal tailings as a soil conditioner because of the beneficial effect of improved carbon and nutrients (N, P, K, Mg, and Ca) in tomato leaves. Further amendment of the coal tailings should focus on the adjustment of pH and the addition of other beneficial materials for the improvement of soil properties for crops in both the greenhouse and the field.
Collapse
Affiliation(s)
- Miing-Tiem Yong
- School of Science, Western Sydney University, Penrith, NSW 2751 Australia
| | - Mohammad Babla
- School of Science, Western Sydney University, Penrith, NSW 2751 Australia
| | - Shawan Karan
- Technical Support Services and Mass Spectrometry Facility, Western Sydney University, Campbelltown, NSW 2560 Australia
| | - Utsab Katwal
- Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751 Australia
| | - Soheil Jahandari
- Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751 Australia
| | - Pushpinder Matta
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751 Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751 Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751 Australia
| | - Zhong Tao
- Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751 Australia
| |
Collapse
|
19
|
Guo Y, Zhang Y, Zhao X, Xu J, Qiu G, Jia W, Wu J, Guo F. Multifaceted evaluation of distribution, occurrence, and leaching features of typical heavy metals in different-sized coal gasification fine slag from Ningdong region, China: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154726. [PMID: 35331771 DOI: 10.1016/j.scitotenv.2022.154726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The coal gasification fine slag (CGFS) from the entrained-flow coal gasification unit faces the challenge of safe disposal and clean utilization in the Ningdong region, China. This study aims to provide complete and thorough understanding of the distribution features, chemical speciation, environmental impact, and leaching behavior of typical heavy metals (i.e., V, Cr, Mn, Ni, Cu, Zn, Ba, and Pb) in the CGFS with different size fractions. The results show that the distribution of selected heavy metals in the CGFS has evident particle size dependence. Except for Zn, the other heavy metals in different size fractions mainly exist in chemical speciation of residual form with the ratio of 50.11-86.69 wt%. Moreover, it is found that the heavy metals in the different-sized CGFS show different RAC (risk assessment code) environmental risk levels and TCLP (Toxicity Characteristic Leaching Procedure) leaching concentrations. Especially, Zn in SGFS-C and SGFS-D posed a high-risk level to the environment, while the heavy metal elements of Cr, Mn, Ni, Zn, and Ba in other size fractions are classified as a medium environmental risk. In addition, the TCLP test results indicate that the leaching concentration of Cr, Mn, Ni, Zn, Ba, and Pb exceeds the groundwater-related regulatory limit in China. The pH-dependent leaching experiments suggest that Pb shows the amphoteric behavior, while the leaching mode of other heavy metals seems to be the cationic pattern. Furthermore, the leachability of the selected heavy metals in small-size fractions of the CGFS should be given more consideration at both acid and alkaline pH ranges. The leaching kinetic results demonstrate that the most effective mechanism to describe the leaching process of Cr, Ni, Zn, and Pb in different CGFS size fractions is the diffusion-controlled theory, which is supported by the different morphological traits of spherical mineral particles and carbon particles in the CGFS.
Collapse
Affiliation(s)
- Yang Guo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Yixin Zhang
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China; Shandong Xuanyuan Scientific Engineering and Industrial Technology Research Institute Co., Ltd., Heze 274918, China
| | - Xu Zhao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Jie Xu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Guofeng Qiu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Wenke Jia
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Jianjun Wu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China.
| | - Fanhui Guo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
20
|
Investigating the Optimization Design of Internal Flow Fields Using a Selective Catalytic Reduction Device and Computational Fluid Dynamics. ENERGIES 2022. [DOI: 10.3390/en15041451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Selective catalytic reduction (SCR) and denitrification are the best technologies for nitrogen oxides (NOx) control in coal-fired power plants, and their denitration efficiency and ammonia escape rate are closely related to their internal flow characteristics. By adding a deflector to the SCR device, the flow field in the curve can be effectively improved, and the stable and efficient operation of the SCR device can be realized. Based on the numerical simulation method, the SCR system of a coking coal-fired boiler in a steel plant was simulated using k-ε (the turbulence model), and three design schemes of deflectors were proposed and numerically simulated simultaneously. After optimization, the ammonia injection grid’s downstream velocity variance coefficient CV was 6.69, the catalyst upper cross-section velocity variance coefficient was 11.84, the cross-sectional temperature average was 499 K, the maximum temperature deviation was 9 °C, the maximum-to-minimum temperature interval span was 15 °C, the cross-sectional NH3/NOx molar ratio average value was 0.8122, the coefficient of variance was 4.67, and the pressure loss was 1855 Pa. The findings of this work will help improve the denitration efficiency and provide an important reference for the actual transformation design.
Collapse
|
21
|
Ma S, Xu F, Qiu D, Fan S, Wang R, Li Y, Chen X. The occurrence, transformation and control of selenium in coal-fired power plants: Status quo and development. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:131-146. [PMID: 34846276 DOI: 10.1080/10962247.2021.2010620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
As a trace element, selenium can cause serious harm to organisms when the concentration is too high. Coal-fired power plants are the main source of man-made selenium emissions. How to control the selenium pollution of coal-fired power plants to realize the renewable selenium and the sustainability of coal has not attracted enough attention from the whole world. This paper outlines the conversion and occurrence of selenium in coal-fired power plants. A small part of the selenium produced by combustion can be removed by selective catalytic reduction (SCR) and electrostatic precipitator (ESP) after the gas phase undergoes physical condensation and chemical adsorption to combine with the particulate matter in the flue gas.Because the chemical precipitation method has poor selenium removal effect, the remaining part enters the flue gas desulfurization absorption tower and can be enriched in the desulfurization slurry. The occurrence situation and conversion pathway of selenium in desulfurization slurry are introduced subsequently, the research progress of selenium removal from wet desulfurization wastewater is reviewed from three aspects: physics, biology and chemistry. We believe that the coupling application of oxidation-reduction potential (ORP) and pH can optimize selenium removal in the desulfurization system by improving the oxidation control. As a technology for wet desulfurization system to treat selenium pollution, it has a good development prospect in near future.Implications: Selenium is a trace element present in coal. It is not only of great significance to the life activities of organisms, but also a kind of rare resource. As the most important source of man-made emissions, coal-fired power plants will cause waste of selenium resources and selenium pollution in the surrounding environment. In this study, the occurrence, conversion and control of selenium in coal-fired power plants were systematically sorted out and analyzed. It is helpful for scholars to study the selenium transformation process more deeply. It is of great significance for policy formulation of recommended control technologies and emission limits. It is of great value for the formulation of recommended control technology and the in-depth study of the selenium transformation process.
Collapse
Affiliation(s)
- Shuangchen Ma
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, People's Republic of China
- Moe Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, People's Republic of China
| | - Fang Xu
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, People's Republic of China
- Moe Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, People's Republic of China
| | - Dao Qiu
- Department of Production and Technology, Huadian Xiangyang Electricity Supply Co, Ltd Huadian Xiangyang Electricity Supply Co, Ltd, Xiangyang, People's Republic of China
| | - Shuaijun Fan
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, People's Republic of China
| | - Ruimin Wang
- Department of Production and Technology, Huadian Xiangyang Electricity Supply Co, Ltd Huadian Xiangyang Electricity Supply Co, Ltd, Xiangyang, People's Republic of China
| | - Yang Li
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, People's Republic of China
| | - Xiangyang Chen
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, People's Republic of China
| |
Collapse
|
22
|
Ou Y, Ma S, Zhou X, Jin S, Wang L, Wang X, Shi J, Liu C, Zhang Y, Zhang J, He C, Xiao Y. Multi-element Interactive Improvement Mechanism of Coal Fly Ash-Based Soil Conditioner on Wheat. Appl Biochem Biotechnol 2021; 194:1580-1605. [PMID: 34822061 DOI: 10.1007/s12010-021-03756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
Globally, coal fly ash (CFA) is a bulk industrial solid waste that is difficult to be disposed of, which posed serious environmental risks to the atmosphere, water, and soil. Besides, the food crisis outbreaks worldwide. In this case, the utilization of CFA to produce soil amendments is expected to improve the soil quality and to increase the grain yield. This paper took the soil conditioner prepared by chemical activation method as the research object, analyzed, and found out its mechanism when increasing the yield and improving the quality of crops. First, the simulated hydroponics method was used to identify the key yield-increasing factors in the soil conditioner as well as the effects of those factors by taking the plant height, stem thickness, dry weight, and fresh weight of wheat as indicators at the early stage of growth. Then, SPSS was used to analyze the interaction among K, P, and other four middle trace elements in the stem and the leaf of wheat. The results showed that for wheat seedlings, there were strong interactions between Fe and Mg, Mg and Ca, and Ca and Si. Fe had a significant enhancement effect on the fresh weight of wheat seedlings. Mg had a significant enhancement effect on both the fresh weight and dry weight of wheat seedlings. Si can greatly enhance the dry weight and plant height, and Ca can greatly increase the stem thickness. It was also found that the soil conditioner and the basic N, P, and K fertilizer had a good mutual promotion effect. Among the four elements, Mg and Si are the key growth factors. When the nutrient elements were relatively poor, the increase of Mg by 50% would lead to the growth of the fresh weight of wheat seedlings by 65%; when the content of active Si increased by 50%, the fresh weight would increase by 52%. Therefore, the soil conditioner prepared by modified treatment of CFA owns a good application prospect to increase the yield and quality of crops.
Collapse
Affiliation(s)
- Yanjun Ou
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Shuhua Ma
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Xiao Zhou
- Xilingol Professional College, Xilinhot, 026000, People's Republic of China
| | - Shengxiang Jin
- Beijing Jingneng Electric Power Co., Ltd, Beijing, 100025, People's Republic of China
| | - Liuhu Wang
- Inner Mongolia Daihai Power Generation Co., Ltd, Ulanqab, Inner Mongolia, 012000, People's Republic of China
| | - Xiaohui Wang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Jianping Shi
- Xilingol Professional College, Xilinhot, 026000, People's Republic of China
| | - Chenxu Liu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yi Zhang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Jinsong Zhang
- Inner Mongolia Daihai Power Generation Co., Ltd, Ulanqab, Inner Mongolia, 012000, People's Republic of China
| | - Chuan He
- Beijing Jingneng Electric Power Co., Ltd, Beijing, 100025, People's Republic of China
| | - Yu Xiao
- Inner Mongolia Daihai Power Generation Co., Ltd, Ulanqab, Inner Mongolia, 012000, People's Republic of China
| |
Collapse
|