1
|
Zhang J, Lu G, Wang M, Zhang P, Ding K. Adsorption and desorption of parachlormetaxylenol by aged microplastics and molecular mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175682. [PMID: 39173768 DOI: 10.1016/j.scitotenv.2024.175682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The addition of active ingredients such as antibacterial agent and non-active ingredients such as plastic microspheres (MPs) in personal care products (PCPs) are the common pollutants in the aquatic environment, and their coexistence poses potential threat to the aquatic ecosystem. As a substitute for the traditional antibacterial ingredients triclosan and triclocarban, the usage of parachlormetaxylenol (PCMX) is on the rise and is widely used in PCPs. In this study, the adsorption and desorption behaviors of PCMX were investigated with two typical MPs, polyvinyl chloride (PVC) and polyethylene (PE), and the effects of different aging modes and molecular mechanisms were explored through batch experiments and density functional theory calculation. Both laboratory aging and field aging resulted in surface wrinkles of MPs, along with an increased proportion of oxygen-containing functional groups (CO, -OH). At the same aging time, the degree of laboratory aging was stronger than that of field aging, and the aging degree of PVC was greater that of PE. The aging process enhanced the adsorption capacity of MPs for PCMX. The equilibrium adsorption capacity of PVC increased from 3.713 mg/g (virgin) to 3.823 mg/g (field aging) and 3.969 mg/g (laboratory aging), while that of PE increased from 3.509 mg/g to 3.879 mg/g and 4.109 mg/g, respectively. Meanwhile, aging also resulted in an increase in the desorption capacity of PCMX from PVC and PE. Oxygen-containing functional groups in aged MPs could serve as adsorption sites for PCMX and improved the electrostatic adsorption capacity. Oxygen-containing groups generated on the surface of aged MPs formed hydrogen bonding with the phenolic hydroxyl groups of PCMX, which became the main driving force for adsorption. Our results reveal the potential impact and mechanism of aging on the adsorption of PCMX by MPs, which provides new insights for the interaction mechanism between environmental MPs and associated contaminants.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Keqiang Ding
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| |
Collapse
|
2
|
Pompermaier A, Alves C, Chagas FB, Tamagno WA, Bridi C, Ferreira GF, Hartmann PA, Hartmann M. Effects of glyphosate based herbicide exposure in early developmental stages of Physalaemus gracilis. Sci Rep 2024; 14:25652. [PMID: 39465295 PMCID: PMC11514183 DOI: 10.1038/s41598-024-76338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
The impact of environmental pollutants has been a focus of investigation in recent years. Studies assessing the effects of these pollutants are essential for understanding the challenges faced by non-target species. Among the many substances used for agricultural purposes, the herbicide glyphosate is one of the most widely marketed in recent years. This broad-spectrum herbicide is commonly used to protect a variety of crops. In this study, we evaluated the effects of chronic glyphosate exposure on a native amphibian species, Physalaemus gracilis. Amphibians, which develop in aquatic environments, are highly sensitive to pesticides. Because of this, we investigated morphological, physiological, behavioral, and biochemical parameters in the early stages of development. The animals were exposed to environmentally relevant concentrations of a glyphosate-based herbicide (0, 100, 350, and 700 µg L⁻¹) during their first seven days of life. As a result, we observed impairments in anti-predatory behavior, reduced body mass index, and scaled mass index, malformations of the mouth and intestine, increased acetylcholinesterase activity, cardiotoxicity, and oxidative stress. These findings underscore the importance of studying native non-target species and highlight the need to evaluate the effects of environmentally relevant concentrations, as well as to review legislation regarding permissible levels of glyphosate in surface water and public water supplies.
Collapse
Affiliation(s)
- Aline Pompermaier
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil.
| | - Carla Alves
- Federal Institute of Education, Science and Technology of Rio Grande do Sul, Sertão, RS, Brazil
| | - Flavia Bernardo Chagas
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Cristina Bridi
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - Marilia Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim, RS, Brazil
| |
Collapse
|
3
|
Li Z, Chen Y. Behavioral effects of polylactic acid microplastics on the tadpoles of Pelophylax nigromaculatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117146. [PMID: 39378648 DOI: 10.1016/j.ecoenv.2024.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Polylactic acid microplastics (PLA-MPs), biobased plastics made from renewable resources, are considered to be a potential solution for alleviating the pollution pressure of plastics; however, the potential environmental risks of PLA-MPs must be further evaluated. In this study, the effects of PLA-MPs on the tadpoles of Pelophylax nigromaculatus were investigated by designing different PLA-MP exposure experiments. We found that PLA-MPs negatively affected the survival, growth and development of tadpoles. In addition, in open field tests, PLA-MPs also reduced tadpole locomotion while resulting in more repetitive searching behavior within a restricted area. This effect was more pronounced at higher concentrations of PLA-MPs (20 mg/mL) and in combination with the heavy metal Cd2+. In the tank tests, PLA-MPs increased tadpole aggregation, and their combined effect with Cd2+ resulted in a tendency for tadpole aggregation to increase and then decrease, with the distribution tending to favor aggregation in edge regions. PLA-MPs also strongly inhibited the spatiotemporal exploratory activities of tadpoles in the tanks. This study provides a more detailed investigation of the behavioral effects of PLA-MPs on tadpoles and provides a theoretical basis for subsequent ecotoxicological studies of PLA-MPs.
Collapse
Affiliation(s)
- Zihan Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Lisiecka N, Parus A, Simpson M, Kloziński A, Zembrzuska J, Frankowski R, Zgoła-Grześkowiak A, Woźniak-Karczewska M, Siwińska-Ciesielczyk K, Niemczak M, Sandomierski M, Eberlein C, Heipieper HJ, Chrzanowski Ł. Unraveling the effects of acrylonitrile butadiene styrene (ABS) microplastic ageing on the sorption and toxicity of ionic liquids with 2,4-D and glyphosate herbicides. CHEMOSPHERE 2024; 364:143271. [PMID: 39241837 DOI: 10.1016/j.chemosphere.2024.143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics represent a novel category of environmental pollutants, and understanding their interactions with typical xenobiotics is crucial. In this study, we investigated the impact of ionic liquids (ILs) containing herbicidal anions, namely glyphosate [Glyph] and 2,4-dichlorophenoxyacetate [2,4-D], and the surfactant cation - dodecyltrimethylammonium [C12TMA] on acrylonitrile butadiene styrene (ABS) microplastics. The aim of the study was to assess the sorption capacity of microplastics that were present in both untreated and aged form using standard and modified Fenton methods. In addition, impact on toxicity and stress adaptation of the model soil bacterium Pseudomonas putida KT2440 was measured. Upon ageing, ABS microplastics underwent a fivefold increase in BET surface area and total pore volume (from 0.001 to 0.004 cm3/g) which lead to a dramatic increase in adsorption of the cations on ABS microplastics from 40 to 45% for virgin ABS to 75-80% for aged ABS. Toxicity was mainly attributed to hydrophobic cations in ILs (EC50 ∼ 60-65 mg/dm3), which was also mitigated by sorption on ABS. Furthermore, both cations and anions behaved similarly across different ILs, corresponding chlorides, and substrates used in the ILs synthesis. These findings highlight microplastics potential as hazardous sorbents, contributing to the accumulation of xenobiotics in the environment.
Collapse
Affiliation(s)
- Natalia Lisiecka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Anna Parus
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | - Maria Simpson
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Arkadiusz Kloziński
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Marta Woźniak-Karczewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | | | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
5
|
Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Proc Biol Sci 2024; 291:20241536. [PMID: 39191283 PMCID: PMC11349447 DOI: 10.1098/rspb.2024.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Collapse
Affiliation(s)
- Colette Martin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig38106, Germany
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, Sempach6204, Switzerland
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
| |
Collapse
|
6
|
Yu H, Li D, Wu Y, Miao P, Zhou C, Cheng H, Dong Q, Zhao Y, Liu Z, Zhou L, Pan C. Integrative omics analyses of tea (Camellia sinensis) under glufosinate stress reveal defense mechanisms: A trade-off with flavor loss. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134542. [PMID: 38776809 DOI: 10.1016/j.jhazmat.2024.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Extensively applied glufosinate (GLU) will trigger molecular alterations in nontarget tea plants (Camellia sinensis), which inadvertently disturbs metabolites and finally affects tea quality. The mechanistic response of tea plants to GLU remains unexplored. This study investigated GLU residue behavior, the impact on photosynthetic capacity, specialized metabolites, secondary pathways, and transcript levels in tea seedlings. Here, GLU mainly metabolized to MPP and accumulated more in mature leaves than in tender ones. GLU catastrophically affected photosynthesis, leading to leaf chlorosis, and decreased Fv/Fm and chlorophyll content. Physiological and biochemical, metabolomics, and transcriptomics analyses were integrated. Showing that GLU disrupted the photosynthetic electron transport chain, triggered ROS and antioxidant system, and inhibited photosynthetic carbon fixation. GLU targeted glutamine synthetase (GS) leading to the accumulation of ammonium and the inhibition of key umami L-theanine, causing a disorder in nitrogen metabolism, especially for amino acids synthesis. Interestingly, biosynthesis of primary flavonoids was sacrificed for defensive phenolic acids and lignin formulation, leading to possible losses in nutrition and tenderness in leaves. This study revealed the defense intricacies and potential quality deterioration of tea plants responding to GLU stress. Valuable insights into detoxification mechanisms for non-target crops post-GLU exposure were offered.
Collapse
Affiliation(s)
- Huan Yu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Yangliu Wu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Peijuan Miao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chunran Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haiyan Cheng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qinyong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yingjie Zhao
- Guangxi Research Institute of Tea Science, Guilin 541004, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhusheng Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Canping Pan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Laçin C, Turhan DO, Güngördü A. Assessing the impact of antiviral drugs commonly utilized during the COVID-19 pandemic on the embryonic development of Xenopus laevis. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134462. [PMID: 38718506 DOI: 10.1016/j.jhazmat.2024.134462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
The antiviral drugs favipiravir and oseltamivir are widely used to treat viral infections, including coronavirus 2019 (COVID-19), and their levels are expected to increase in the aquatic environment. In this study, the potential toxic and teratogenic effects of these drugs were evaluated using the frog embryo teratogenesis assay Xenopus (FETAX). In addition, glutathione S-transferase (GST), glutathione reductase (GR), catalase, carboxylesterase (CaE), and acetylcholinesterase (AChE) enzyme activities and malondialdehyde levels were measured as biochemical markers in embryos and tadpoles for comparative assessment of the sublethal effects of the test compounds. Prior to embryo exposure, drug concentrations in the exposure medium were measured with high-performance liquid chromatography. The 96-h median lethal concentration (LC50) was 137.9 and 32.3 mg/L for favipiravir and oseltamivir, respectively. The teratogenic index for favipiravir was 4.67. Both favipiravir and oseltamivir inhibited GR, CaE, and AChE activities in embryos, while favipiravir increased the GST and CaE activities in tadpoles. In conclusion, favipiravir, for which teratogenicity data are available in mammalian test organisms and human teratogenicity is controversial, inhibited Xenopus laevis embryo development and was teratogenic. In addition, sublethal concentrations of both drugs altered the biochemical responses in embryos and tadpoles, with differences between the developmental stages.
Collapse
Affiliation(s)
- Cemal Laçin
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey
| | - Duygu Ozhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey.
| |
Collapse
|
8
|
Bao X, Gu Y, Chen L, Wang Z, Pan H, Huang S, Meng Z, Chen X. Microplastics derived from plastic mulch films and their carrier function effect on the environmental risk of pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171472. [PMID: 38458459 DOI: 10.1016/j.scitotenv.2024.171472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Plastic film mulching can maintain soil water and heat conditions, promote plant growth and thus generate considerable economic benefits in agriculture. However, as they age, these plastics degrade and form microplastics (MPs). Additionally, pesticides are widely utilized to control organisms that harm plants, and they can ultimately enter and remain in the environment after use. Pesticides can also be sorbed by MPs, and the sorption kinetics and isotherms explain the three stages of pesticide sorption: rapid sorption, slow sorption and sorption equilibrium. In this process, hydrophobic and partition interactions, electrostatic interactions and valence bond interactions are the main sorption mechanisms. Additionally, small MPs, biodegradable MPs and aged conventional MPs often exhibit stronger pesticide sorption capacity. As environmental conditions change, especially in simulated biological media, pesticides can desorb from MPs. The utilization of pesticides by environmental microorganisms is the main factor controlling the degradation rate of pesticides in the presence of MPs. Pesticide sorption by MPs and size effects of MPs on pesticides are related to the internal exposure level of biological pesticides and changes in pesticide toxicity in the presence of MPs. Most studies have suggested that MPs exacerbate the toxicological effects of pesticides on sentinel species. Hence, the environmental risks of pesticides are altered by MPs and the carrier function of MPs. Based on this, research on the affinity between MPs and various pesticides should be systematically conducted. During agricultural production, pesticides should be cautiously selected and used plastic film to ensure human health and ecological security.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Long Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zijian Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hui Pan
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiran Huang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
9
|
Bao X, Wang Z, Liu L, Wang D, Gu Y, Chen L, Chen X, Meng Z. The combined effects of azoxystrobin and different aged polyethylene microplastics on earthworms (Eisenia fetida): A systematic evaluation based on oxidative damage and intestinal function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171494. [PMID: 38453077 DOI: 10.1016/j.scitotenv.2024.171494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Pesticides and microplastics are common pollutants in soil environments, adversely affecting soil organisms. However, the combined toxicological effects of aged microplastics and pesticides on soil organisms are still unclear. In this study, we systematically studied the toxicological effects of azoxystrobin and four different aged polyethylene (PE) microplastics on earthworms (Eisenia fetida). The purpose was to evaluate the effects of aging microplastics on the toxicity of microplastics-pesticides combinations on earthworms. The results showed that different-aged PE microplastics promoted azoxystrobin accumulation in earthworms. Meanwhile, combined exposure to azoxystrobin and aged PE microplastics decreased the body weight of earthworms. Besides, both single and combined exposure to azoxystrobin and aged PE microplastics could lead to oxidative damage in earthworms. Further studies revealed that azoxystrobin and aged PE microplastics damage the intestinal structure and function of earthworms. Additionally, the combination of different aged PE microplastics and azoxystrobin was more toxic on earthworms than single exposures. The PE microplastics subjected to mechanical wear, ultraviolet radiation, and acid aging exhibited the strongest toxicity enhancement effects on earthworms. This high toxicity may be related to the modification of PE microplastics caused by aging. In summary, these results demonstrated the enhancing effects of aged PE microplastics on the toxicity of pesticides to earthworms. More importantly, aged PE microplastics exhibited stronger toxicity-enhancing effects in the early exposure stages. This study provides important data supporting the impact of different aged PE microplastics on the environmental risks of pesticides.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zijian Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Dengwei Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Long Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
10
|
Curi LM, Barrios CE, Attademo AM, Caramello C, Peltzer PM, Lajmanovich RC, Sánchez S, Hernández DR. A realistic combined exposure scenario: effect of microplastics and atrazine on Piaractus mesopotamicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29794-29810. [PMID: 38592632 DOI: 10.1007/s11356-024-33177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Microplastics, considered emerging environmental contaminants resulting from plastic degradation, are discovered in diverse aquatic ecosystems and can be unintentionally ingested by fish. Therefore, it is essential to characterize their interaction with other contaminants, such as agrochemicals, in aquatic environments. This study aimed to assess histological, enzymatic, and genotoxic biomarkers in juvenile pacú (Piaractus mesopotamicus) exposed to polyethylene (PE) microplastic particles and the herbicide atrazine, individually or combined, for 15 days. Four treatments were used: a negative control (CON), PE in the fish diet (0.1% w/w, FPE), atrazine through water (100 μg L-1, ATZ), and the mixture (ATZ+FPE). Results confirmed histological alterations in gills (edema and lamellar fusion) and liver (necrotic areas and congestion) of fish exposed to ATZ and ATZ+FPE. The number of goblet cells increased in the posterior intestine of fish under ATZ+FPE compared to CON and FPE. Enzyme activities (CAT, GST, AChE, and BChE) significantly increased in ATZ+FPE compared to CON. However, no genotoxic effect was demonstrated. These findings provide insights into the complex impacts of simultaneous exposure to atrazine and microplastics, emphasizing the need for continued research to guide effective environmental management strategies against these contaminants that represent a risk to aquatic organisms.
Collapse
Affiliation(s)
- Lucila Marilén Curi
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina.
| | - Carlos Eduardo Barrios
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - Andrés Maximiliano Attademo
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Cynthia Caramello
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina
| | - Paola Mariela Peltzer
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Rafael Carlos Lajmanovich
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Sebastián Sánchez
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - David Roque Hernández
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| |
Collapse
|
11
|
Salla RF, Oliveira FN, Jacintho JC, Cirqueira F, Tsukada E, Vieira LG, Rocha TL. Microplastics and TiO 2 nanoparticles mixture as an emerging threat to amphibians: A case study on bullfrog embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123624. [PMID: 38387544 DOI: 10.1016/j.envpol.2024.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Emerging contaminants can act as contributing factors to the decline of amphibian populations worldwide. Recently, scientists have drawn attention to the potential ecotoxicity of microplastics and nanomaterials in amphibians, however, their possible effects on embryonic developmental stages are still absent. Thus, the present study analyzed the developmental toxicity of environmentally relevant concentrations of polyethylene microplastics (PE MPs; 60 mg/L) and titanium dioxide nanoparticles (TiO2 NPs; 10 μg/L), isolated or in combination (Mix group) on bullfrog embryos, Aquarana catesbeiana, adapting the Frog Embryo Teratogenesis Assay (FETAX, 96h). Allied to the FETAX protocol, we also analyzed the heart rate and morphometric data. The exposure reduced the survival and hatching rates in groups exposed to TiO2 NPs, and to a lesser extent, also affected the Mix group. TiO2 NPs possibly interacted with the hatching enzymes of the embryos, preventing hatching, and reducing their survival. The reduced effects in the Mix group are due to the agglomeration of both toxicants, making the NPs less available for the embryos. PE MPs got attached to the gelatinous capsule of the chorion (confirmed by fluorescence microscopy), which protected the embryos from eventual direct effects of the microplastics on the hatching and survival rates. Although there were no cardiotoxic effects nor morphometric alterations, there was a significant increase in abdominal edemas in the hatched embryos of the PE MPs group, which indicates that osmoregulation might have been affected by the attachment of the microplastics on the embryos' gelatinous capsule. This study presents the first evidence of developmental toxicity of environmental mixtures of microplastics and nanoparticles on amphibians and reinforces the need for more studies with other amphibian species, especially neotropical specimens that could present bigger sensibility. Our study also highlighted several features of the FETAX protocol as useful tools to evaluate the embryotoxicity of several pollutants on amphibians.
Collapse
Affiliation(s)
- Raquel Fernanda Salla
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil; Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Fagner Neves Oliveira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil; Laboratory for Research in Morphology and Ontogeny, Institute for Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Jaqueline C Jacintho
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Felipe Cirqueira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Elisabete Tsukada
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Lucélia Gonçalves Vieira
- Laboratory for Research in Morphology and Ontogeny, Institute for Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
12
|
Sandoval MA, Calzadilla W, Vidal J, Brillas E, Salazar-González R. Contaminants of emerging concern: Occurrence, analytical techniques, and removal with electrochemical advanced oxidation processes with special emphasis in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123397. [PMID: 38272166 DOI: 10.1016/j.envpol.2024.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas Km. 10.5, 36262, Guanajuato, Mexico
| | - Wendy Calzadilla
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water, (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Jorge Vidal
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ricardo Salazar-González
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
13
|
Szkudlarek M, Najbar B, Jankowiak Ł. Similarity of Microplastic Characteristics between Amphibian Larvae and Their Aquatic Environment. Animals (Basel) 2024; 14:717. [PMID: 38473103 PMCID: PMC10930510 DOI: 10.3390/ani14050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Microplastics, pervasive environmental pollutants, are found across various ecosystems, including small inland water bodies. They are reported in different environmental media, yet little is known about the mutual relationships of microplastics' properties across components of small inland water bodies. Here, having extracted and analyzed these particles from water, sediment, and amphibian larvae from 23 sites, we test within-site similarities regarding shape (morphological type), color, and chemical composition (polymer type). We also provide a brief characterization of the microplastics extracted from water and sediment regarding these parameters. We observed a statistically significant similarity of microplastics' shapes and colors between those extracted from water and amphibian larvae. Such a similarity, though less pronounced, was also found between amphibian larvae and sediment. However, the chemical composition (polymer type) of the microplastics from water, sediment, and amphibian larvae did not exhibit any similarities beyond what would be expected by chance. The observed congruence in the colors and shapes of microplastics between amphibian larvae and their corresponding aquatic habitats underscores the profound interconnectedness among the constituents of freshwater ecosystems.
Collapse
Affiliation(s)
- Michał Szkudlarek
- Department of Zoology, Institute of Biological Sciences, University of Zielona Góra, Profesora Zygmunta Szafrana 1, 65-516 Zielona Góra, Poland
- Doctoral School of Exact and Technical Sciences, University of Zielona Góra, Al. Wojska Polskiego 69, 65-762 Zielona Góra, Poland
| | - Bartłomiej Najbar
- Department of Zoology, Institute of Biological Sciences, University of Zielona Góra, Profesora Zygmunta Szafrana 1, 65-516 Zielona Góra, Poland
| | - Łukasz Jankowiak
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland
| |
Collapse
|
14
|
Rampazzo G, Zironi E, Depau G, Pagliuca G, Gazzotti T. Preliminary data on glyphosate, glufosinate, and metabolite contamination in Italian honey samples. Ital J Food Saf 2024; 13:11996. [PMID: 38577579 PMCID: PMC10993646 DOI: 10.4081/ijfs.2024.11996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 04/06/2024] Open
Abstract
Glyphosate and glufosinate are among the most widely used pesticides in agriculture worldwide. Their extensive use leads to the presence of their residues on crops and in the surrounding environment. Beehives, bees, and apiculture products can represent potential sources for the accumulation of these substances and their metabolites, and the consequences for bee health, as well as the level of risk to human health from consuming contaminated food, are still unclear. Furthermore, information on the contamination levels of honey and other beehive products by these compounds remains poorly documented. This study is part of a broader research effort aimed at developing specific analytical methods for monitoring the level of these contaminants in bee products. The methodology employed enabled the acquisition of preliminary information concerning the levels of glyphosate and glufosinate contamination in honey samples obtained from various retailers in Italy to assess compliance with the limits established by Regulation 293/2013. The liquid chromatography tandem mass spectrometry analysis of the 30 honey samples revealed quantifiable levels of glyphosate in eight samples, with contamination ranging from 5.4 to 138.5 ng/g. Notably, one sample of the wild-flower type showed residue levels nearly three times the maximum residue limit. Additionally, trace levels of glyphosate contamination were detected in another ten samples. It is noteworthy that glufosinate and its metabolites were not detected in any of the analyzed samples within the established method's detection ranges.
Collapse
Affiliation(s)
- Giulia Rampazzo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Ozzano dell’Emilia, Italy
| | | | | | | | | |
Collapse
|
15
|
Yang M, Zhao L, Yu X, Shu W, Cao F, Liu Q, Liu M, Wang J, Jiang Y. Microbial community structure and co-occurrence network stability in seawater and microplastic biofilms under prometryn pollution in marine ecosystems. MARINE POLLUTION BULLETIN 2024; 199:115960. [PMID: 38159383 DOI: 10.1016/j.marpolbul.2023.115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Prometryn has been extensively detected in marine environment because of its widespread usage in agriculture and aquaculture and has been concerns since its serious effects on aquatic organisms. However, its impact on the microbial community in the marine ecosystem including seawater and biofilm is still unclear. Therefore, a short-term indoor microcosm experiment of prometryn exposure was conducted. This study found that prometryn had a more significant impact on the structure and stability of the microbial community in seawater compared to microplastic biofilms. Additionally, we observed that the assembly of the microbial community in biofilms was more affected by stochastic processes than in seawater under the exposure of prometryn. Our study provided evidence for the increasing impact of the microbial communities under the stress of prometryn and microplastics.
Collapse
Affiliation(s)
- Mengyao Yang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Lingchao Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaowen Yu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wangxinze Shu
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Furong Cao
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
16
|
Tan Z, Deng H, Ou H, Wu X, Liao Z, Ou H. Interfacial quantum chemical characterization of aromatic organic matter adsorption on oxidized microplastic surfaces. CHEMOSPHERE 2024; 350:141132. [PMID: 38184084 DOI: 10.1016/j.chemosphere.2024.141132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Examining the adsorption efficiency of individual contaminants on microplastics (MPs) is resource-intensive and time-consuming. To address this challenge, combined laboratory adsorption experiments with model simulations were performed to investigate the adsorption capacities and mechanisms of MPs before and after aging. Our adsorption experiments revealed that aged polyethylene (PE) and polyvinyl chloride (PVC) MPs exhibited increased adsorption capacity for benzene, phenol, and naphthalene. Additionally, density functional theory (DFT) simulations provided insights into changes in adsorption sites, adsorption energy, and charge density on MPs. The π bond of the benzene ring emerged as a pivotal factor in the adsorption process, with van der Waals forces exerting dominant influence. For instance, the adsorption energy of benzene on pristine PE was -0.01879 eV. When oxidized groups, such as hydroxyl, carbonyl, and carboxyl, on the surface of aged PE became the adsorption sites, the adsorption energy increased to -0.06976, -0.04781, and -0.04903 eV, respectively. Regions with unoxidized functional groups also exhibited higher adsorption energies than pristine PE. These results indicated that aged PE had a stronger affinity for benzene compared to pristine PE, enhancing its adsorption. Charge density difference and energy density of states corroborated this observation, revealing larger π-bond charge accumulation areas for benzene on aged PE, suggesting stronger dipole interactions and enhanced adsorption. Similar trends were observed for phenol and naphthalene. In summary, the DFT calculations aligned with the adsorption experiment findings, confirming the effectiveness of simulation methods in predicting changes in the adsorption performance of aged MPs.
Collapse
Affiliation(s)
- Zongyi Tan
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Haiyang Deng
- CECEP Construction Engineering Design Institute Limited Company, Chengdu 610052, China
| | - Huali Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Xinni Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhianqi Liao
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
17
|
Kou Y, Chen Y, Feng T, Chen L, Wang H, Sun N, Zhao S, Yang T, Jiao W, Feng G, Fan H, Zhao Y. Glufosinate-ammonium causes liver injury in zebrafish by blocking the Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:148-155. [PMID: 37676913 DOI: 10.1002/tox.23968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/27/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Glufosinate-ammonium (GLA) is a widely used herbicide, but less research has been done on its harmful effects on non-target organisms, especially aquatic organisms. In this study, 600 adult zebrafish were exposed to different concentration of GLA (0, 1.25, 2.5, 5, 10, and 20 mg/L) for 7 days, and the livers were dissected on the eighth day to examine the changes in liver structure, function, oxidative stress, inflammation, apoptosis, and Nrf2 pathway, and finally to clarify the mechanism of GLA induced liver injury in zebrafish. The levels of alanine aminotransferase, aspartate aminotransferase, reactive oxygen species, malondialdehyde, inflammatory factors (IL-6 and TNF-α), and caspase-3 gradually increased, while the levels of superoxide dismutase, catalase, glutathione, and glutathione peroxidase gradually decreased with the increase of GLA concentration. The Nrf2 pathway was activated at low concentrations (1.25-5 mg/L) and significantly inhibited at high concentrations (10 and 20 mg/L). These results suggested that GLA could cause oxidative stress, inflammation, and apoptosis in zebrafish liver. Therefore, GLA can cause liver injury in zebrafish, and at high concentrations, the inhibition of Nrf2 pathway is one of the important causes of liver injury.
Collapse
Affiliation(s)
- Yuhong Kou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tongtong Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Luomeng Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Jiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guofeng Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Wu Y, Zhou Y, Jiao X, She Y, Zeng W, Cui H, Pan C. Development and inter-laboratory validation of analytical methods for glufosinate and its two metabolites in foods of plant origin. Anal Bioanal Chem 2024; 416:663-674. [PMID: 36693955 DOI: 10.1007/s00216-023-04542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
Glufosinate is widely used to control various weeds. Glufosinate and its main metabolites have become the focus of attention because of their high water solubility and persistence in aquatic systems. Quantification of the agrochemical product and its metabolite residues is essential for the safety of agricultural products. In this study, a highly specific, simple method was developed to directly determine glufosinate and its metabolite residues in 21 plant origin foods by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and it was validated on 11 foods in five laboratories. Finally, the repeatability limit, reproducibility limit, and uncertainty of the method were calculated based on these validated data and used to support the more accurate detection results. Four different chromatographic columns were used to analyze three target compounds, and the anionic polar pesticide column showed the optimum separation and peak shape. Composition of the mobile phase, extraction solvent, and the clean-up procedure were optimized. The developed method was validated on 21 plant origin foods. The average recoveries were 74-115% for all matrices. The validation results of five laboratories showed this method had a good repeatability (RSDr < 9.5%) and reproducibility (RSDR < 18.9%). The method validation parameters met the requirements of guidance established by the European Union (EU) and China for pesticide residue analysis. This methodology can be used for a routine monitoring that performs well for glufosinate and its metabolite residues.
Collapse
Affiliation(s)
- Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China
| | - Yilu Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China
| | - Xun Jiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenbo Zeng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China
| | - Hailan Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
19
|
Ferreira RDO, Guimarães ATB, Luz TMD, Rodrigues ASDL, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Charlie-Silva I, Durigon EL, Braz HLB, Arias AH, Santiago OC, Barceló D, Malafaia G. First report on the toxicity of SARS-CoV-2, alone and in combination with polyethylene microplastics in neotropical fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163617. [PMID: 37088384 PMCID: PMC10122543 DOI: 10.1016/j.scitotenv.2023.163617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has caused unprecedented negative impacts in the modern era, including economic, social, and public health losses. On the other hand, the potential effects that the input of SARS-CoV-2 in the aquatic environment from sewage may represent on non-target organisms are not well known. In addition, it is not yet known whether the association of SARS-CoV-2 with other pollutants, such as microplastics (MPs), may further impact the aquatic biota. Thus, we aimed to evaluate the possible ecotoxicological effects of exposure of male adults Poecilia reticulata, for 15 days, to inactivated SARS-CoV-2 (0.742 pg/L; isolated SARS.CoV2/SP02.2020.HIAE.Br) and polyethylene MP (PE MPs) (7.1 × 104 particles/L), alone and in combination, from multiple biomarkers. Our data suggest that exposure to SARS-CoV-2 induced behavioral changes (in the open field test), nephrotoxic effect (inferred by the increase in creatinine), hepatotoxic effect (inferred by the increase in bilirubin production), imbalance in the homeostasis of Fe, Ca, and Mg, as well as an anticholinesterase effect in the animals [marked by the reduction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity]. On the other hand, exposure to PE MPs induced a genotoxic effect (assessed by the comet assay), as well as an increase in enzyme activity alpha-amylase, alkaline phosphatase, and carboxylesterases. However, we did not show synergistic, antagonistic, or additive effects caused by the combined exposure of P. reticulata to SARS-CoV-2 and PE MPs. Principal component analysis (PCA) and values from the "Integrated Biomarker Response" index indicate that exposure to SARS-CoV-2 was determinant for a more prominent effect in the evaluated animals. Therefore, our study sheds light on the ecotoxicity of the new coronavirus in non-target organisms and ratifies the need for more attention to the impacts of COVID-19 on aquatic biota.
Collapse
Affiliation(s)
- Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona 1826, 08034 Barcelona, Spain
| | | | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Ives Charlie-Silva
- Chemistry Institute, São Paulo State University (UNESP) Campus Araraquara, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Andrés Hugo Arias
- National University of the South Bahía Blanca, CONICET Instituto Argentino de Oceanografía (IADO), Argentina
| | - Omar Cruz Santiago
- Multidisciplinary Postgraduate Program for Environmental Sciences, Universidad Autónoma de San Luis Potosí, Mexico
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
20
|
Lajmanovich RC, Repetti MR, Cuzziol Boccioni AP, Michlig MP, Demonte L, Attademo AM, Peltzer PM. Cocktails of pesticide residues in Prochilodus lineatus fish of the Salado River (South America): First record of high concentrations of polar herbicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162019. [PMID: 36740068 DOI: 10.1016/j.scitotenv.2023.162019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Muscle and viscera (gills-liver) of the fish Prochilodus lineatus were obtained from four sites of lower course of Salado river and one site at Santa Fe river near to its confluence with Salado river from Santa Fe (Argentina) between December 2021 and February 2022. Sediment samples were also obtained from the same sites. All samples were analyzed for pesticide residues following the QuEChERS method to quantify 136 compounds by UHPLC-ESI-MS/MS and GC-EI-MS/MS. Overall, muscle fish tissue showed very high concentrations (maximum concentrations detected) of the insecticide cypermethrin (204 μg/kg), polar herbicides (glyphosate; 187 μg/kg and its degradation product (aminomethylphosphonic acid) AMPA; 3116 μg/kg, and glufosinate-ammonium; 677 μg/kg), and the fungicide pyraclostrobin (50 μg/kg). In viscera samples, high values of cypermethrin (506 μg/kg), chlorpyrifos (78 μg/kg), and lambdacyhalothrin (73 μg/kg) were the main pesticides found. Mean residues concentrations detected among sites were not significantly different neither in muscle nor viscera of P. lineatus in most of the cases. Exceptionally, the southernmost studied site of the Lower Salado river showed significant differences in concentration of residues found in muscle, due to high concentrations of glyphosate and glufosinate-amonium (KW = 11.879 and KW = 13.013, respectively, P < 0.05). Other norther Lower Salado river site showed significant higher AMPA concentration in fish viscera than in the rest of the studied sites (KW = 12.86 P < 0.05). Some sediment samples showed low levels of herbicides such as glyphosate (24 μg/kg) and fungicides. However, the world highest levels of polar herbicides were recorded in fish muscle. The results of this study highlight the need for periodic monitoring due to the high concentration of pesticides and its potential risk in a very important commercial freshwater fish from Argentina, which is consumed locally and exported to other countries for human consumption.
Collapse
Affiliation(s)
- Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Melina P Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luisina Demonte
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
21
|
Ferreira MF, Torres C, Bracamonte E, Galetto L. Glyphosate affects the susceptibility of non-target native plant species according to their stage of development and degree of exposure in the landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161091. [PMID: 36566866 DOI: 10.1016/j.scitotenv.2022.161091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Unsustainable agriculture is producing a great socio-ecological transformation in Latin America because it has expanded into areas occupied by native forests. Glyphosate is the most widely used herbicide, with severe ecotoxicological effects on non-target organisms. The aim of this study was to determine the effects of glyphosate on seedlings of 24 non-target herbaceous and non-herbaceous plant species present in forest relicts of Argentine Chaco. The effects of a gradient of glyphosate doses (525, 1050, 2100, 4200, and 8400 g ai/ha) were measured in seedlings of each species under greenhouse conditions. Seedlings were grown from seeds collected from native forest fragments of different sizes (assuming three different degrees of historical exposure to glyphosate in the landscape). Doses were applied at different stages of seedling development (five- and ten-weeks after emergence), and phytotoxicity, growth reduction, and sensitivity were measured. Glyphosate produced lethal or sublethal effects in all 24 species, some of which were very sensitive (>60 % of the species presented strong to severe growth reduction with ¼ of the dose used on crops). The greatest toxicological effects were related to early stage of development, herbaceous species, and low historical exposure to glyphosate. According to the species sensitivity distribution, the drift-dose to protect 95 % of the plant species that occur in larger forest fragments should not exceed 5 % of the dose commonly used on crops. These results suggest that the current weed management linked to glyphosate-resistant crops could lead to a gradual loss of biodiversity in the landscape. Concurrently, selection of glyphosate-tolerant biotypes in some non-target species could represent a very problematic cycle for the current model of industrial agriculture. Some alternatives for weed control are proposed.
Collapse
Affiliation(s)
- María Florencia Ferreira
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Vélez Sarsfield 1611, Córdoba, Argentina
| | - Carolina Torres
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Vélez Sarsfield 1611, Córdoba, Argentina; Cátedra de Diversidad Biológica III, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, Córdoba, Argentina
| | - Enzo Bracamonte
- Cátedra de Ecotoxicología, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix Aldo Marrone 746, Córdoba, Argentina
| | - Leonardo Galetto
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Vélez Sarsfield 1611, Córdoba, Argentina; Cátedra de Diversidad Biológica III, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, Córdoba, Argentina.
| |
Collapse
|
22
|
Glyphosate and Glufosinate Residues in Honey and Other Hive Products. Foods 2023; 12:foods12061155. [PMID: 36981082 PMCID: PMC10048440 DOI: 10.3390/foods12061155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Hive products have numerous beneficial properties; however, the hive’s health is affected by the surrounding environment. The widespread use of herbicides in agriculture, such as glyphosate and glufosinate, has raised alarm among consumers, beekeepers, and environmentalists due to their potential to harm bees and humans through the consumption of bee products. This review aims to provide a comprehensive overview of the presence of glyphosate, glufosinate, and their metabolites in hive products, collecting and comparing available data from peer-reviewed research and surveys conducted across several countries. Moreover, it analyzes and discusses the potential impacts of these substances on human and bee health, analytical aspects, and recent regulatory developments. The data has revealed that these substances can be present in the different matrices tested, but the concentrations found are usually lower than the maximum residue limits set. However, the use of different methodologies with non-uniform analytical performances, together with an incomplete search for regulated analytes, leads to heterogeneity and makes comparisons challenging. In addition to the completion of studies on the toxicology of herbicide active ingredients, further monitoring actions are necessary, harmonizing analytical methodologies and data management procedures.
Collapse
|
23
|
Ríos JM, Attademo AM, Horie Y, Ginevro PM, Lajmanovich RC. Sublethal Biochemical Effects of Polyethylene Microplastics and TBBPA in Experimentally Exposed Freshwater Shrimp Palaemonetes argentinus. BIOLOGY 2023; 12:biology12030391. [PMID: 36979083 PMCID: PMC10045834 DOI: 10.3390/biology12030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
The biochemical effects of sublethal exposure to polyethylene microplastics (PEM) of 40–48 µm particle size and the flame retardant tetrabromobisphenol A (TBBPA), a plastic additive, on the freshwater shrimp Palaemonetes argentinus were assessed. Here, we postulate that the use of enzyme and thyroid hormones as biomarkers contributes to the knowledge of the effects of microplastics and plastic additives on freshwater crustaceans. To address this, we evaluated the activities of acetylcholinesterase (AChE), glutathione S-transferase (GST), and carboxilesterase (CbE, using 1-naphthyl acetate (NA) as substrate) and levels of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) after shrimp were exposed (for 96 h) to these xenobiotics at environmentally realistic concentrations. The results showed that the mixture of both xenobiotics led to a decrease in AChE and GST activities and increased T4 levels. We suggest that physiological processes could be compromised in freshwater organisms when exposed to microplastics and TBBPA together, and this could ultimately affect upper levels of the food web.
Collapse
Affiliation(s)
- Juan Manuel Ríos
- Laboratorio de Ecotoxicología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Mendoza 5500, Argentina
- Correspondence: or ; Tel.: +54-9-(0261)-524-4197
| | - Andres M. Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Paraje El Pozo s/n, Santa Fe 3000, Argentina
| | - Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Paula María Ginevro
- Laboratorio de Ecotoxicología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Mendoza 5500, Argentina
| | - Rafael C. Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Paraje El Pozo s/n, Santa Fe 3000, Argentina
| |
Collapse
|
24
|
Cuzziol Boccioni AP, Lener G, Peluso J, Peltzer PM, Attademo AM, Aronzon C, Simoniello MF, Demonte LD, Repetti MR, Lajmanovich RC. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. CHEMOSPHERE 2022; 309:136554. [PMID: 36174726 DOI: 10.1016/j.chemosphere.2022.136554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - German Lener
- Instituto de Investigaciones en Físico-Química de Córdoba-CONICET. Departamento de Química Teórica y Computacional. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Aronzon
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
25
|
Burgos-Aceves MA, Faggio C, Betancourt-Lozano M, González-Mille DJ, Ilizaliturri-Hernández CA. Ecotoxicological perspectives of microplastic pollution in amphibians. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:405-421. [PMID: 36351281 DOI: 10.1080/10937404.2022.2140372] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are contaminants widely distributed in the environment and biota. Previously, most studies focused on identifying and characterizing microplastics in the marine environment, while their impact on freshwater ecosystems remains to be determined. This review summarizes recent findings regarding MPs physiological, immunological, and genetic effects on amphibians based upon the biological relevance of this species as indicators of freshwater pollution. Data demonstrated that MPs contamination may potentially alter various physiological processes in aquatic animals, mainly in the embryonic stages. It is worthwhile noting that adverse effects might be enhanced in synergy with other pollutants. However, amphibians might counteract the effect of MPs and other pollutants through microbiota present both in the intestine and on the skin. In addition, amphibian microbial composition might also be altered by MPs themselves in a manner that leads to unpredicted health consequences in amphibians.
Collapse
Affiliation(s)
- Mario A Burgos-Aceves
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, Messina, Italy
| | | | - Donají J González-Mille
- Programa Cátedras del Consejo Nacional de Ciencia y Tecnología (CONACyT). Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - César A Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina. Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
26
|
Truchet DM, Ardusso MG, Forero-López AD, Rimondino GN, Buzzi NS, Malanca F, Spetter CV, Fernández-Severini MD. Tracking synthetic microdebris contamination in a highly urbanized estuary through crabs as sentinel species: An ecological trait-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155631. [PMID: 35508238 DOI: 10.1016/j.scitotenv.2022.155631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Synthetic microdebris (particles of <5 mm) are a worldwide concern because they can affect the community structure of the aquatic ecosystems, organisms, and even food webs. For the biomonitoring of synthetic microdebris (especially microplastics, MPs), mainly benthic invertebrates are used, but crabs have been less studied in the literature. We studied the synthetic microdebris contamination in water, sediments, and three representative intertidal crabs (Neohelice granulata, Cyrtograpsus angulatus and Leptuca uruguayensis) with different lifestyles from the Bahía Blanca estuary, Argentina. The results obtained show the presence of cotton-polyamide (PA), polyethylene (PE), and polyethylene terephthalate (PET) in surface waters. In sediments, we identified cellulose modified (CE), polyester (PES), polyethylene (PE), and alkyd resin, while in crabs, cotton-PA and CE were the predominant ones. The MPs abundance ranged from 8 to 68 items L-1 in surface water, from 971 to 2840 items Kg-1 in sediments, and from 0 to 2.58 items g-1 ww for the three species of crabs. Besides, paint sheets ranged from 0 to 17 in the total samples, with Cr, Mo, Ti, Pb, Cu, Al, S, Ba and Fe on their surface. There were significant differences between the microdebris abundances in the abiotic matrices but not among crabs species. The ecological traits of the different crabs helped to understand the accumulation of synthetic microdebris, an important characteristic when determining the choice of a good biomonitor.
Collapse
Affiliation(s)
- D M Truchet
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - M G Ardusso
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - N S Buzzi
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN Bahía Blanca, Buenos Aires, Argentina
| | - F Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - M D Fernández-Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Attademo AM, Cuzziol Boccioni AP, Peltzer PM, Franco VG, Simoniello MF, Passeggi MCG, Lajmanovich RC. Effect of microplastics on the activity of carboxylesterase and phosphatase enzymes in Scinax squalirostris tadpoles. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:718. [PMID: 36050604 DOI: 10.1007/s10661-022-10322-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are critical emerging pollutants around the world. There is a growing interest in the effects of MP ingestion, non-digestion, and toxicity on aquatic organisms. Amphibian tadpoles are the vertebrate group that has received the least attention regarding this issue. The aim of the present study was to determine the ingestion of polyethylene MPs by Scinax squalirostris tadpoles by atomic force microscopy (AFM) and to evaluate the activities of carboxylesterase (CbE, using 4-naphthyl butyrate-NB-, and 1-naphthyl acetate -NA- as substrates) and alkaline phosphatase (ALP) under MP exposure. Enzyme activities were analyzed spectrophotometrically at 2 and 10 days of exposure. Tadpoles were exposed to two different treatments during 10 days: a negative control (CO, dechlorinated water) and MP (60 mg L-1). AFM images of the digestive contents of tadpoles revealed the presence of MPs. After 10 days of MP exposure, CbE (NB) activity was significantly higher and CbE (NA) activity was significantly lower in MP treatments than in controls. ALP activity decreased in MP treatments after 2 and 10 days of exposure. The detection of MP particles in the intestinal contents and the effects on metabolic enzymes in a common frog species evidenced the potential health risk of MP to aquatic vertebrates. Thus, the differential response in enzymes and substrates demonstrate the need for considering the complex effects of contaminants and nutrients on ecosystems for ecotoxicological risk characterization.
Collapse
Affiliation(s)
- Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina.
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina.
| | - Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina
| | - Vanina G Franco
- Laboratorio de Física de Superficies e Interfaces, Instituto de Física del Litoral (LASUI-IFIS Litoral; CONICET-UNL), Güemes 3450, S3000, Santa Fe, Argentina
| | | | - Mario C G Passeggi
- Laboratorio de Física de Superficies e Interfaces, Instituto de Física del Litoral (LASUI-IFIS Litoral; CONICET-UNL), Güemes 3450, S3000, Santa Fe, Argentina
- Departamento de Física, Facultad de Ingeniería Química, Universidad Nacional del Litoral (FIQ-UNL), Santiago del Estero 2829, S3000, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), El Pozo S/N, Santa Fe, Argentina
- CONICET-FBCB-UNL, El Pozo S/N, Santa Fe, Argentina
| |
Collapse
|
28
|
Bassó A, Devin S, Peltzer PM, Attademo AM, Lajmanovich RC. The integrated biomarker response in three anuran species larvae at sublethal concentrations of cypermethrin, chlorpyrifos, glyphosate, and glufosinate-ammonium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:687-696. [PMID: 35852372 DOI: 10.1080/03601234.2022.2099197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to evaluate the response in larvae of the anuran species Rhinella arenarum, Rhinella dorbignyi and Odontophrynus americanus exposed to glyphosate (GLY, 2.5 mg L-1), cypermethrin (CYP, 0.013 mg L-1), chlorpyrifos (CP, 0.1 mg L-1) and glufosinate-ammonium (GLU, 15 mg L-1) using two behavioral endpoints: mean speed (MS) and total distance moved (TD); and two enzymatic biomarkers: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In order to assess a global response and to determine the most sensitive species, an integrated biomarker response (IBR) index was calculated. Behavioral biomarkers were tested at 1 and 60 min, and the enzymes at 60 min after exposure. The results showed that: (1) there were statistical differences between species in a series of responses in swimming behavior, and cholinesterase activities within the first-hour of exposure to CYP, GLY, and CP at environmentally relevant concentrations (ERC); (2) IBR determined that Rhinella species were the most sensitive of the species tested and (3) IBR provided a comprehensive assessment of the health status of species exposed to ERC of a wide variety of agrochemicals globally and frequently used.
Collapse
Affiliation(s)
- Agustín Bassó
- School of Biochemistry and Biological Sciences, National University of Littoral (FBCB UNL), Santa Fe, Argentina
| | - Simon Devin
- CNRS, LIEC, Université de Lorraine, Metz, France
| | - Paola M Peltzer
- School of Biochemistry and Biological Sciences, National University of Littoral (FBCB UNL), Santa Fe, Argentina
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- School of Biochemistry and Biological Sciences, National University of Littoral (FBCB UNL), Santa Fe, Argentina
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- School of Biochemistry and Biological Sciences, National University of Littoral (FBCB UNL), Santa Fe, Argentina
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
29
|
Ruthsatz K, Domscheit M, Engelkes K, Vences M. Microplastics ingestion induces plasticity in digestive morphology in larvae of Xenopus laevis. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111210. [PMID: 35398256 DOI: 10.1016/j.cbpa.2022.111210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/16/2023]
Abstract
Global changes in temperature, predator introductions, and pollution might challenge animals by altering food conditions. A fast-growing source of environmental pollution are microplastics. If ingested with the natural food source, microplastics act as artificial fibers that reduce food quality by decreasing nutrient and energy density with possible ramifications for growth and development. Animals might cope with altered food conditions with digestive plasticity. We examined experimentally whether larvae of the African clawed frog (Xenopus laevis) exhibit digestive morphology plasticity (i.e., gut length, mass, and diameter) in response to microplastics ingestion. As natural systems contain non-digestible particles similar in size and shape to microplastics, we included cellulose as a natural fiber control group. Gut length and mass increased in response to microplastics and cellulose ingestion indicating that both types of fibers induced digestive plasticity. Body mass and body condition were similar across experimental groups, indicating that larvae fully compensated for low nutrient and energy density by developing longer intestines. The ability of a species to respond plastically to environmental variation, as X. laevis responded, indicates that this species might have the potential to cope with new conditions during global change, although it is uncertain whether this potential may be reduced in a multi-stressor environment.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Marie Domscheit
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Karolin Engelkes
- Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany. https://twitter.com/KarolinEngelkes
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| |
Collapse
|
30
|
Garau A, Picci G, Bencini A, Caltagirone C, Conti L, Lippolis V, Paoli P, Romano GM, Rossi P, Scorciapino MA. Glyphosate sensing in aqueous solutions by fluorescent zinc(II) complexes of [9]aneN 3-based receptors. Dalton Trans 2022; 51:8733-8742. [PMID: 35612268 DOI: 10.1039/d2dt00738j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe the binding abilities of Zn(II) complexes of [12]aneN4- (L1) and [9]aneN3-based receptors (L2, L3) towards the herbicides N-(phosphonomethyl)glycine (glyphosate, H3PMG) and 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid (glufosinate, H2GLU), and also aminomethylphosphonic acid (H2AMPA), the main metabolite of H3PMG, and phosphate. All ligands form stable Zn(II) complexes, whose coordination geometries allow a possible interaction of the metal center with exogenous anionic substrates. Potentiometric studies evidenced the marked coordination ability of the L2/Zn(II) system for the analytes considered, with a preferential binding affinity for H3PMG over the other substrates, in a wide range of pH values. 1H and 31P NMR experiments supported the effective coordination of such substrates by the Zn(II) complex of L2, while fluorescence titrations and a test strip experiment were performed to evaluate whether the H3PMG recognition processes could be detected by fluorescence signaling.
Collapse
Affiliation(s)
- Alessandra Garau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Giacomo Picci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Andrea Bencini
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Luca Conti
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Paola Paoli
- Dipartimento Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, Firenze 50139, Italy
| | - Giammarco Maria Romano
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Patrizia Rossi
- Dipartimento Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, Firenze 50139, Italy
| | - Mariano Andrea Scorciapino
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
31
|
Potential Risks of Microplastic Fomites to Aquatic Organisms with Special Emphasis on Polyethylene-Microplastic-Glyphosate Exposure Case in Aquacultured Shrimp. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plastic litter is increasingly becoming pervasive in aquatic environments, characterized by circulatory patterns between different compartments and continual loading with new debris. Microplastic pollution can cause a variety of effects on aquatic organisms. This review presents the current knowledge of microplastics distribution and sorption capacity, reflecting on possible bioaccumulation and health effects in aquatic organisms. A model case study reveals the fate and toxic effects of glyphosate, focusing on the simultaneous exposure of aquacultured shrimp to polyethylene and glyphosate and their contact route and on the potential effects on their health and the risk for transmission of the contaminants. The toxicity and bioaccumulation of glyphosate-sorbed polyethylene microplastics in shrimp are not well understood, although individual effects have been studied extensively in various organisms. We aim to delineate this knowledge gap by compiling current information regarding the co-exposure to polyethylene microplastic adsorbed with glyphosate to assist in the assessment of the possible health risks to aquacultured shrimp and their consumers.
Collapse
|
32
|
Bioactive Compounds and Their Derivatives: An Insight into Prospective Phytotherapeutic Approach against Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5100904. [PMID: 35450410 PMCID: PMC9017558 DOI: 10.1155/2022/5100904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative brain disorder that causes cellular response alterations, such as impaired cholinergic mechanism, amyloid-beta (Aβ) AD aggregation, neuroinflammation, and several other pathways. AD is still the most prevalent form of dementia and affects many individuals across the globe. The exact cause of the disorder is obscure. There are yet no effective medications for halting, preventing, or curing AD's progress. Plenty of natural products are isolated from several sources and analyzed in preclinical and clinical settings for neuroprotective effects in preventing and treating AD. In addition, natural products and their derivatives have been promising in treating and preventing AD. Natural bioactive compounds play an active modulatory role in the pathological molecular mechanisms of AD development. This review focuses on natural products from plant sources and their derivatives that have demonstrated neuroprotective activities and maybe promising to treat and prevent AD. In addition, this article summarizes the literature pertaining to natural products as agents in the treatment of AD. Rapid metabolism, nonspecific targeting, low solubility, lack of BBB permeability, and limited bioavailability are shortcomings of most bioactive molecules in treating AD. We can use nanotechnology and nanocarriers based on different types of approaches.
Collapse
|
33
|
Chen J, Rao C, Yuan R, Sun D, Guo S, Li L, Yang S, Qian D, Lu R, Cao X. Long-term exposure to polyethylene microplastics and glyphosate interferes with the behavior, intestinal microbial homeostasis, and metabolites of the common carp (Cyprinus carpio L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152681. [PMID: 34973326 DOI: 10.1016/j.scitotenv.2021.152681] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Polyethylene microplastics (PE-MPs) and glyphosate (GLY) occur widely and have toxic characteristics, resulting in increased research interest. In this study, common carp were used to assess the individual and combined toxicity of PE-MPs (0, 1.5, or 4.5 mg/L) and GLY (0, 5, or 15 mg/L) on the brain-gut axis. After 60 days of exposure, the developmental toxicity, blood-brain barrier (BBB), locomotor behavior, intestinal barrier (physical barrier, chemical barrier, microbial barrier), and intestinal content metabolism of common carp were evaluated. Results showed that 15 mg/L of GLY exposure significantly reduced the mRNA expression of tight-junction genes (occludin, claudin-2, and ZO-1) in the brain, and acetylcholinesterase (AChE) activity was clearly inhibited by high concentrations of GLY. However, different concentrations of PE-MPs had no significant effect on the activity of AChE. Furthermore, the free-swimming behavior of common carp was distinctly inhibited by treatment with a combination of 15 mg/L GLY and 4.5 mg/L PE-MPs. Histological studies indicated that PE-MPs alone and in combination with GLY could disrupt the physical and chemical intestinal barriers of common carp. Additionally, the abundance and diversity of gut microbiota in common carp were significantly changed when exposed to a combination of PE-MPs and GLY. Metabolomics further revealed that PE-MPs combined with GLY triggered metabolic changes and that differential metabolites were related to amino acid and lipid metabolism. These findings illustrate that exposure to PE-MPs or GLY alone is toxic to fish and results in physiological changes to the brain-gut axis. This work offers a robust analysis to understand the mechanisms underlying GLY and MP-induced aquatic toxicity.
Collapse
Affiliation(s)
- Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Chenyang Rao
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Shuai Yang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Dongdong Qian
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
34
|
Peltzer PM, Cuzziol Boccioni AP, Attademo AM, Martinuzzi CS, Colussi CL, Lajmanovich RC. Risk of chlorine dioxide as emerging contaminant during SARS-CoV-2 pandemic: enzyme, cardiac, and behavior effects on amphibian tadpoles. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2022. [PMCID: PMC8564275 DOI: 10.1007/s13530-021-00116-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Objective The use of chlorine dioxide (ClO2) increased in the last year to prevent SARS-CoV-2 infection due to its use as disinfectant and therapeutic human treatments against viral infections. The absence of toxicological studies and sanitary regulation of this contaminant represents a serious threat to human and environmental health worldwide. The aim of this study was to evaluate the acute toxicity and sublethal effects of ClO2 on tadpoles of Trachycephalus typhonius, which is a common bioindicator species of contamination from aquatic ecosystems. Materials and methods Median lethal concentration (LC50), the lowest-observed effect concentration (LOEC), and the no-observed effect concentration (NOEC) were performed. Acetylcholinesterase (AChE) and glutathione-S-transferase (GST) activities, swimming behavior parameters, and cardiac rhythm were estimated on tadpoles of concentrations ≤ LOEC exposed at 24 and 96 h. ANOVA and Dunnett’s post-hoc comparisons were performed to define treatments significance (p ≤ 0.05). Results The LC50 of ClO2 was 4.17 mg L−1 (confidence limits: 3.73–4.66). In addition, NOEC and LOEC values were 1.56 and 3.12 mg L−1 ClO2, respectively, at 48 h. AChE and GST activities, swimming parameters, and heart rates increased in sublethal exposure of ClO2 (0.78–1.56 mg L−1) at 24 h. However, both enzyme activities and swimming parameters decreased, whereas heart rates increased at 96 h. Conclusion Overall, this study determined that sublethal concentrations of ClO2 produced alterations on antioxidant systems, neurotoxicity reflected on swimming performances, and variations in cardiac rhythm on treated tadpoles. Thus, our findings highlighted the need for urgent monitoring of this chemical in the aquatic ecosystems. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s13530-021-00116-3.
Collapse
Affiliation(s)
- Paola M. Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana P. Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M. Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S. Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlina L. Colussi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael C. Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|