1
|
Gelmi‐Candusso T, Rodriguez P, Fidino M, Rivera K, Lehrer E, Magle S, Fortin M. Leveraging Open-Source Geographic Databases to Enhance the Representation of Landscape Heterogeneity in Ecological Models. Ecol Evol 2024; 14:e70402. [PMID: 39391819 PMCID: PMC11464820 DOI: 10.1002/ece3.70402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Wildlife abundance and movement are strongly impacted by landscape heterogeneity, especially in cities which are among the world's most heterogeneous landscapes. Nonetheless, current global land cover maps, which are used as a basis for large-scale spatial ecological modeling, represent urban areas as a single, homogeneous, class. This often requires urban ecologists to rely on geographic resources from local governments, which are not comparable between cities and are not available in underserved countries, limiting the spatial scale at which urban conservation issues can be tackled. The recent expansion of community-based geographic databases, for example, OpenStreetMap (OSM), represents an opportunity for ecologists to generate large-scale maps geared toward their specific research needs. However, computational differences in language and format, and the high diversity of information within, limit the access to these data. We provide a framework, using R, to extract geographic features from the OSM database, classify, and integrate them into global land cover maps. The framework includes an exhaustive list of OSM features describing urban and peri-urban landscapes and is validated by quantifying the completeness of the OSM features characterized, and the accuracy of its final output in 34 cities in North America. We portray its application as the basis for generating landscape variables for ecological analysis by using the OSM-enhanced map to generate an urbanization index, and subsequently analyze the spatial occupancy of six mammals throughout Chicago, Illinois, USA. The OSM features characterized had high completeness values for impervious land cover classes (50%-100%). The final output, the OSM-enhance map, provided an 89% accurate representation of the landscape at 30m resolution. The OSM-derived urbanization index outperformed other global spatial data layers in the spatial occupancy analysis and concurred with previously seen local response trends, whereby lagomorphs and squirrels responded positively to urbanization, while skunks, raccoons, opossums, and deer responded negatively. This study provides a roadmap for ecologists to leverage the fine resolution of open-source geographic databases and apply it to spatial modeling by generating research-specific landscape variables. As our occupancy results show, using context-specific maps can improve modeling outputs and reduce uncertainty, especially when trying to understand anthropogenic impacts on wildlife populations.
Collapse
Affiliation(s)
| | - Peter Rodriguez
- Ecology and Evolutionary Biology DepartmentUniversity of TorontoTorontoOntarioCanada
| | - Mason Fidino
- Department of Conservation and ScienceLincoln Park ZooChicagoIllinoisUSA
| | - Kim Rivera
- Department of Conservation and ScienceLincoln Park ZooChicagoIllinoisUSA
| | | | - Seth Magle
- Department of Conservation and ScienceLincoln Park ZooChicagoIllinoisUSA
| | - Marie‐Josée Fortin
- Ecology and Evolutionary Biology DepartmentUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
2
|
Burke LM, Davies TW, Wilcockson D, Jenkins S, Ellison A. Artificial light and cloud cover interact to disrupt celestial migrations at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173790. [PMID: 38851339 DOI: 10.1016/j.scitotenv.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The growth of human activity and infrastructure has led to an unprecedented rise in the use of Artificial Light at Night (ALAN) with demonstrable impacts on ecological communities and ecosystem services. However, there remains very little information on how ALAN interacts with or obscures light from celestial bodies, which provide vital orientating cues in a number of species. Furthermore, no studies to date have examined how climatic conditions such as cloud cover, known to influence the intensity of skyglow, interact with lunar irradiance and ALAN over the course of a lunar cycle to alter migratory abilities of species. Our night-time field study aimed to establish how lunar phase and climatic conditions (cloud cover) modulate the impact of ALAN on the abundance and migratory behaviour of Talitrus saltator, a key sandy beach detritivore which uses multiple light associated cues during nightly migrations. Our results showed that the number and size of individuals caught decreased significantly as ALAN intensity increased. Additionally, when exposed to ALAN more T. saltator were caught travelling parallel to the shoreline, indicating that the presence of ALAN is inhibiting their ability to navigate along their natural migration route, potentially impacting the distribution of the population. We found that lunar phase and cloud cover play a significant role in modifying the impact of ALAN, highlighting the importance of incorporating natural light cycles and climatic conditions when investigating ALAN impacts. Critically we demonstrate that light levels as low as 3 lx can have substantial effects on coastal invertebrate distributions. Our results provide the first evidence that ALAN impacted celestial migration can lead to changes to the distribution of a species.
Collapse
Affiliation(s)
- Leo M Burke
- Bangor University, School of Natural Sciences, Bangor LL57 2UW, UK.
| | - Thomas W Davies
- University of Plymouth, School of Biological and Marine Sciences, Drake Circus, Plymouth PL4 8AA, UK
| | - David Wilcockson
- Aberystwyth University, Department of Life Sciences, Edward Llywd Building, Aberystwyth SY23 3DA, UK
| | - Stuart Jenkins
- Bangor University, School of Ocean Sciences, Menai Bridge LL59 5AB, UK
| | - Amy Ellison
- Bangor University, School of Natural Sciences, Bangor LL57 2UW, UK
| |
Collapse
|
3
|
Hirt MR, Evans DM, Miller CR, Ryser R. Light pollution in complex ecological systems. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220351. [PMID: 37899008 PMCID: PMC10613538 DOI: 10.1098/rstb.2022.0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution has emerged as a burgeoning area of scientific interest, receiving increasing attention in recent years. The resulting body of literature has revealed a diverse array of species-specific and context-dependent responses to artificial light at night (ALAN). Because predicting and generalizing community-level effects is difficult, our current comprehension of the ecological impacts of light pollution on complex ecological systems remains notably limited. It is critical to better understand ALAN's effects at higher levels of ecological organization in order to comprehend and mitigate the repercussions of ALAN on ecosystem functioning and stability amidst ongoing global change. This theme issue seeks to explore the effects of light pollution on complex ecological systems, by bridging various realms and scaling up from individual processes and functions to communities and networks. Through this integrated approach, this collection aims to shed light on the intricate interplay between light pollution, ecological dynamics and humans in a world increasingly impacted by anthropogenic lighting. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 4LB, UK
| | - Colleen R. Miller
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Cornell Laboratory of Ornithology, Ithaca, NY, 14850, USA
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| |
Collapse
|
4
|
Blackburn G, Ashton BJ, Thornton A, Woodiss-Field S, Ridley AR. Cognition mediates response to anthropogenic noise in wild Western Australian magpies (Gmynorhina tibicen dorsalis). GLOBAL CHANGE BIOLOGY 2023; 29:6912-6930. [PMID: 37846601 DOI: 10.1111/gcb.16975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Anthropogenic noise is a pollutant of growing concern, with wide-ranging effects on taxa across ecosystems. Until recently, studies investigating the effects of anthropogenic noise on animals focused primarily on population-level consequences, rather than individual-level impacts. Individual variation in response to anthropogenic noise may result from extrinsic or intrinsic factors. One such intrinsic factor, cognitive performance, varies between individuals and is hypothesised to aid behavioural response to novel stressors. Here, we combine cognitive testing, behavioural focals and playback experiments to investigate how anthropogenic noise affects the behaviour and anti-predator response of Western Australian magpies (Gymnorhina tibicen dorsalis), and to determine whether this response is linked to cognitive performance. We found a significant population-level effect of anthropogenic noise on the foraging effort, foraging efficiency, vigilance, vocalisation rate and anti-predator response of magpies, with birds decreasing their foraging, vocalisation behaviours and anti-predator response, and increasing vigilance when loud anthropogenic noise was present. We also found that individuals varied in their response to playbacks depending on their cognitive performance, with individuals that performed better in an associative learning task maintaining their anti-predator response when an alarm call was played in anthropogenic noise. Our results add to the growing body of literature documenting the adverse effects of anthropogenic noise on wildlife and provide the first evidence for an association between individual cognitive performance and behavioural responses to anthropogenic noise.
Collapse
Affiliation(s)
- Grace Blackburn
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Benjamin J Ashton
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Sarah Woodiss-Field
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Amanda R Ridley
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Wereszczuk A, Zalewski A. An anthropogenic landscape reduces the influence of climate conditions and moonlight on carnivore activity. Behav Ecol Sociobiol 2023; 77:55. [PMID: 37200556 PMCID: PMC10172063 DOI: 10.1007/s00265-023-03331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Abstract Abiotic factors are limitations that can affect animal activity and distribution, whether directly or indirectly. The objective of this study was to evaluate how abiotic factors influence the activity of two mustelid species inhabiting the same region but different habitats in NE Poland-pine marten inhabits forests and stone marten occupy built-up areas. From 1991 to 2016, we obtained 23,639 year-round observations of 15 pine martens and 8524 observations of 47 stone martens. We explore the influence of ambient temperature, snow cover depth and moonlight reaching the ground and interactions between these variables on the probability of martens' activity. The activity of pine martens living in natural habitats is more affected by climate conditions and moonlight than that of stone martens living in anthropogenic areas. Pine martens inhabiting forests increased activity when the ambient temperature was above 0 °C and snow cover was absent, as well as when the ambient temperature dropped to - 15 °C and snow cover depth was about 10 cm. Stone marten occupying anthropogenic areas did not reduce their activity if the temperature dropped. Variation of activity in relation to ambient conditions is probably related to pine martens' behavioural thermoregulation. The pine marten was active more frequently on bright nights, while moonlight intensity did not affect the activity of the stone marten. Our study concludes that complex interactions among abiotic factors concerning different habitats play a synergetic role in shaping carnivore activity and suggest that climate warming may affect the behaviour of both martens. Significance statement The survival and reproduction of animals depends on their activity, which is subject to various constraints. We studied the influence of climate conditions and moonlight intensity on the ground on the activity of pine and stone marten. We found that pine martens in natural habitat were greatly impacted by ambient conditions, whereas stone martens in built-up areas were less so. Natural habitats involve limitations related to harsh winters but may mitigate the effects of high temperatures. In contrast, animals living in built-up areas are exposed to higher temperatures in summer, which is of particular importance in the face of climate change. Our results show that the combination of several environmental factors affects animal behaviour and these factors have varying effects in various habitats. Supplementary Information The online version contains supplementary material available at 10.1007/s00265-023-03331-9.
Collapse
Affiliation(s)
- Anna Wereszczuk
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230 Białowieża, Poland
| | - Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230 Białowieża, Poland
| |
Collapse
|
6
|
Ichikawa I, Kuriwada T. The combined effects of artificial light at night and anthropogenic noise on life history traits in ground crickets. Ecol Res 2023. [DOI: 10.1111/1440-1703.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Izumi Ichikawa
- Faculty of Education, Laboratory of Zoology Kagoshima University Kagoshima Japan
| | - Takashi Kuriwada
- Faculty of Education, Laboratory of Zoology Kagoshima University Kagoshima Japan
| |
Collapse
|
7
|
de Framond L, Brumm H. Long-term effects of noise pollution on the avian dawn chorus: a natural experiment facilitated by the closure of an international airport. Proc Biol Sci 2022; 289:20220906. [PMID: 36100015 PMCID: PMC9470256 DOI: 10.1098/rspb.2022.0906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The impacts of noise pollution on birdsong have been extensively investigated but potential long-term effects are neglected. Near airports, where noise levels are particularly high, birds start singing earlier in the morning, probably to gain more time of uninterrupted singing before air traffic sets in. In a previous study, we documented this phenomenon in the vicinity of Berlin Tegel airport. In 2020, Tegel airport closed down, giving us the opportunity to investigate potential long-term effects after noise removal and to gain insight into the mechanisms underlying the advancement of dawn singing. We found that several species at the airport shifted their song onset back after the closure and now had similar schedules to their conspecifics at a control site. Some species, however, still sang earlier near the closed airport. While the first suggests plastic adaptation, the latter suggests selection for early singing males in areas with long-lasting noise pollution. Our findings indicate that a uniform behavioural response to anthropogenic change in a community can be based on diverging evolutionary mechanisms. Overall, we show that noise pollution can have long-lasting effects on animal behaviour and noise removal may not lead to immediate recovery in some species.
Collapse
Affiliation(s)
- Léna de Framond
- Communication and Social Behaviour Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, Seewiesen 82319, Germany
| | - Henrik Brumm
- Communication and Social Behaviour Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, Seewiesen 82319, Germany
| |
Collapse
|
8
|
Owens ACS, Lewis SM. Artificial light impacts the mate success of female fireflies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220468. [PMID: 35958085 DOI: 10.6084/m9.figshare.c.6125244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 05/23/2023]
Abstract
Anthropogenic light pollution is a novel environmental disruption that affects the movement, foraging and mating behaviour of nocturnal animals. Most of these effects are sublethal, and their net impact on reproductive fitness and population persistence is often extrapolated from behavioural data. Without dedicated tracking of wild individuals, however, it is impossible to predict whether populations in light-polluted habitats will decline or, instead, move to shaded refuges. To disentangle these conflicting possibilities, we investigated how artificial light affects mating and movement in North American Photinus, a genus of bioluminescent fireflies known to experience courtship failure under artificial light. The degree to which artificial light reduced mate success depended on the intensity of the light treatment, its environmental context, and the temporal niche of the species in question. In the laboratory, direct exposure to artificial light completely prevented mating in semi-nocturnal Photinus obscurellus. In the field, artificial light had little impact on the movement or mate success of local Photinus pyralis and Photinus marginellus but strongly influenced mate location in Photinus greeni; all three species are relatively crepuscular. Our nuanced results suggest greater appreciation of behavioural diversity will help insect conservationists and dark sky advocates better target efforts to protect at-risk species.
Collapse
Affiliation(s)
- Avalon C S Owens
- Department of Biology, Tufts University, Medford, MA 02155-5801, USA
| | - Sara M Lewis
- Department of Biology, Tufts University, Medford, MA 02155-5801, USA
| |
Collapse
|
9
|
Owens ACS, Lewis SM. Artificial light impacts the mate success of female fireflies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220468. [PMID: 35958085 PMCID: PMC9364009 DOI: 10.1098/rsos.220468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 05/07/2023]
Abstract
Anthropogenic light pollution is a novel environmental disruption that affects the movement, foraging and mating behaviour of nocturnal animals. Most of these effects are sublethal, and their net impact on reproductive fitness and population persistence is often extrapolated from behavioural data. Without dedicated tracking of wild individuals, however, it is impossible to predict whether populations in light-polluted habitats will decline or, instead, move to shaded refuges. To disentangle these conflicting possibilities, we investigated how artificial light affects mating and movement in North American Photinus, a genus of bioluminescent fireflies known to experience courtship failure under artificial light. The degree to which artificial light reduced mate success depended on the intensity of the light treatment, its environmental context, and the temporal niche of the species in question. In the laboratory, direct exposure to artificial light completely prevented mating in semi-nocturnal Photinus obscurellus. In the field, artificial light had little impact on the movement or mate success of local Photinus pyralis and Photinus marginellus but strongly influenced mate location in Photinus greeni; all three species are relatively crepuscular. Our nuanced results suggest greater appreciation of behavioural diversity will help insect conservationists and dark sky advocates better target efforts to protect at-risk species.
Collapse
Affiliation(s)
| | - Sara M. Lewis
- Department of Biology, Tufts University, Medford, MA 02155-5801, USA
| |
Collapse
|
10
|
Wascher CAF, Arnold W, Kotrschal K. Effects of severe anthropogenic disturbance on the heart rate and body temperature in free-living greylag geese ( Anser anser). CONSERVATION PHYSIOLOGY 2022; 10:coac050. [PMID: 36033970 PMCID: PMC9406602 DOI: 10.1093/conphys/coac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic disturbances are a major concern for the welfare and conservation of wildlife. We recorded heart rate and body temperature of 20 free-living greylag geese in response to a major regularly re-occurring anthropogenic disturbance-New Year's Eve fireworks. Heart rate and body temperature were significantly higher in the first and second hour of the new year, compared with the same hour on the 31st of December, the average during December and the average during January. Heart rate and body temperature was not significantly affected by sex or age. From 0200 to 0300 onwards, 1st of January heart rates did not significantly differ from the other periods; however, body temperatures were significantly increased until 0300-0400. From 0400 to 0500, heart rate was not affected by any of the investigated factors, whereas body temperature was significantly increased on the 1st of January compared with the 31st of December and the December average but not compared with the January average. To conclude, our results show that New Year's Eve fireworks cause a substantial physiological response, indicative of a stress response in greylag geese, which is costly in terms of energy expenditure.
Collapse
Affiliation(s)
- Claudia A F Wascher
- Corresponding author: School of Life Sciences, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK. Tel: +4369912381419.
| | - Walter Arnold
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, A-1160 Vienna, Austria
| | - Kurt Kotrschal
- Core Facility Konrad Lorenz Forschungsstelle for Behaviour and Cognition, University of Vienna, 4645 Grünau im Almtal, Austria
- Department of Behavioural Biology, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Rahman T, Candolin U. Linking animal behavior to ecosystem change in disturbed environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental disturbances often cause individuals to change their behavior. The behavioral responses can induce a chain of reactions through the network of species interactions, via consumptive and trait mediated connections. Given that species interactions define ecosystem structure and functioning, changes to these interactions often have ecological repercussions. Here, we explore the transmission of behavioral responses through the network of species interactions, and how the responses influence ecological conditions. We describe the underlying mechanisms and the ultimate impact that the behavioral responses can have on ecosystem structure and functioning, including biodiversity and ecosystems stability and services. We explain why behavioral responses of some species have a larger impact than that of others on ecosystems, and why research should focus on these species and their interactions. With the work, we synthesize existing theory and empirical evidence to provide a conceptual framework that links behavior responses to altered species interactions, community dynamics, and ecosystem processes. Considering that species interactions link biodiversity to ecosystem functioning, a deeper understanding of behavioral responses and their causes and consequences can improve our knowledge of the mechanisms and pathways through which human activities alter ecosystems. This knowledge can improve our ability to predict the effects of ongoing disturbances on communities and ecosystems and decide on the interventions needed to mitigate negative effects.
Collapse
|
12
|
Tidau S, Whittle J, Jenkins SR, Davies TW. Artificial light at night reverses monthly foraging pattern under simulated moonlight. Biol Lett 2022; 18:20220110. [PMID: 35892207 PMCID: PMC9326264 DOI: 10.1098/rsbl.2022.0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mounting evidence shows that artificial light at night (ALAN) alters biological processes across levels of organization, from cells to communities. Yet, the combined impacts of ALAN and natural sources of night-time illumination remain little explored. This is in part due the lack of accurate simulations of the complex changes moonlight intensity, timing and spectra throughout a single night and lunar cycles in laboratory experiments. We custom-built a novel system to simulate natural patterns of moonlight to test how different ALAN intensities affect predator–prey relationships over the full lunar cycle. Exposure to high intensity ALAN (10 and 50 lx) reversed the natural lunar-guided foraging pattern by the gastropod mesopredator Nucella lapillus on its prey Semibalanus balanoides. Foraging decreased during brighter moonlight in naturally lit conditions. When exposed to high intensity ALAN, foraging increased with brighter moonlight. Low intensity ALAN (0.1 and 0.5 lx) had no impact on foraging. Our results show that ALAN alters the foraging pattern guided by changes in moonlight brightness. ALAN impacts on ecosystems can depend on lunar light cycles. Accurate simulations of night-time light cycle will warrant more realistic insights into ALAN impacts and also facilitate advances in fundamental night-time ecology and chronobiology.
Collapse
Affiliation(s)
- Svenja Tidau
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.,School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Jack Whittle
- School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Stuart R Jenkins
- School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Thomas W Davies
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|