1
|
Saccà ML, Resci I, Cilia G. Phenotypic and genotypic antimicrobial resistance patterns in honey bee (Apis mellifera L.) bacterial symbionts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34598-8. [PMID: 39098972 DOI: 10.1007/s11356-024-34598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Antimicrobial resistance (AMR) is a major global public health problem. Nevertheless, the knowledge of the factors driving the spread of resistance among environmental microorganisms is limited, and few studies have been performed worldwide. Honey bees (Apis mellifera L.) have long been considered bioindicators of environmental pollution and more recently also of AMR. In this study, 53 bacterial strains isolated from the body surface of honey bees at three ontogenetic stages, collected from ten different geographic locations, were tested for their phenotypic and genotypic resistance to eight classes of the most widely used antimicrobials in human and veterinary medicine. Results showed that 83% of the strains were resistant to at least one antimicrobial and 62% were multidrug-resistant bacteria, with a prevalence of resistance to nalidixic acid, cefotaxime, and aztreonam. A high percentage of isolates harbouring at least one antimicrobial gene was also observed (85%). The gene encoding resistance to colistin mcr-1 was the most abundant, followed by those for tetracycline tetM and tetC. Geographical features influenced the distribution of these traits more than bacterial species or bee stage, supporting the use of honey bee colonies and their associated bacteria as indicators to monitor environmental resistance. This approach can improve the scientific understanding of this global threat by increasing data collection capacity.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Economics, Via Di Corticella 133, 40128, Bologna, Italy.
| | - Ilaria Resci
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Economics, Via Di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
2
|
Mancusi A, Proroga YTR, Maiolino P, Marrone R, D’Emilio C, Girardi S, Egidio M, Boni A, Vicenza T, Suffredini E, Power K. Droplet Digital RT-PCR (dd RT-PCR) Detection of SARS-CoV-2 in Honey Bees and Honey Collected in Apiaries across the Campania Region. Viruses 2024; 16:729. [PMID: 38793611 PMCID: PMC11126096 DOI: 10.3390/v16050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Coronaviruses (CoVs), a subfamily of Orthocoronavirinae, are viruses that sometimes present a zoonotic character. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for the recent outbreak of COVID-19, which, since its outbreak in 2019, has caused about 774,593,066 confirmed cases and 7,028,881 deaths. Aereosols are the main route of transmission among people; however, viral droplets can contaminate surfaces and fomites as well as particulate matter (PM) in suspensions of natural and human origin. Honey bees are well known bioindicators of the presence of pollutants and PMs in the environment as they can collect a great variety of substances during their foraging activities. The aim of this study was to evaluate the possible role of honey bees as bioindicators of the prevalence SARS-CoV-2. In this regard, 91 samples of honey bees and 6 of honey were collected from different apiaries of Campania region (Southern Italy) in four time periods from September 2020 to June 2022 and were analyzed with Droplet Digital RT-PCR for SARS-CoV-2 target genes Orf1b and N. The screening revealed the presence of SARS-CoV-2 in 12/91 in honey bee samples and in 2/6 honey samples. These results suggest that honey bees could also be used as indicators of outbreaks of airborne pathogens such as SARS-CoV-2.
Collapse
Affiliation(s)
- Andrea Mancusi
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (Y.T.R.P.); (S.G.)
| | - Yolande Thérèse Rose Proroga
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (Y.T.R.P.); (S.G.)
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Raffaele Marrone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Claudia D’Emilio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Santa Girardi
- Department of Food Security Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute No. 2, 80055 Portici, Italy; (A.M.); (Y.T.R.P.); (S.G.)
| | - Marica Egidio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (P.M.); (R.M.); (C.D.)
| | - Arianna Boni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (T.V.); (E.S.)
| | - Teresa Vicenza
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (T.V.); (E.S.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (T.V.); (E.S.)
| | - Karen Power
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
3
|
Resci I, Zavatta L, Piva S, Mondo E, Albertazzi S, Nanetti A, Bortolotti L, Cilia G. Predictive statistical models for monitoring antimicrobial resistance spread in the environment using Apis mellifera (L. 1758) colonies. ENVIRONMENTAL RESEARCH 2024; 248:118365. [PMID: 38301758 DOI: 10.1016/j.envres.2024.118365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rise of antimicrobial resistance (AMR) is one of the most relevant problems for human and animal health. According to One Health Approach, it is important to regulate the use of antimicrobials and monitor the spread of AMR in the environment as well. Apis mellifera (L. 1758) colonies were used as bioindicators thanks to their physical and behavioural characteristics. During their foraging flights, bees can intercept small particles, including atmospheric particulate matter, etc., and also microorganisms. To date, the antimicrobial surveillance network is limited to the sanitary level but lacks into environmental context. This study aimed to evaluate the use of A. mellifera colonies distributed throughout the Emilia-Romagna region (Italy) as indicators of environmental antimicrobial-resistant bacteria. This was performed by creating a statistical predictive model that establishes correlations between environmental characteristics and the likelihood of isolating specific bacterial genera and antimicrobial-resistant strains. A total of 608 strains were isolated and tested for susceptibility to 19 different antimicrobials. Aztreonam-resistant strains were significantly related to environments with sanitary structures, agricultural areas and wetlands, while urban areas present a higher probability of trimethoprim/sulfamethoxazole-resistant strains isolation. Concerning genera, environments with sanitary structures and wetlands are significantly related to the genera Proteus spp., while the Escherichia spp. strains can be probably isolated in industrial environments. The obtained models showed maximum values of Models Accuracy and robustness (R2) of 55 % and 24 %, respectively. The results indicate the efficacy of utilizing A. mellifera colonies as valuable bioindicators for estimating the prevalence of AMR in environmentally disseminated bacteria. This survey can be considered a good basis for the development of further studies focused on monitoring both sanitary and animal pathology, creating a specific network in the environments of interest.
Collapse
Affiliation(s)
- Ilaria Resci
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; Department of Veterinary Sciences, University of Bologna, Via Tolara di Sopra, 43, 40064 Ozzano Dell'Emilia (BO), Italy
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; DISTAL-Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Silvia Piva
- Department of Veterinary Sciences, University of Bologna, Via Tolara di Sopra, 43, 40064 Ozzano Dell'Emilia (BO), Italy
| | - Elisabetta Mondo
- Department of Veterinary Sciences, University of Bologna, Via Tolara di Sopra, 43, 40064 Ozzano Dell'Emilia (BO), Italy
| | - Sergio Albertazzi
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy
| | - Laura Bortolotti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy.
| |
Collapse
|
4
|
Lin Z, Shen S, Wang K, Ji T. Biotic and abiotic stresses on honeybee health. Integr Zool 2024; 19:442-457. [PMID: 37427560 DOI: 10.1111/1749-4877.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Honeybees are the most critical pollinators providing key ecosystem services that underpin crop production and sustainable agriculture. Amidst a backdrop of rapid global change, this eusocial insect encounters a succession of stressors during nesting, foraging, and pollination. Ectoparasitic mites, together with vectored viruses, have been recognized as central biotic threats to honeybee health, while the spread of invasive giant hornets and small hive beetles also increasingly threatens colonies worldwide. Cocktails of agrochemicals, including acaricides used for mite treatment, and other pollutants of the environment have been widely documented to affect bee health in various ways. Additionally, expanding urbanization, climate change, and agricultural intensification often result in the destruction or fragmentation of flower-rich bee habitats. The anthropogenic pressures exerted by beekeeping management practices affect the natural selection and evolution of honeybees, and colony translocations facilitate alien species invasion and disease transmission. In this review, the multiple biotic and abiotic threats and their interactions that potentially undermine bee colony health are discussed, while taking into consideration the sensitivity, large foraging area, dense network among related nestmates, and social behaviors of honeybees.
Collapse
Affiliation(s)
- Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Siyi Shen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Saxena P, Harish, Shah D, Rani K, Miglani R, Singh AK, Sangela V, Rajput VD, Minkina T, Mandzhieva S, Sushkova S. A critical review on fate, behavior, and ecotoxicological impact of zinc oxide nanoparticles on algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19105-19122. [PMID: 38376781 DOI: 10.1007/s11356-024-32439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024]
Abstract
The rapid inclusion of zinc oxide nanoparticles (ZnO NPs) in nanotechnology-based products over the last decade has generated a new threat in the apprehension of the environment. The massive use of zinc nanosized products will certainly be disposed of and be released, eventually entering the aquatic ecosystem, posing severe environmental hazards. Moreover, nanosized ZnO particles owing the larger surface area per volume exhibit different chemical interactions within the aquatic ecosystem. They undergo diverse potential transformations because of their unique physiochemical properties and the feature of receiving medium. Therefore, assessment of their impact is critical not only for scavenging the present situation but also for preventing unintended environmental hazards. Algae being a primary producer of the aquatic ecosystem help assess the risk of massive NPs usage in environmental health. Because of their nutritional needs and position at the base of aquatic food webs, algal indicators exhibit relatively unique information concerning ecosystem conditions. Moreover, algae are presently the most vital part of the circular economy. Hence, it is imperative to understand the physiologic, metabolic, and morphologic changes brought by the ZnO NPs to the algal cells along with the development of the mechanism imparting toxicity mechanism. We also need to develop an appropriate scientific strategy in the innovation process to restrain the exposure of NPs at safer levels. This review provides the details of ZnO NP interaction with algae. Moreover, their impact, mechanism, and factors affecting toxicity to the algae are discussed.
Collapse
Affiliation(s)
- Pallavi Saxena
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia.
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Diksha Shah
- Department of Environmental Sciences, G.B. Pant University of Agriculture & Technology: Govind, Ballabh Pant University of Agriculture & Technology, Uttarakhand, 263145, India
| | - Kanika Rani
- Centre for Bio-Nanotechnology, Department of Molecular Biology and Biotechnology, CCS HAU, Hisar, Haryana, 125004, India
| | - Rashi Miglani
- Department of Environmental Sciences, G.B. Pant University of Agriculture & Technology: Govind, Ballabh Pant University of Agriculture & Technology, Uttarakhand, 263145, India
| | - Amit Kumar Singh
- Laboratory of Alternative Protocols in Zoology & Biotechnology Research Laboratory, Department of Zoology, D.S.B Campus, Kumaun University, Nainital, 263002, India
- Plant Ecology Laboratory, Department of Botany, BMK Govt. Girls College, Balod, Chhattisgarh, 491226, India
| | - Vishambhar Sangela
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Vishnu Dayal Rajput
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| | - Tatiana Minkina
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| | - Saglara Mandzhieva
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| | - Svetlana Sushkova
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| |
Collapse
|
6
|
Paloschi CL, Tavares MHF, Berte EA, Model K, Rosa KM, Conceição FGD, Domanski FR, de Souza Vismara E, Montanher PF, Maciel RMA, Ribeiro LDS, Ramos Mertz N, Sampaio SC, Costa FM, Lozano ER, Potrich M. Imidacloprid: Impact on Africanized Apis mellifera L. (Hymenoptera: Apidae) workers and honey contamination. CHEMOSPHERE 2023; 338:139591. [PMID: 37478982 DOI: 10.1016/j.chemosphere.2023.139591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
Apis mellifera L. (Hymenoptera: Apidae) is fundamental in the production chain, ensuring food diversity through the ecosystem service of pollination. The aim of this work was to evaluate the impact of imidacloprid, orally, topically, and by contact, on A. mellifera workers and to verify the presence of this active ingredient in honey. Toxicity levels were verified by bioassays. In bioassay 1, the levels correspond to the percentages of 100, 10, 1, 0.1, and 0.01% of the recommended concentration for field application of the commercial product Nortox® (active ingredient imidacloprid), with which we obtained the mean lethal concentration (LC50) in 48 h for A. mellifera, determining the concentration ranges to be used in the subsequent bioassays. Bioassays 2 and 3 followed the guidelines of the Organization for Economic Cooperation and Development, which specify the LC50 (48 h). In bioassay 4, the LC50 (48 h) and the survival rate of bees for a period of 120 h were determined by contact with a surface contaminated with imidacloprid, and in bioassay 5, the interference of the insecticide with the flight behavior of bees was evaluated. Honey samples were collected in agroecological and conventional georeferenced apiaries and traces of the imidacloprid were detected by means of high-performance liquid chromatography (HPLC-UV) with extraction by SPE C18. Bee survival was directly affected by the concentration and exposure time, as well behavioral performance, demonstrating the residual effect of imidacloprid on A. mellifera workers. Honey samples from a conventional apiary showed detection above the maximum residue limits (MRL) allowed by the European Union (0.05 μg mL-1), but samples from other apiaries showed no traces of this insecticide. Imidacloprid affects the survival rate and behavior of Africanized A. mellifera and honey quality.
Collapse
Affiliation(s)
| | | | | | - Kathleen Model
- Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | - Michele Potrich
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil.
| |
Collapse
|
7
|
Resci I, Cilia G. The use of honey bee (Apis mellifera L.) as biological monitors for pathogenic bacteria and antimicrobial resistance: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122120. [PMID: 37385360 DOI: 10.1016/j.envpol.2023.122120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The phenomenon of antimicrobial resistance (AMR) is an increasingly real and relevant health problem. It is essential to verify the spread of this phenomenon in the environment. The European honey bee, Apis mellifera L., is a globally managed pollinator continuously used for biomonitoring thanks to its morphological and behavioural characteristics. During their foraging activities, a large number of honey bees move in the area surrounding the hive within a 1.5 km of radius. Besides, their body covered with hair and bristles are able to intercept pollen and minute particles, such as atmospheric particles, contaminants and microorganisms. For these reasons, A. mellifera L. is widely used as an environmental sentinel, especially for detecting pollutants, pesticides, microorganisms, and AMR. This systematic review aimed to collect and summarize the role of honey bee colonies as a biological monitor of AMR pathogenic bacteria and the environmental spread of antimicrobial resistance genes (ARGs). From honey bees were isolated a wide range of pathogenic and environmental bacteria strains, harbouring AMR and ARGs. However, AMR and ARGs were detected not only in environmental bacteria but also in symbiotic bacteria colonizing the bee gut. This systematic review highlights the employment of potential use of honey bees as AMR sentinel helpful for ecosystem health to implement possible control measures for humans, animals and plants, in the context of the "One-Health" approach.
Collapse
Affiliation(s)
- Ilaria Resci
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy.
| |
Collapse
|
8
|
Murcia-Morales M, Vejsnæs F, Brodschneider R, Hatjina F, Van der Steen JJM, Oller-Serrano JL, Fernández-Alba AR. Enhancing the environmental monitoring of pesticide residues through Apis mellifera colonies: Honey bees versus passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163847. [PMID: 37127158 DOI: 10.1016/j.scitotenv.2023.163847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The use of apicultural matrices for the environmental monitoring of pesticides is a widely employed approach that facilitates to a great extent the sampling procedures. Honey bees are one of the most commonly employed matrices in these studies due to their abundance in the colonies and their direct contact with the beehive and the environment. However, the analysis of this matrix is associated to a lack of representativity of the contaminants accumulated within the beehive, due mainly to the limited number of honey bees that are sampled and analyzed compared to the population in a hive. This small proportion of organisms which are sampled from the colony may lead to underestimations or overestimations of the total pesticide load, depending on the specific individuals that are included in the analysis. In the present work, the passive, non-invasive APIStrip-based sampling approach is compared to active bee sampling with a total of 240 samples taken from 15 apiaries from Austria, Denmark and Greece over a two-month period in 2022. The APIStrips have been found to provide a more comprehensive image of the pesticide residues accumulated in the beehive in terms of number of identified residues and robustness of the results. A total of 74 different pesticide residues were detected: the use of APIStrips allowed to detect 66 pesticides in the three countries, compared to 38 residues in honey bees. The use of APIStrips also resulted in a higher percentage of positive samples (containing at least one pesticide residue). The results provided by the passive sampling approach were also more consistent among the replicates and over time, which reveals an increased sampling robustness.
Collapse
Affiliation(s)
- María Murcia-Morales
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | | | - Robert Brodschneider
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz 8010, Austria
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science, Ellinikos Georgikos Organismos 'DIMITRA', Nea Moudania GR-63200, Greece
| | | | - José Luis Oller-Serrano
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - Amadeo R Fernández-Alba
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain.
| |
Collapse
|
9
|
Hénaff E, Najjar D, Perez M, Flores R, Woebken C, Mason CE, Slavin K. Holobiont Urbanism: sampling urban beehives reveals cities' metagenomes. ENVIRONMENTAL MICROBIOME 2023; 18:23. [PMID: 36991491 PMCID: PMC10060141 DOI: 10.1186/s40793-023-00467-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/23/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Over half of the world's population lives in urban areas with, according to the United Nations, nearly 70% expected to live in cities by 2050. Our cities are built by and for humans, but are also complex, adaptive biological systems involving a diversity of other living species. The majority of these species are invisible and constitute the city's microbiome. Our design decisions for the built environment shape these invisible populations, and as inhabitants we interact with them on a constant basis. A growing body of evidence shows us that human health and well-being are dependent on these interactions. Indeed, multicellular organisms owe meaningful aspects of their development and phenotype to interactions with the microorganisms-bacteria or fungi-with which they live in continual exchange and symbiosis. Therefore, it is meaningful to establish microbial maps of the cities we inhabit. While the processing and sequencing of environmental microbiome samples can be high-throughput, gathering samples is still labor and time intensive, and can require mobilizing large numbers of volunteers to get a snapshot of the microbial landscape of a city. RESULTS Here we postulate that honeybees may be effective collaborators in gathering samples of urban microbiota, as they forage daily within a 2-mile radius of their hive. We describe the results of a pilot study conducted with three rooftop beehives in Brooklyn, NY, where we evaluated the potential of various hive materials (honey, debris, hive swabs, bee bodies) to reveal information as to the surrounding metagenomic landscape, and where we conclude that the bee debris are the richest substrate. Based on these results, we profiled 4 additional cities through collected hive debris: Sydney, Melbourne, Venice and Tokyo. We show that each city displays a unique metagenomic profile as seen by honeybees. These profiles yield information relevant to hive health such as known bee symbionts and pathogens. Additionally, we show that this method can be used for human pathogen surveillance, with a proof-of-concept example in which we recover the majority of virulence factor genes for Rickettsia felis, a pathogen known to be responsible for "cat scratch fever". CONCLUSIONS We show that this method yields information relevant to hive health and human health, providing a strategy to monitor environmental microbiomes on a city scale. Here we present the results of this study, and discuss them in terms of architectural implications, as well as the potential of this method for epidemic surveillance.
Collapse
Affiliation(s)
- Elizabeth Hénaff
- NYU Tandon School of Engineering, Brooklyn, NY USA
- Center for Urban Science and Progress, NYU, Brooklyn, NY USA
| | | | | | | | | | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY USA
- Weill Cornell Medicine, The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY USA
| | | |
Collapse
|
10
|
First molecular detection of SARS-CoV-2 virus in cockroaches. Biologia (Bratisl) 2023; 78:1153-1160. [PMID: 36741802 PMCID: PMC9890436 DOI: 10.1007/s11756-023-01332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Coronavirus is one of the main pathogens that primarily targets the human respiratory system. There are several ways to transmit this virus, such as direct contact or droplets spread by coughing or sneezing, and direct contact with fomites and surfaces is another way. This cross-sectional study was conducted in Shiraz, southern Iran, in 2021. 5 locations, including 3 hospitals and 2 dormitories, were selected for the survey. The cockroaches were collected from selected locations and transferred to the Laboratory of Medical Entomology at Shiraz University of Medical Sciences. All specimens were identified morphologically. The external and gastrointestinal washouts of collected samples with sterile phosphate-buffered saline separately were used for molecular analysis. An RT-qPCR assay, which suggests the possible insect‑borne transmission, was used. External and gastrointestinal washout of B. germanica from Dastgheyb Dormitory and P. americana from Ali-Asghar Hospital were positive for contamination with the SARS-CoV-2. Cockroaches spread the virus in the environment and contaminate human food and various surfaces of buildings. Their role will be more important in crowded places such as hotels, lodging houses, restaurants, and hospitals; vector control programs should be carried out with more accuracy in such places.
Collapse
|