1
|
Jiao W, Zhu L, Li QX, Shi T, Zhang Z, Wu X, Yang T, Hua R, Cao H. Pyrrolizidine Alkaloids in Tea ( Camellia sinensis L.) from Weeds through Weed-Soil-Tea Transfer and Risk Assessment of Tea Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19045-19053. [PMID: 37982559 DOI: 10.1021/acs.jafc.3c04339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Pyrrolizidine alkaloids (PAs) have been detected in tea and can threaten human health. However, the specific source of PAs in tea is still unclear. Here, 88 dried tea products collected from six major tea-producing areas in Anhui Province, China, were analyzed. The detection frequency was 76%. The content of total PAs in dried tea was between 1.1 and 90.5 μg/kg, which was all below the MRL recommended by the European Union (150 μg/kg). In the Shexian tea garden, PAs in the weeds and weed rhizospheric soil around tea plants and the fresh tea leaves were analyzed. Intermedine (Im), intermedine-N-oxide (ImNO), and jacobine-N-oxide (JbNO) were transferred through the weed-to-soil-to-tea route into the fresh tea leaves; only Im and ImNO were detected in dried tea samples. Potential risk of the total PAs in the tea infusion was assessed according to the margin of exposure method, and it might be a low concern for public health.
Collapse
Affiliation(s)
- Weiting Jiao
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lei Zhu
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii 96822, United States
| | - Taozhong Shi
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei 230036, China
| | - Zhaoxian Zhang
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Rimao Hua
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment of Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Fernandes Mendonça Mota T, Lima Oliveira W, Gonçalves S, Wust Vasconcelos M, Silvia Beatriz Miglioranza K, Castilhos Ghisi N. Are the issues involving acephate already resolved? A scientometric review. ENVIRONMENTAL RESEARCH 2023; 237:117034. [PMID: 37673123 DOI: 10.1016/j.envres.2023.117034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Acephate is a pesticide classified as moderately toxic, and its metabolite methamidophos is highly toxic for mammals and birds; even so, it is one of the most used insecticides in pest control for agricultural and domestic use. Acephate toxicity affects both target and non-target organisms and causes serious damage to the environment. There are several studies on different perspectives of acephate, such as monitoring, toxicity, and modeling. In this sense, this research aims to identify the structure of intellectual production on acephate and analyze the gaps and trends of scientific production on acephate through a scientometric analysis. The data was obtained from the Web of Science database, and after the refinement, 1.085 documents were used. A temporal pattern of the main research objectives is displayed. Most selected studies evaluated acephate efficiency, followed by toxicity and residue detection methods. The USA, China, India, Brazil, and Japan had the highest number of publications on acephate. The keywords most utilized were pesticides, toxicity, insecticide resistance, and residue. Research involving acephate requires greater attention from areas such as ecotoxicology, biochemistry, genetics, and biotechnology. There needed to be more discussions on chronic toxicity, genotoxicity, and cytotoxicity. Moreover, few studies about metabolic and biochemical pathways and genes related to acephate action and biodegradation were scarce.
Collapse
Affiliation(s)
- Thaís Fernandes Mendonça Mota
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000, Dois Vizinhos, Paraná, Brazil; Collegiate of Biological Sciences, Universidade Estadual Do Paraná (UNESPAR), Campus Paranavaí, Avenida Gabriel Esperidião, S/n, Jardim Morumbi, 87703-000, Paranavaí, Paraná, Brazil
| | - Wesley Lima Oliveira
- Multiuser Core Laboratory of Biological Analysis and Molecular Biology (BioMol) at Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil; Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Sandrieli Gonçalves
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000, Dois Vizinhos, Paraná, Brazil; Multiuser Core Laboratory of Biological Analysis and Molecular Biology (BioMol) at Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Marina Wust Vasconcelos
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000, Dois Vizinhos, Paraná, Brazil; Multiuser Core Laboratory of Biological Analysis and Molecular Biology (BioMol) at Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Karina Silvia Beatriz Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental. Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMDP-CONICET. Funes 3350, 7600, Mar Del Plata, Argentina
| | - Nédia Castilhos Ghisi
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000, Dois Vizinhos, Paraná, Brazil; Multiuser Core Laboratory of Biological Analysis and Molecular Biology (BioMol) at Universidade Tecnológica Federal Do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança S/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil.
| |
Collapse
|
3
|
Jiao W, Zhang P, Cui C, Yan M, Li QX, Tang Y, Zhang N, Wang X, Hou R, Hua R. Metabolic responses of tea (Camellia sinensis L.) to the insecticide thiamethoxam. PEST MANAGEMENT SCIENCE 2023; 79:3570-3580. [PMID: 37160655 DOI: 10.1002/ps.7534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Thiamethoxam (TMX) is insecticidal, but also can trigger physiological and metabolic reactions of plant cycles. The objective of this work was to evaluate the physiological and metabolic effect of TMX on tea plants and its potential benefits. RESULTS In this study, dose of TMX (0.09, 0.135 and 0.18 kg a.i./ha) were tested. Except for peroxidase (POD) and glutathione S-transferase (GST), chlorophyll, carotenoid, catalase (CAT) and malondialdehyde (MDA) were significantly affected compared with the controls. The CAT activity was increased by 3.38, 1.71, 2.91 times, respectively, under three doses of TMX treatment. The metabolic response between TMX treatment and control groups on the third day was compared using a widely targeted metabolomics. A total of 97 different metabolites were identified, including benzenoids, flavonoids, lipids and lipid-like molecules, organic acids and derivatives, organic nitrogen compounds, organic oxygen compounds, organoheterocyclic compounds, phenylpropanoids and polyketides, and others. Those metabolites were mapped on the perturbed metabolic pathways. The results demonstrated that the most perturbation occurred in flavone and flavonol biosynthesis. The beneficial secondary metabolites luteolin and kaempferol were upregulated 1.46 and 1.31 times respectively, which protect plants from biotic and abiotic stresses. Molecular docking models suggest interactions between TMX and flavonoid 3-O-glucosyltransferase. CONCLUSION Thiamethoxam spray positively promoted the physiological and metabolic response of tea plants. And this work also provided the useful information of TMX metabolism in tea plants as well as rational application of insecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiting Jiao
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, China
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Ping Zhang
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, China
| | - Chuanjian Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Min Yan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yongfeng Tang
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, China
| | - Nan Zhang
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, China
| | - Xinyi Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Rimao Hua
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, China
| |
Collapse
|
4
|
Lescano MR, Macagno J, Berli CLA. Model-Based Analysis of Lactuca sativa Root Growth under the Action of Herbicides in Milli-Channel Arrays with In Situ Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13255-13262. [PMID: 37651710 DOI: 10.1021/acs.jafc.3c04105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Extracting practical information from the large amounts of data gathered during the live imaging analysis of plant organs is a challenging issue. The present work investigates the use of the logistic growth model to analyze experimental data from root elongation assays performed in milli-fluidic devices with in situ imaging. Lactuca sativa was used as a bioindicator and was subjected to wide concentration ranges of four different herbicides: 2,4-D, atrazine, glyphosate, and paraquat. The model parameters were directly connected to standard indicators of toxicity and plant development, such as the LD50 and the absolute growth rate, respectively. In addition, it was found that realistic predictions of the maximum root length can be achieved about 60 h before the bioassay end point, which could significantly shorten the turnaround time. The combination of milli-fluidic devices, real-time imaging, and model-based data analysis becomes a powerful tool for environmental studies and ecotoxicity testing.
Collapse
Affiliation(s)
- Maia R Lescano
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT CONICET Santa Fe, RN 168, Santa Fe 3000, Argentina
| | - Joana Macagno
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT CONICET Santa Fe, RN 168, Santa Fe 3000, Argentina
| | - Claudio L A Berli
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT CONICET Santa Fe, RN 168, Santa Fe 3000, Argentina
| |
Collapse
|
5
|
Jiang L, Geng Y, Wang L, Peng Y, Jing W, Xu Y, Liu X. Enantioseparation and dissipation of acephate and its highly toxic metabolite methamidophos in pakchoi by supercritical fluid chromatography tandem mass spectrometry. J Sep Sci 2022; 45:1806-1817. [PMID: 35261148 DOI: 10.1002/jssc.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
Acephate is widely used in crops as racemate. However, the enantioselective dissipation of acephate enantiomers has not been investigated in pakchoi. A sensitive and effective approach was established for determining residues of acephate and its highly toxic metabolite methamidophos enantiomers by supercritical fluid chromatography tandem mass spectrometry. Baseline separations for their enantiomers were achieved by using a Chiralcel OD-H column. The optimal chromatographic conditions were obtained as follows: CO2 /ethanol (95/5) as mobile phase; flow rate, 3.0 mL/min; column temperature, 40°C. The mean recoveries (RSDs) of analytes were in the range of 77%-83.1% (6.1%-9.9%), 75.4%-87.5% (9.3%-13.2%), and 81.5%-84.2% (7.1%-13.4%) at three fortification levels (0.005, 0.05, and 0.5 mg/kg for each enantiomer) for interday assay (n = 18). The method was used to evaluate the enantioselective dissipation of acephate and methamidophos in pakchoi. S-acephate dissipated faster than R-acephate, while the concentration of R-methamidophos was higher than that of S-methamidophos during the entire study period. The results indicated that the R-enantiomer of acephate and methamidophos was preferentially enriched in pakchoi. The established analysis approach and the study data provided useful information for the rational use of acephate in agriculture. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Linjie Jiang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.,Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China.,National Reference Laboratory for Agricultural Testing, China
| | - Yue Geng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.,Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China.,National Reference Laboratory for Agricultural Testing, China
| | - Lu Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.,Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China.,National Reference Laboratory for Agricultural Testing, China
| | - Yi Peng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.,Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China.,National Reference Laboratory for Agricultural Testing, China
| | - Wei Jing
- Shimadzu (China) Co., LTD. Beijing Branch, China
| | - Yaping Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.,Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China.,National Reference Laboratory for Agricultural Testing, China
| | - Xiaowei Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.,Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, China.,National Reference Laboratory for Agricultural Testing, China
| |
Collapse
|