1
|
Uguen M, Gaudron SM, Seuront L. Plastic pollution and marine mussels: Unravelling disparities in research efforts, biological effects and influences of global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178078. [PMID: 39709840 DOI: 10.1016/j.scitotenv.2024.178078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
The ever-growing contamination of the environment by plastics is a major scientific and societal concern. Specifically, the study of microplastics (1 μm to 5 mm), nanoplastics (< 1 μm), and their leachates is a critical research area as they have the potential to cause detrimental effects, especially when they impact key ecological species. Marine mussels, as ecosystem engineers and filter feeders, are particularly vulnerable to this type of pollution. In this study, we reviewed the 106 articles that focus on the impacts of plastic pollution on marine mussels. First, we examined the research efforts in terms of plastic characteristics (size, polymer, shape, and leachates) and exposure conditions (concentration, duration, species, life stages, and internal factors), their disparities, and their environmental relevance. Then, we provided an overview of the effects of plastics on mussels at each organisational levels, from the smaller scales (molecular, cellular, tissue and organ impacts) to the organism level (functional, physiological, and behavioural impacts) as well as larger-scale implications (associated community impacts). We finally discussed the limited research available on multi-stressor studies involving plastics, particularly in relation to temperature stress. We identified temperature as an underestimated factor that could shape the impacts of plastics, and proposed a roadmap for future research to address their combined effects. This review also highlights the impact of plastic pollution on mussels at multiple levels and emphasises the strong disparities in research effort and the need for more holistic research, notably through the consideration of multiple stressors, with a specific focus on temperature which is likely to become an increasingly relevant forcing factor in an era of global warming. By identifying critical gaps in current knowledge, we advocate for more coordinated interdisciplinary and international collaborations and raise awareness of the need for environmental coherence in the choice and implementation of experimental protocols.
Collapse
Affiliation(s)
- Marine Uguen
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France.
| | - Sylvie M Gaudron
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Sorbonne Université, UFR 927, F-75005 Paris, France
| | - Laurent Seuront
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
2
|
Pyl M, Ben Gharbia H, Sdiri K, Oberhänsli F, Friedrich J, Danis B, Metian M. Comparison of biofilm-covered microplastics and sand particles as vectors of PCB-153 to Paracentrotus lividus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107113. [PMID: 39488150 DOI: 10.1016/j.aquatox.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
The microplastics (MPs) vector effect of environmental contaminants (such as polychlorinated biphenyls-PCBs) to organism tissues is currently one of the major concerns regarding MPs pollution in the marine environment. The relative importance of MPs as vectors for the bioaccumulation of contaminants to marine organisms compared to other naturally occurring particles has been poorly investigated and never by using biofilm-covered particles. The present study compares the role of biofilm-covered microplastics and sand particles as vectors for the transfer and bioaccumulation of ¹⁴C-PCB-153 into various body compartments of the sea urchin Paracentrotus lividus. After 14 days of exposure, similar transfer efficiency of ¹⁴C-PCB-153 from both types of biofilm-covered particles was obtained (t-test, p-val = 0.43). The particle type was not found to affect the concentration (two-way ANOVA, p-valper dry weight = 0.92, p-valper lipid weight = 0.80) and distribution (two-way ANOVA, p-val = 0.85) of ¹⁴C-PCB-153 among the different body compartments of sea urchins. These findings suggest that biofilm-covered MPs located on the seafloor may act as similar vectors for the bioaccumulation of PCB-153 in sea urchin tissues compared to other biofouled natural particles such as sand. Overall, the outcomes of this present work align with the growing consensus among various research groups that MPs-mediated bioaccumulation of co-contaminants would be negligible compared to natural bioaccumulation pathways in relation to their abundance in the ocean.
Collapse
Affiliation(s)
- Marine Pyl
- Laboratoire de Biologie marine (CP 160/15), Université Libre de Bruxelles, Av. F.D. Roosevelt 50 B-1050 Brussels, Belgium; International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco.
| | - Hela Ben Gharbia
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - Khalil Sdiri
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - François Oberhänsli
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - Jana Friedrich
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - Bruno Danis
- Laboratoire de Biologie marine (CP 160/15), Université Libre de Bruxelles, Av. F.D. Roosevelt 50 B-1050 Brussels, Belgium
| | - Marc Metian
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| |
Collapse
|
3
|
Saputra HK, Miura N, Pokhrel P, Zhao GY, Fujita M. Comprehensive assessment of multiple biomarker mechanisms in the brackish water clam Corbicula japonica exposed to polystyrene microplastics using structural equation modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175089. [PMID: 39074741 DOI: 10.1016/j.scitotenv.2024.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Using structural equation modeling (SEM), we investigated multiple biomarker mechanisms in terms of biochemical and individual marker responses in the brackish water clam Corbicula japonica following acute exposure to polystyrene microplastic (PS-MP). This study is the first to comprehensively explore multiple biomarker responses in bivalves using SEM. The model revealed that PS-MP accumulation was an independent biomarker, exhibiting significant direct effects on superoxide dismutase (SOD) and catalase (CAT) among the biochemical markers. Although CAT generally interacts closely with SOD, no significant relationship was identified between them, indicating that CAT may have independently responded to PS-MP stress. Among individual markers, significant indirect effects were observed on clearance rate (CR), reflecting feeding activity and valve open rate, indicating excretion activity via SOD and CAT. Finally, the carbon-based scope for growth was significantly influenced by CR. SEM is efficient and useful for identifying significant direct and indirect pathway relationships and for uncovering uncommon relationships in unified multiple biomarker mechanisms in aquatic studies.
Collapse
Affiliation(s)
- Henry Kasmanhadi Saputra
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan; College of Vocational Studies, IPB University, Cilibende, Bogor, West Java 16128, Indonesia
| | - Nanami Miura
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Preeti Pokhrel
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Guang-Yao Zhao
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Masafumi Fujita
- Global and Local Environment Co-creation Institute, Ibaraki University, Ibaraki 316-8511, Japan.
| |
Collapse
|
4
|
Bouchnak R, El Ayari T, Rabeh I, Salhi O, Aloui F, Maamouri A, Gravato C, Trabelsi M, Mhadhbi L. Polyethylene microplastic modulates the toxicity of pentachlorophenol to the microalgae Isochrysis galbana, clone t-ISO. CHEMOSPHERE 2024; 367:143588. [PMID: 39461439 DOI: 10.1016/j.chemosphere.2024.143588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Pentachlorophenol (PCP) and polyethylene microplastic (PE-MP) have been designated as emerging and persistent pollutants, respectively. The combined effects of those pollutants are still unknown, especially to organisms like phytoplankton that may adsorb to their surface. Therefore, the purpose of this study was to investigate for the first time the effects of PE-MP alone and in combination with PCP on the microalgae Isochrysis galbana, clone t-ISO following 72 h of exposure. Photosynthetic pigments amounts, carotenoid, protein, carbohydrate and fatty acids have been assessed. Acute toxicity test showed that the 72 h median inhibition concentration (72 h-EC50) was 148.2, 0.66 and 087 mg L-1 for PE-MP, PCP and their mixture. The utmost effects in growth inhibition rates were noted with 0.5 and 1.25 mg L-1 PCP (23% and 85%, respectively), and 100 and 300 mg L-1 PE-MP (49% and 64%, respectively). Moreover, it was found that those concentrations had a major impact on the photosynthetic pigments, protein, carbohydrate, and fatty acids amounts in algal cells. Furthermore, levels of H2O2 and Malondialdehyde (MDA), as well as the activities of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), indicated the induction of an oxidative stress in algal cells. It appears that adding PE-MP at a no-effect concentration (25 mg L-1) reduces the toxicity caused by PCP due to its adsorption to polyethylene microplastics.
Collapse
Affiliation(s)
- Rahma Bouchnak
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Tahani El Ayari
- Group of Fundamental and Applied Malacology (MAF), Laboratory of Environment Bio-Monitoring (LBE), Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Bizerte, Tunisia.
| | - Imen Rabeh
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Oumaima Salhi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia; IRDL UMR CNRS 6027, Université Bretagne Sud, 56000 Vannes, France.
| | - Foued Aloui
- Laboratoire des Ressources Sylvo-Pastorales, Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tunisia.
| | - Ahmed Maamouri
- Interprofessional Grouping of Fishery Products, Fish Hatchery of Tabarka, Tunisia.
| | - Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Monia Trabelsi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Lazhar Mhadhbi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| |
Collapse
|
5
|
Pinto EP, Paredes E, Santos-Echeandía J, Campillo JA, León VM, Bellas J. Comparative assessment of microplastics and microalgae as vectors of mercury and chlorpyrifos in the copepod Acartia tonsa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173791. [PMID: 38862041 DOI: 10.1016/j.scitotenv.2024.173791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Microplastics (MPs) raise concerns not only as pollutants themselves, but also due to their ability to act as vectors of pollutants adsorbed from seawater, transferring them to marine organisms. However, the relevance of MPs as carriers of pollutants compared to microalgae needs further exploration. This study compared the role of MPs (2-10 μm non-oxidized and 10-15 μm oxidized high-density polyethylene) and natural organic particles (Rhodomonas lens microalgae, MA) as carriers of mercury (Hg, 2.3 μg Hg/L) and chlorpyrifos (CPF, 1.0 μg CPF/L) to adult Acartia tonsa copepods, after 24-48 h exposure. Dose-response experiments were first performed with adult female copepods exposed to oxidized MPs (0.25-4.0 mg/L), waterborne Hg (0.01-10.0 μg/L) and Ox MPs + Hg (0.25-4.0 mg oxidized MPs/L + 0.50-8.0 μg Hg/L) for 48 h, to complement previous studies that focused on the pesticide CPF. Effects were evaluated with four replicates for physiological and reproductive responses (6 females/replicate), biochemical techniques (40 individuals/replicate) and Hg/CPF bioaccumulation measurements (1000 individuals/replicate). Copepods accumulated Hg/CPF similarly from dissolved pollutants (6204 ± 2265 ng Hg/g and 1251 ± 646 ng CPF/g) and loaded MPs (3125 ± 1389 ng Hg/g and 1156 ± 266 ng CPF/g), but significantly less from loaded MA (21 ± 8 ng Hg/g and 173 ± 80 ng CPF/g). After 24-48 h, copepods exposed to MPs + Hg/CPF showed generally greater biological effects than those exposed to dissolved Hg/CPF or to MA + Hg/CPF, although differences were not statistically significant. MA + CPF had significantly lower AChE inhibition (1073.4 nmol min-1 mg-1) and MA + Hg lower GRx induction (48.8 nmol min-1 mg-1) compared to MPs + Hg/CPF and dissolved Hg/CPF (182.8-236.4 nmol min-1 mg-1 of AChE and 74.1-101.7 nmol min-1 mg-1 of GRx). Principal component analysis suggested different modes of action for Hg and CPF.
Collapse
Affiliation(s)
- Estefanía P Pinto
- Centro de Investigación Mariña Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, ECOCOST, 36310 Vigo, Spain.
| | - Estefanía Paredes
- Centro de Investigación Mariña Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, ECOCOST, 36310 Vigo, Spain
| | - Juan Santos-Echeandía
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida Radio Faro, 50, 36390 Vigo, Spain
| | - Juan Antonio Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Víctor M León
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida Radio Faro, 50, 36390 Vigo, Spain
| |
Collapse
|
6
|
Fernández B, Vidal-Liñán L, Bellas J, Campillo JA, Chaves-Pozo E, Albentosa M. The particle effect: comparative toxicity of chlorpyrifos in combination with microplastics and phytoplankton particles in mussel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107053. [PMID: 39213727 DOI: 10.1016/j.aquatox.2024.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Lately, the role of microplastics (MP) as vectors for dissolved contaminants and as vehicle for their transfer to aquatic organisms has received attention. Similarly to MP, other inorganic and organic particles may act as passive samplers. However, limited comparative knowledge exists at this respect. In the present study we have comparatively investigated the risk for mussel of MP and the pesticide chlorpyrifos (CPF) alone and in combination with MP and phytoplankton particles of microalgae (MP-CPF and MA-CPF, respectively). We selected MP and microalgae of similar size to expose mussel to the same volume of particles (≈1.5 mm3L-1 ≈ equivalent to 1.5 mg MP L-1) and the same concentration of contaminant (CPF, 7.6 μg L-1). MP were virgin HDPE microparticles (≤10 μm) while the microalgae species was Isochrisis galbana (4-8 μm). Mussels were exposed for 21 days to MP, CPF, MP-CPF and MA-CPF. Then, a suite of neurotoxicity, oxidative stress and oxidative damage biomarkers were measured in samples collected at day 7 and 21. Additionally, these biochemical markers were assessed in an integrated manner with others measured at physiological, immune and cell component level in the same organisms, previously published. Overall, MP did not elicit significant alterations on the majority of parameters measured. In contrast, mussels exposed to CPF, MA-CPF and MP-CPF showed evidence of neurotoxicity and oxidant imbalance at day 7, added to a detrimental physiological condition and immune imbalance at day 21. At the latter time MP-CPF mussels showed greater alterations than CPF or MA-CPF mussels. This suggested a synergistic toxicity of MP combined with CPF greater than that produced by the contaminants alone (MP or CPF) or by MA combined with CPF.
Collapse
Affiliation(s)
- Beatriz Fernández
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Calle Varadero 1., San pedro del Pinatar, Murcia 30740, Spain.
| | - Leticia Vidal-Liñán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (COV-IEO), CSIC, Subida a Radio Faro 50, Vigo 36390, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (COV-IEO), CSIC, Subida a Radio Faro 50, Vigo 36390, Spain
| | - Juan A Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Calle Varadero 1., San pedro del Pinatar, Murcia 30740, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, Murcia 30860, Spain
| | - Marina Albentosa
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Calle Varadero 1., San pedro del Pinatar, Murcia 30740, Spain.
| |
Collapse
|
7
|
Milana M, van Asselt ED, van der Fels-Klerx HJ. The chemical and microbiological safety of emerging alternative protein sources and derived analogues: A review. Compr Rev Food Sci Food Saf 2024; 23:e13377. [PMID: 38865251 DOI: 10.1111/1541-4337.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
Climate change and changing consumer demand are the main factors driving the protein transition. This shift toward more sustainable protein sources as alternatives to animal proteins is also reflected in the rapid upscaling of meat and dairy food analogues. Such changes could challenge food safety, as new food sources could result in new and unexpected food safety risks for consumers. This review analyzed the current knowledge on chemical and microbiological contamination of emerging alternative protein sources of plant origin, including soil-based (faba bean, mung bean, lentils, black gram, cowpea, quinoa, hemp, and leaf proteins) and aquatic-based (microalgae and duckweeds) proteins. Moreover, findings on commercial analogues from known alternative protein sources were included. Overall, the main focus of the investigations is on the European context. The review aimed to enable foresight approaches to food safety concerning the protein transition. The results indicated the occurrence of multiple chemical and microbiological hazards either in the raw materials that are the protein sources and eventually in the analogues. Moreover, current European legislation on maximum limits does not address most of the "contaminant-food" pairs identified, and no legislative framework has been developed for analogues. Results of this study provide stakeholders with a more comprehensive understanding of the chemical and microbiological safety of alternative protein sources and derived analogues to enable a holistic and safe approach to the protein transition.
Collapse
Affiliation(s)
- M Milana
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands
| | - E D van Asselt
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Bertucci JI, Blanco Osorio A, Vidal-Liñán L, Bellas J. Developmental and biochemical markers of the impact of pollutant mixtures under the effect of Global Climate Change. CHEMOSPHERE 2024; 358:142162. [PMID: 38697568 DOI: 10.1016/j.chemosphere.2024.142162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
This study investigates the combined impact of microplastics (MP) and Chlorpyriphos (CPF) on sea urchin larvae (Paracentrotus lividus) under the backdrop of ocean warming and acidification. While the individual toxic effects of these pollutants have been previously reported, their combined effects remain poorly understood. Two experiments were conducted using different concentrations of CPF (EC10 and EC50) based on previous studies from our group. MP were adsorbed in CPF to simulate realistic environmental conditions. Additionally, water acidification and warming protocols were implemented to mimic future ocean conditions. Sea urchin embryo toxicity tests were conducted to assess larval development under various treatment combinations of CPF, MP, ocean acidification (OA), and temperature (OW). Morphometric measurements and biochemical analyses were performed to evaluate the effects comprehensively. Results indicate that combined stressors lead to significant morphological alterations, such as increased larval width and reduced stomach volume. Furthermore, biochemical biomarkers like acetylcholinesterase (AChE), glutathione S-transferase (GST), and glutathione reductase (GRx) activities were affected, indicating oxidative stress and impaired detoxification capacity. Interestingly, while temperature increase was expected to enhance larval growth, it instead induced thermal stress, resulting in lower growth rates. This underscores the importance of considering multiple stressors in ecological assessments. Biochemical biomarkers provided early indications of stress responses, complementing traditional growth measurements. The study highlights the necessity of holistic approaches when assessing environmental impacts on marine ecosystems. Understanding interactions between pollutants and environmental stressors is crucial for effective conservation strategies. Future research should delve deeper into the impacts at lower biological levels and explore adaptive mechanisms in marine organisms facing multiple stressors. By doing so, we can better anticipate and mitigate the adverse effects of anthropogenic pollutants on marine biodiversity and ecosystem health.
Collapse
Affiliation(s)
- J I Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía IEO-CSIC, Subida a Radio Faro, 50, Vigo, Pontevedra, Postal Code: 36390, Spain.
| | - A Blanco Osorio
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía IEO-CSIC, Subida a Radio Faro, 50, Vigo, Pontevedra, Postal Code: 36390, Spain
| | - L Vidal-Liñán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía IEO-CSIC, Subida a Radio Faro, 50, Vigo, Pontevedra, Postal Code: 36390, Spain
| | - J Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía IEO-CSIC, Subida a Radio Faro, 50, Vigo, Pontevedra, Postal Code: 36390, Spain
| |
Collapse
|
9
|
Martinho SD, Fernandes VC, Figueiredo SA, Vilarinho R, Moreira JA, Delerue-Matos C. Laboratory Studies about Microplastic Aging and Its Effects on the Adsorption of Chlorpyrifos. Polymers (Basel) 2023; 15:3468. [PMID: 37631527 PMCID: PMC10459960 DOI: 10.3390/polym15163468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The constant change in microplastics (MP) due to exposure to environmental conditions leads to physical and chemical changes that enhance their ability to transport other pollutants, increasing the concern about their widespread presence in the environment. This work aimed to simulate the aging process of six MP (polyamide 6, unplasticized polyvinyl chloride, low-density polyethylene, polystyrene, polyethylene-co-vinyl acetate, polypropylene) in freshwater and seawater ecosystems at laboratory scale and evaluate its effects through optical microscope observation, Fourier transform infrared spectroscopy-Attenuated Total Reflectance (FTIR-ATR), Raman spectroscopy, and thermal gravimetric analysis (TGA). Through a combined experimental study of aged MP, the degradation by UV interaction was evidenced by the appearance of new infrared bands in the FTIR spectra assigned to ketones and hydroxyl groups. While Raman analysis and microscope images reveal the appearance of pores, wrinkles, and roughness in the MP surfaces. Variations in the temperature of the maximum weight loss of the MP were observed in the TGA analysis. The adsorption of chlorpyrifos (CPF), a common pesticide widely used in agriculture, by the pristine and aged MP was also studied. The highest affinity for CPF was observed for pristine LDPE and the lowest for PP. The batch adsorption studies revealed an increase in adsorption capacity as a consequence of the aging process for both MP. These results proved that the weathering effects caused changes in the behavior of MP, namely in the interaction with other pollutants.
Collapse
Affiliation(s)
- Sílvia D. Martinho
- REQUIMTE/LAQV—ISEP, Polytechnic of Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
- Department of Chemistry and Biochemistry, Faculty of Sciences of the Porto University, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Vírgínia Cruz Fernandes
- REQUIMTE/LAQV—ISEP, Polytechnic of Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
| | - Sónia A. Figueiredo
- REQUIMTE/LAQV—ISEP, Polytechnic of Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
| | - Rui Vilarinho
- Department of Physics and Astronomy, Faculty of Sciences of the Porto University, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.V.); (J.A.M.)
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Faculty of Sciences of the Porto University, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - J. Agostinho Moreira
- Department of Physics and Astronomy, Faculty of Sciences of the Porto University, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.V.); (J.A.M.)
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Faculty of Sciences of the Porto University, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV—ISEP, Polytechnic of Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015 Porto, Portugal; (S.D.M.); (C.D.-M.)
| |
Collapse
|
10
|
Rios-Fuster B, Alomar C, Deudero S. Elucidating the consequences of the co-exposure of microplastics jointly to other pollutants in bivalves: A review. ENVIRONMENTAL RESEARCH 2023; 216:114560. [PMID: 36270530 DOI: 10.1016/j.envres.2022.114560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The marine environment has numerous impacts related to anthropogenic activities including pollution. Abundances of microplastics (MPs) and other pollutants are continuously increasing in the marine environment, resulting in a complex mixture of contaminants affecting biota. In order to understand the consequences, a review of studies analyzing combined effects of MPs and other types of pollutants in bivalves has been conducted as species in this group have been considered as sentinel and bioindicators. Regarding studies reviewed, histological analyses give evidence that MPs can be located in the haemolymph, gills and gonads, as well as in digestive glands in the intestinal lumen, epithelium and tubules, demonstrating that the entire body of bivalves is affected by MPs. Moreover, DNA strand breaks represent the most relevant form of damage caused by the enhanced production of reactive oxygen species in response to MPs exposure. The role of MPs as vectors of pollutants and the ability of polymers to adsorb different compounds have also been considered in this review highlighting a high variability of results. In this sense, toxic impacts associated to MPs exposure were found to significantly increase with the co-presence of antibiotics or petroleum hydrocarbons amongst other pollutants. In addition, bioaccumulation processes of pollutants (PAHs, metals and others) have been affected by the co-presence with MPs. Histological, genetic and physiological alterations are the most reported damages, and the degree of harm seems to be correlated with the concentration and size of MP and with the type of pollutant.
Collapse
Affiliation(s)
- Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| |
Collapse
|
11
|
Zhong Y, Ding Q, Huang Z, Xiao X, Han X, Su Y, Wang D, You J. Influence of ultraviolet-aging and adsorbed pollutants on toxicological effects of polyvinyl chloride microplastics to zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120617. [PMID: 36356886 DOI: 10.1016/j.envpol.2022.120617] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) undergo various aging processes and interact with diverse pollutants in the environment. In the present study, we investigated the influence of ultraviolet (UV) aging on the adsorption of organic pollutants by polyvinyl chloride microplastics (mPVC) and explored toxicity variations among pristine, aged, and pollutant-loaded mPVCs to zebrafish. Irradiation of UV for 30 d significantly changed the physiochemical properties of mPVC, leading to more oxygen-containing groups and free radicals (1O2, ·O2-, and ·OH) on mPVC surfaces. The aging process reduced the adsorption of mPVC against a hydrophobic compound chlorpyrifos (CPF) but enhanced the adsorption against a moderately hydrophilic compound erythromycin (ERY). Ingestion of CPF- and ERY-loaded mPVCs resulted in bioaccumulation of the two compounds in zebrafish, suggesting a carrier effect of mPVCs. In toxicity tests, the aged mPVC caused severer gut damages, stronger oxidative stresses, and greater interference with the gut microbiota in zebrafish than the pristine mPVC. The CPF and ERY-loaded mPVCs produced lower oxidative stresses in zebrafish than mPVCs alone, due to fewer radicals on mPVC surfaces after the adsorption of organic contaminants. Notably, the CPF and ERY-loaded mPVCs presented greater effects on fish swimming behaviors and gut microbial compositions, which was associated with the released CPF and ERY from mPVCs within the zebrafish. Overall, the present study demonstrated significant influences of UV-aging and the adsorbed pollutants on the toxicological effects of MPs and highlighted the necessity to perform toxicity studies of MPs using more environmentally relevant MPs.
Collapse
Affiliation(s)
- Yuheng Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qi Ding
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Zhiyi Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiangxiang Xiao
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiaofeng Han
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yanrong Su
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Dali Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
12
|
Spirhanzlova P, Couderq S, Le Mével S, Leemans M, Krief S, Mughal BB, Demeneix BA, Fini JB. Short- and Long-Term Effects of Chlorpyrifos on Thyroid Hormone Axis and Brain Development in Xenopus laevis. Neuroendocrinology 2022; 113:1298-1311. [PMID: 35753306 DOI: 10.1159/000525719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The extensive use of the insecticide chlorpyrifos (CPF) throughout the world has brought increased scrutiny on its environmental and health impact. CPF is a cholinergic neurotoxicant; however, exposure to low noncholinergic doses is associated with numerous neurodevelopmental effects in animal models. In this study, we aimed to assess CPF for its potential to disrupt thyroid hormone signalling and investigate the short- and long-term effects on neurodevelopment by using Xenopus laevis. METHODS The thyroid hormone (TH) disrupting potential of CPF was assessed using TH-sensitive transgenic Tg(thibz:eGFP) tadpoles. The consequences of early embryonic exposure were examined by exposing fertilized eggs for 72 h to environmentally relevant CPF concentrations (10-10 M and 10-8 M). Three endpoints were evaluated: (1) gene expression in whole embryonic brains immediately after exposure, (2) mobility and brain morphology 1 week after exposure, and (3) brain morphology and axon diameters at the end of metamorphosis (2 months after the exposure). RESULTS CPF disrupted TH signalling in Tg(thibz:eGFP) tadpoles. The expression of genes klf9, cntn4, oatp1c1, and tubb2b was downregulated in response to CPF. Tadpoles exposed to CPF exhibited increased mobility and altered brain morphology compared to control tadpoles. Early embryonic exposure of CPF affected myelinated axon diameter, with exposed animals exhibiting shifted frequency distributions of myelinated axons diameters towards smaller diameters in the hindbrain of froglets. DISCUSSION/CONCLUSION This study provides more evidence of the endocrine and neurodevelopment disrupting activity of CPF. Further experimental and epidemiological studies are warranted to determine the long-term consequences of early CPF exposure on brain development.
Collapse
Affiliation(s)
- Petra Spirhanzlova
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum National d'Histoire Naturelle, Paris, France
- Unité Eco-Anthropologie, Hommes et Environnements, Muséum National d'Histoire Naturelle, Musée de l'Homme, Paris, France
- Laboratoire de Métrologie et d'Essais, Paris, France
| | - Stephan Couderq
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Sébastian Le Mével
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Michelle Leemans
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Sabrina Krief
- Unité Eco-Anthropologie, Hommes et Environnements, Muséum National d'Histoire Naturelle, Musée de l'Homme, Paris, France
| | - Bilal B Mughal
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Jean-Baptiste Fini
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|