1
|
Li J, Song H, Zhang L, Li J, Yang Y, Cui X, Mahfuza A, Cao Y, Hu X, Li C, Zhao Q, Tian S. Interaction of diesel exhaust particulate matter with mucins in simulated saliva fluids: Bioaccessibility of heavy metals and potential health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135811. [PMID: 39298947 DOI: 10.1016/j.jhazmat.2024.135811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Air pollution is one of the major environmental risks threatening human health, diesel exhaust particulate matter (DEPM) is an important source of urban air pollution, and oral ingestion is the primary route of exposure to atmospheric particulate matter. This study examined the bioaccessibility of Cr, Fe, and Zn in DEPM within simulated saliva fluids through in vitro experiments, interactions between the particles and mucins, and the mechanisms underlying the oxidative damage they cause. The results indicated that the interaction between DEPM and mucins altered the dispersibility, surface charge, and wettability of the particles, leading to increased release of heavy metals. Protein adsorption experiments and characterizations revealed that the adsorption of mucin by the particles resulted in a complexation reaction between the metals in the DEPM and the mucins, accompanied by fluorescence quenching of the protein. In addition, free radical assays and correlation analyses revealed that environmentally persistent free radicals generated by DEPM induce the production of reactive oxygen species (O2·-, HOOH, and·OH), which damage the secondary structure of mucins and increase the risk of oral diseases. Our study is the first to reveal the interaction between DEPM and mucins in saliva, elucidating the mechanisms of DEPM-induced oxidative damage. This is significant for understanding the oral health risks posed by the ingestion of atmospheric particulate matter.
Collapse
Affiliation(s)
- Jiao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Haorang Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yanlin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiangfen Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Anjum Mahfuza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
2
|
Li J, Song H, Luo T, Cao Y, Zhang L, Zhao Q, Li Z, Hu X, Gu J, Tian S. Exposure to O 3 and NO 2 on the interfacial chemistry of the pulmonary surfactant and the mechanism of lung oxidative damage. CHEMOSPHERE 2024; 362:142669. [PMID: 38906186 DOI: 10.1016/j.chemosphere.2024.142669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Exposure to ozone (O3) and nitrogen dioxide (NO2) are related to pulmonary dysfunctions and various lung diseases, but the underlying biochemical mechanisms remain uncertain. Herein, the effect of inhalable oxidizing gas pollutants on the pulmonary surfactant (PS, extracted from porcine lungs), a mixture of active lipids and proteins that plays an important role in maintaining normal respiratory mechanics, is investigated in terms of the interfacial chemistry using in-vitro experiments; and the oxidative stress induced by oxidizing gases in the simulated lung fluid (SLF) supplemented with the PS is explored. The results showed that O3 and NO2 individually increased the surface tension of the PS and reduced its foaming ability; this was accompanied by the surface pressure-area isotherms of the PS monolayers shifting toward lower molecular areas, with O3 exhibiting more severe effects than NO2. Moreover, both O3 and NO2 produced reactive oxygen species (ROS) resulting in lipid peroxidation and protein damage to the PS. The formation of superoxide radicals (O2•-) was correlated with the decomposition of O3 and the reactions of O3 and NO2 with antioxidants in the SLF. These radicals, in the presence of antioxidants, led to the formation of hydrogen peroxide and hydroxyl radicals (•OH). Additionally, the direct oxidation of unsaturated lipids by O3 and NO2 further caused an increase in the ROS content. This change in the ROS chemistry and increased •OH production tentatively explain how inhalable oxidizing gases lead to oxidative stress and adverse health effects. In summary, our results indicated that inhaled O3 and NO2 exposure can significantly alter the interfacial properties of the PS, oxidize its active ingredients, and induce ROS formation in the SLF. The results of this study provide a basis for the elucidation of the potential hazards of inhaled oxidizing gas pollutants in the human respiratory system.
Collapse
Affiliation(s)
- Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Tao Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Zhanchao Li
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643002, China.
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Junjie Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
3
|
Cao Y, Zhao Q, Jiang F, Geng Y, Song H, Zhang L, Li C, Li J, Li Y, Hu X, Huang J, Tian S. Interactions between inhalable aged microplastics and lung surfactant: Potential pulmonary health risks. ENVIRONMENTAL RESEARCH 2024; 245:117803. [PMID: 38043900 DOI: 10.1016/j.envres.2023.117803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The relationship between microplastics (MPs) and human respiratory health has garnered significant attention since inhalation constitutes the primary pathway for atmospheric MP exposure. While recent studies have revealed respiratory risks associated with MPs, virgin MPs used as plastic surrogates in these experiments did not represent the MPs that occur naturally and that undergo aging effects. Thus, the effects of aged MPs on respiratory health remain unknown. We herein analyzed the interaction between inhalable aged MPs with lung surfactant (LS) extracted from porcine lungs vis-à-vis interfacial chemistry employing in-vitro experiments, and explored oxidative damage induced by aged MPs in simulated lung fluid (SLF) and the underlying mechanisms of action. Our results showed that aged MPs significantly increased the surface tension of the LS, accompanied by a diminution in its foaming ability. The stronger adsorptive capacity of the aged MPs toward the phospholipids of LS appeared to produce increased surface tension, while the change in foaming ability might have resulted from a variation in the protein secondary structure and the adsorption of proteins onto MPs. The adsorption of phospholipid and protein components then led to the aggregation of MPs in SLF, where the aged MPs exhibited smaller hydrodynamic diameters in comparison with the unaged MPs, likely interacting with biomolecules in bodily fluids to exacerbate health hazards. Persistent free radicals were also formed on aged MPs, inducing the formation of reactive oxygen species such as superoxide radicals (O2•-), hydrogen peroxide (HOOH), and hydroxyl radicals (•OH); this would lead to LS lipid peroxidation and protein damage and increase the risk of respiratory disease. Our investigation was the first-ever to reveal a potential toxic effect of aged MPs and their actions on the human respiratory system, of great significance in understanding the risk of inhaled MPs on lung health.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Fanshu Jiang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
4
|
Cao Y, Tian S, Geng Y, Zhang L, Zhao Q, Chen J, Li Y, Hu X, Huang J, Ning P. Interactions between CuO NPs and PS: The release of copper ions and oxidative damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166285. [PMID: 37586511 DOI: 10.1016/j.scitotenv.2023.166285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) can adversely affect lung health possibly by inducing oxidative damage through the release of copper ions. However, the migration and transformation processes of CuO NPs in lung lining fluid is still unclear, and there are still conflicting reports of redox reactions involving copper ions. To address this, we examined the release of copper ions from CuO NPs in simulated lung fluid supplemented with pulmonary surfactant (PS), and further analyzed the mechanisms of PS-CuO NPs interactions and the health hazards. The results showed that the phospholipid of PS was adsorbed on the particle surface, which not only induced aggregation of the particles but also provided a reaction environment for the interaction of PS with CuO NPs. PS was able to promote the release of ions from CuO NPs, of which the protein was a key component. Lipid peroxidation, protein destabilization, and disruption of the interfacial chemistry also occurred in the PS-CuO NPs interactions, during which copper ions were present only as divalent cations. Meanwhile, the contribution of the particle surface cannot be neglected in the oxidative damage to the lung caused by CuO NPs. Through reacting with biomolecules, CuO NPs accomplished ion release and induced oxidative damage associated with PS. This research was the first to reveal the mechanism of CuO NPs releasing copper ions and inducing lipid oxidative damage in the presence of PS, which provides a new idea of transition metal-induced health risk in human body.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jie Chen
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Li T, Yang HL, Xu LT, Zhou YT, Min YJ, Yan SC, Zhang YH, Wang XM. Comprehensive treatment strategy for diesel truck exhaust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54324-54332. [PMID: 36940033 DOI: 10.1007/s11356-023-26506-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
At present, diesel vehicles still play an irreplaceable role in the traditional energy field in China. Diesel vehicle exhaust contains hydrocarbons, carbon monoxide, nitrogen oxides, and particulate matter, which can lead to haze weather, photochemical smog, and the greenhouse effect; endanger human health; and damage the ecological environment. In 2020, the number of motor vehicles in China reached 372 million, and the number of automobiles reached 281 million, of which 20.92 million are diesel vehicles, accounting for only 5.6% of the number of motor vehicles and 7.4% of the number of automobiles. Nevertheless, diesel vehicles emitted 88.8% of nitrogen oxides and 99% of particulate matter in total vehicle emissions. Diesel vehicles, especially diesel trucks, have become the top priority of motor vehicle pollution control. However, there are few reviews on the comprehensive treatment of diesel vehicle exhaust. This review provides an overview of exhaust gas composition, hazards, and treatment techniques. Phytoremediation, three-way catalytic conversion, rare earth catalytic degradation, and nanoscale TiO2 catalytic degradation are briefly described.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hai-Li Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Le-Tian Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yu-Ting Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong-Jun Min
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shi-Cheng Yan
- Ecomaterials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong-Hui Zhang
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
6
|
Du J, Xu J, Zhang D, Ye S, Yuan Y. Effect of carbonaceous components of biodiesel combustion particles on optical properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160242. [PMID: 36402314 DOI: 10.1016/j.scitotenv.2022.160242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
This paper studies the influence of carbonaceous components on the optical properties of particulate matter (PM) in biodiesel combustion by conducting a bench test on an electronically controlled high-pressure common-rail diesel engine. In addition, the PM produced by the combustion of diesel oil, soybean oil methyl ester (SME), waste edible oil methyl ester (WME), and palm oil methyl ester (PME) was collected. The carbonaceous composition and optical properties of diesel and three biodiesel particulates were then analyzed. The obtained results showed that the ratio of organic carbon (OC) to total carbon (TC) in diesel PM was 0.25 and the ratio of OC/EC was 0.33. The OC to TC ratio of biodiesel PM was significantly greater than that of diesel PM, ranging between 0.59 and 0.65, with OC/EC values in the range of 1.44-1.86. The mass absorption cross-section (MAC) values of three kinds of biodiesel particles were all higher than those of diesel particles. When the incident laser wavelength increased, the difference of MAC values among four kinds of fuel particles gradually decreased. The MAC values of all the three biodiesel particles were higher than those of the diesel particles, and the difference between the MAC values of the four fuel particles gradually decreased with the increase of the incident laser wavelength. Afterwards, the "shell-core" model of particles was developed with 80 nm EC sphere as the core. At the two refractive indices, the scattering cross section, absorption cross section, and extinction cross section of the particles decrease with the increase of the incident light wavelength, and the scattering cross section, absorption cross section, and extinction cross section of the particles increase with the increase of the OC coating thickness.
Collapse
Affiliation(s)
- Jiayi Du
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jieping Xu
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dengpan Zhang
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Siqi Ye
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yinnan Yuan
- College of Energy, Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Deng L, Hao C, Luo Y, Yang P, Wu B. Effect of air and exhaust gas dilutions on ultra-fine particulate emissions in different combustion modes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156865. [PMID: 35753470 DOI: 10.1016/j.scitotenv.2022.156865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The effect of air and exhaust dilution ratios on the characteristics of ultra-fine particulate matter (PM) and combustion process in different combustion modes at low loads were investigated based on experimental and numerical simulation in this study. The combustion modes included partially premixed compression ignition (PPCI), diffusion combustion (DC), and modulated kinetics combustion (MKC). The air and exhaust gas dilution ratio varied from 0 % to 40 % and 0 % to 55 % respectively. Additionally, the effect of dilutions and combustion modes on PM characteristics is precisely analyzed by computational fluid dynamics. The NOx and Soot emission are reduced in PPCI and DC mode of combustion with the increase of air and exhaust gas dilution rate. However, NOx emission is decreases while Soot is increases in MKC mode. The concentration of particulate number increases in case of both PPCI and DC mode and achieved highest value as 3.3 × 107 and 1.4 × 107 N/cc respectively. Although, concentration of particulate number (PN) in MKC mode first starts climbing and after attaining the highest level of 1.3 × 107 N/cc it falls down. PN concentration in PPCI, MKC, and DC modes decreases as the exhaust gas dilution rate increases. The study of nuclear and accumulate mode of PM was performed separately where the diameter of particles is <1000 nm. Under variable air and exhaust gas dilution ratios, the value of PN is always lies between 40 and 90 % in the nuclear mode PM domain for PPCI and DC modes while for MKC mode, the proportion of PN fall under 13-57 % at exhaust gas ratio above 30 %. The proportion of nuclear mode particulate mass in PPCI mode is >10 % while its values is <1 % for DC and MKC modes.
Collapse
Affiliation(s)
- Longfei Deng
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Caifeng Hao
- China North Engine Research Institute, Tianjin 300072, China
| | - Yinmi Luo
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Puze Yang
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Binyang Wu
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Wang W, Zhao S, Tang X, Chen C, Yi H. Stainless steel catalyst for air pollution control: structure, properties, and activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55367-55399. [PMID: 35672638 PMCID: PMC9173842 DOI: 10.1007/s11356-022-21079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
With the awakening of environmental awareness, the importance of air quality to human health and the proper functioning of social mechanisms is becoming increasingly prominent. The low cost and high efficiency of catalytic technique makes it a natural choice for achieving deep air purification. Stainless steel alloys have demonstrated their full potential for application in a variety of catalytic fields. The diversity of 3D networks or fibrous structures increases the turbulence within the heterogeneous catalysis, balance the temperature distribution in the reaction bed and, in combination with a highly thermally conductive skeleton, avoid agglomeration and deactivation of the active components; corrosion resistance and thermal stability are adapted to highly endothermic/exothermic or corrosive reaction environments; oxide layers formed by bulk transition metals activated by thermal treatment or etching can significantly alter the physico-chemical properties between the substrate and active species, further improving the stability of stainless steel catalysts; suitable electronic conductivity can be applied to the electrothermal catalysis, which is expected to provide guidance for the reduction of intermittent emission exhausts and the storage of renewable energy. The current applications of stainless steel as catalyst or support in the air purification have covered soot particle capture and combustion, catalytic oxidation of VOCs, SCR, and air sterilization. This paper summarizes several preparation methods and presents the relationships between the preparation process and the activity, and reviews its application and the current status of research in atmospheric environmental management, proposing the advantages and challenges of the stainless steel-based catalysts.
Collapse
Affiliation(s)
- Weixiao Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chaoqi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|