1
|
Wendell AK, Guse B, Bieger K, Wagner PD, Kiesel J, Ulrich U, Fohrer N. A spatio-temporal analysis of environmental fate and transport processes of pesticides and their transformation products in agricultural landscapes dominated by subsurface drainage with SWAT. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173629. [PMID: 38821280 DOI: 10.1016/j.scitotenv.2024.173629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Pesticides are detected in surface water and groundwater, endangering the environment. In lowland regions with subsurface drainage systems, drained depressions become hotspots for transport of pesticides and their transformation products (TPs). This study focuses on detailed modelling of the degradation and transport of pesticides with different physico-chemical properties. The objective is to analyse complex hydrological transport processes, to understand the temporal and spatial dynamics of the degradation and transport of pesticides. The ecohydrological model SWAT+ simulates hydrological processes as well as agricultural management and pesticide degradation, and can therefore be used to develop pesticide loss reduction strategies. This study focuses on modelling of three pesticides (pendimethalin, diflufenican, and flufenacet), and two TPs, flufenacet-oxalic acid (FOA) and flufenacet sulfonic acid (FESA). The study area is a 100-hectare farmland in the northern German lowlands of Schleswig-Holstein that is characterized by an spacious drainage network of 6.3 km and managed according to common conventional agricultural practice. SWAT+ modelled streamflow with very good agreement between observed and simulated data during calibration and validation. Regarding pesticides, the model performance for highly mobile substances is better than for non-mobile pesticides. While the transport of the moderately to very mobile substances via tile drains played an important role in both wet and dry conditions, no transport via tile drains was modelled for the highly sorptive and non-mobile pendimethalin. In conclusion, the model can reliably represent the degradation of moderately to very mobile pesticides in small-scale tile drainage-dominated catchments, as well as surface runoff-induced peak loads. However, it has weaknesses in accounting for the subsurface transport of non-mobile substances, which can lead to an underestimation of the subsequent delivery after precipitation events and thus underestimates the total load.
Collapse
Affiliation(s)
- Anne-Kathrin Wendell
- Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian Albrecht University of Kiel, Kiel, Germany.
| | - Björn Guse
- Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian Albrecht University of Kiel, Kiel, Germany; GFZ German Research Centre for Geosciences, Hydrology, Potsdam, Germany.
| | - Katrin Bieger
- Department of Ecoscience - Catchment Science and Environmental Management, Aarhus University, Aarhus, Denmark.
| | - Paul D Wagner
- Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian Albrecht University of Kiel, Kiel, Germany.
| | - Jens Kiesel
- Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian Albrecht University of Kiel, Kiel, Germany.
| | - Uta Ulrich
- Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian Albrecht University of Kiel, Kiel, Germany.
| | - Nicola Fohrer
- Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian Albrecht University of Kiel, Kiel, Germany.
| |
Collapse
|
2
|
Narayanan M, Devarayan K, Verma M, Selvaraj M, Ghramh HA, Kandasamy S. Assessing the ecological impact of pesticides/herbicides on algal communities: A comprehensive review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106851. [PMID: 38325057 DOI: 10.1016/j.aquatox.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
The escalating use of pesticides in agriculture for enhanced crop productivity threatens aquatic ecosystems, jeopardizing environmental integrity and human well-being. Pesticides infiltrate water bodies through runoff, chemical spills, and leachate, adversely affecting algae, vital primary producers in marine ecosystems. The repercussions cascade through higher trophic levels, underscoring the need for a comprehensive understanding of the interplay between pesticides, algae, and the broader ecosystem. Algae, susceptible to pesticides via spillage, runoff, and drift, experience disruptions in community structure and function, with certain species metabolizing and bioaccumulating these contaminants. The toxicological mechanisms vary based on the specific pesticide and algal species involved, particularly evident in herbicides' interference with photosynthetic activity in algae. Despite advancements, gaps persist in comprehending the precise toxic effects and mechanisms affecting algae and non-target species. This review consolidates information on the exposure and toxicity of diverse pesticides and herbicides to aquatic algae, elucidating underlying mechanisms. An emphasis is placed on the complex interactions between pesticides/herbicides, nutrient content, and their toxic effects on algae and microbial species. The variability in the harmful impact of a single pesticide across different algae species underscores the necessity for further research. A holistic approach considering these interactions is imperative to enhance predictions of pesticide effects in marine ecosystems. Continued research in this realm is crucial for a nuanced understanding of the repercussions of pesticides and herbicides on aquatic ecosystems, mainly algae.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Center for Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602 105, Tamil Nadu, India.
| | - Kesavan Devarayan
- Department of Basic Sciences, College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Vettar River View Campus, Nagapattinam 611 002, India
| | - Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, South Korea; Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, India.
| |
Collapse
|
3
|
Slaby S, Catteau A, Le Cor F, Cant A, Dufour V, Iurétig A, Turiès C, Palluel O, Bado-Nilles A, Bonnard M, Cardoso O, Dauchy X, Porcher JM, Banas D. Chemical occurrence of pesticides and transformation products in two small lentic waterbodies at the head of agricultural watersheds and biological responses in caged Gasterosteus aculeatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166326. [PMID: 37591395 DOI: 10.1016/j.scitotenv.2023.166326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Recent monitoring campaigns have revealed the presence of mixtures of pesticides and their transformation products (TP) in headwater streams situated within agricultural catchments. These observations were attributed to the use of various agrochemicals in surrounding regions. The aim of this work was to compare the application of chemical and ecotoxicological tools for assessing environmental quality in relation to pesticide and TP contamination. It was achieved by deploying these methodologies in two small lentic water bodies located at the top of two agricultural catchments, each characterized by distinct agricultural practices (ALT: organic, CHA: conventional). Additionally, the results make it possible to assess the impact of contamination on fish caged in situ. Pesticides and TP were measured in water using active and passive samplers and suspended solid particles. Eighteen biomarkers (innate immune responses, oxidative stress, biotransformation, neurotoxicity, genotoxicity, and endocrine disruption) were measured in Gasterosteus aculeatus encaged in situ. More contaminants were detected in CHA, totaling 25 compared to 14 in ALT. Despite the absence of pesticide application in the ALT watershed for the past 14 years, 7 contaminants were quantified in 100 % of the water samples. Among these contaminants, 6 were TPs (notably atrazine-2-hydroxy, present at a concentration exceeding 300 ng·L-1), and 1 was a current pesticide, prosulfocarb, whose mobility should prompt more caution and new regulations to protect adjacent ecosystems and crops. Regarding the integrated biomarker response (IBRv2), caged fish was similarly impacted in ALT and CHA. Variations in biomarker responses were highlighted depending on the site, but the results did not reveal whether one site is of better quality than the other. This outcome was likely attributed to the occurrence of contaminant mixtures in both sites. The main conclusions revealed that chemical and biological tools complement each other to better assess the environmental quality of wetlands such as ponds.
Collapse
Affiliation(s)
- Sylvain Slaby
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France.
| | - Audrey Catteau
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | - François Le Cor
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France; ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, F-54000 Nancy, France.
| | - Amélie Cant
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Vincent Dufour
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France.
| | - Alain Iurétig
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France.
| | - Cyril Turiès
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France.
| | - Olivier Cardoso
- OFB, Direction de la Recherche et de l'Appui Scientifique, 9 avenue Buffon, F-45071 Orléans, France.
| | - Xavier Dauchy
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, F-54000 Nancy, France.
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | - Damien Banas
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France.
| |
Collapse
|
4
|
Wijewardene L, Schwenker JA, Friedrichsen M, Jensen A, Löbel F, Austen T, Ulrich U, Fohrer N, Bang C, Waschina S, Hölzel CS. Selection of aquatic microbiota exposed to the herbicides flufenacet and metazachlor. Environ Microbiol 2023; 25:2972-2987. [PMID: 37994199 DOI: 10.1111/1462-2920.16535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Herbicides are important, ubiquitous environmental contaminants, but little is known about their interaction with bacterial aquatic communities. Here, we sampled a protected natural freshwater habitat and characterised its microbiome in interaction with herbicides. We evolved the freshwater microbiomes in a microcosm assay of exposure (28 days) to flufenacet and metazachlor at environmental concentrations of 0.5, 5 and 50 μg L-1 . Inhibitory effects of herbicides were exemplarily assessed in cultured bacteria from the same pond (Pseudomonas alcaligenes, Paenibacillus amylolyticus and Microbacterium hominis). Findings were compared to long-term concentrations as provided by local authorities. Here, environmental concentrations reached up to 11 μg L-1 (flufenacet) and 76 μg L-1 (metazachlor). Bacteria were inhibited at minimum inhibitory concentrations far above these values; however, concentrations of 50 μg L-1 of flufenacet resulted in measurable growth impairment. While most herbicide-exposed microcosm assays did not differ from controls, Acidobacteria were selected at high environmental concentrations of herbicides. Alpha-diversity (e.g., taxonomic richness on phylum level) was reduced when aquatic microbiomes were exposed to 50 μg metazachlor or flufenacet. One environmental strain of P. alcaligenes showed resistance to high concentrations of flufenacet (50 g L-1 ). In total, this study reveals that ecologic imbalance due to herbicide use significantly impacts aquatic microbiomes.
Collapse
Affiliation(s)
- Lishani Wijewardene
- Faculty of Fisheries and Marine Sciences & Technology, Department of Limnology and Water Technology, University of Ruhuna, Matara, Sri Lanka
| | - Julia Anna Schwenker
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| | - Meike Friedrichsen
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| | - Ailina Jensen
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| | - Franziska Löbel
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| | - Tabea Austen
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| | - Uta Ulrich
- Institute for Natural Resource Conservation, Department of Hydrology and Water Resources Management, Kiel University, Kiel, Germany
| | - Nicola Fohrer
- Institute for Natural Resource Conservation, Department of Hydrology and Water Resources Management, Kiel University, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Department for Nutriinformatics, Kiel University, Kiel, Germany
| | - Christina Susanne Hölzel
- Institute of Animal Breeding and Husbandry, Department for Animal Hygiene, Animal Health and Food Hygiene, Kiel University, Kiel, Germany
| |
Collapse
|
5
|
Eissa F, Alsherbeny S, El-Sawi S, Slaný M, Lee SS, Shaheen SM, Jamil TS. Remediation of pesticides contaminated water using biowastes-derived carbon rich biochar. CHEMOSPHERE 2023; 340:139819. [PMID: 37586496 DOI: 10.1016/j.chemosphere.2023.139819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The competition impact and feedstock type on the removal of water pesticides using biochar have not yet been sufficiently investigated. Therefore, here we investigated the potentiality of three different biochars (BCs) derived from rice husk (RHB), date pit (DPB), and sugarcane bagasse (SBB) biowastes for the simultaneous removal of ten pesticides from water in a competitive adsorption system. The BCs structural characterization and morphology were investigated by XRD, FTIR spectroscopy and SEM analysis. The potential adsorption mechanisms have been investigated using various isothermal and kinetic models. RHB showed the highest removal percentages (61% for atrazine/dimethoate and 97.6% for diuron/chlorfenvinphos) followed by DPB (56% for atrazine/dimethoate and 95.4% for diuron/chlorpyrifos) and then SBB (60.8% for atrazine/dimethoate and 90.8% for chlorpyrifos/malathion). The higher adsorption capacity of RHB and DPB than SBB can be due to their high total pore volume and specific surface area (SSA). Langmuir model described well the sorption data (R2 = 0.99). Adsorption equilibrium was achieved after 60 min for RHB, and 120 min for both DPB and SBB. The optimum adsorbent dose (g/L) was 10 for RHB and 4 for DPB and SBB. The removal efficiency of pesticides was enhanced by decreasing pH from 9 to 5 by RHB and to 3 by DPB and SBB. XRD and FTIR spectroscopy confirmed that BCs contain some active adsorption groups and metal oxides such as MgO, SiO, Al2O3, CaO, and TiO2 that can play an effective role in the pesticides sorption. BET-N2 adsorption analysis demonstrated that the BC pore size contributes significantly to pesticide adsorption. These findings indicate that RHB, DPB, and SBB have ability for adsorption of water pesticides even under acidic conditions. Therefore, the rice husk, date pit, and sugarcane bagasse biowastes could be pyrolyzed and reused as effective and low-cost sorbents for elimination of hazardous substances such as pesticides in the aqueous environments.
Collapse
Affiliation(s)
- Fawzy Eissa
- Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884, Nasr City, Cairo, Egypt.
| | - Sherif Alsherbeny
- Agriculture Research Centre, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Ministry of Agriculture, Giza, 12311, Egypt
| | - Sanaa El-Sawi
- Agriculture Research Centre, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Ministry of Agriculture, Giza, 12311, Egypt
| | - Michal Slaný
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36, Bratislava, Slovakia; Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská cesta 9, 845 03, Bratislava, Slovakia
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Tarek S Jamil
- Water Pollution Research Department, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
6
|
Shehata N, Egirani D, Olabi AG, Inayat A, Abdelkareem MA, Chae KJ, Sayed ET. Membrane-based water and wastewater treatment technologies: Issues, current trends, challenges, and role in achieving sustainable development goals, and circular economy. CHEMOSPHERE 2023; 320:137993. [PMID: 36720408 DOI: 10.1016/j.chemosphere.2023.137993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based technologies are recently being considered as effective methods for conventional water and wastewater remediation processes to achieve the increasing demands for clean water and minimize the negative environmental effects. Although there are numerous merits of such technologies, some major challenges like high capital and operating costs . This study first focuses on reporting the current membrane-based technologies, i.e., nanofiltration, ultrafiltration, microfiltration, and forward- and reverse-osmosis membranes. The second part of this study deeply discusses the contributions of membrane-based technologies in achieving the sustainable development goals (SDGs) stated by the United Nations (UNs) in 2015 followed by their role in the circular economy. In brief, the membrane based processes directly impact 15 out of 17 SDGs which are SDG1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16 and 17. However, the merits, challenges, efficiencies, operating conditions, and applications are considered as the basis for evaluating such technologies in sustainable development, circular economy, and future development.
Collapse
Affiliation(s)
- Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Davidson Egirani
- Faculty of Science, Niger Delta University, Wilberforce Island, Nigeria
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, South Korea.
| | - Enas Taha Sayed
- Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|
7
|
Souza VVD, Souza TDS, Campos JMSD, Oliveira LAD, Ribeiro YM, Hoyos DCDM, Xavier RMP, Charlie-Silva I, Lacerda SMDSN. Ecogenotoxicity of environmentally relevant atrazine concentrations: A threat to aquatic bioindicators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105297. [PMID: 36549823 DOI: 10.1016/j.pestbp.2022.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a herbicide that is frequently present in surface waters and may result in damage to the health of various organisms, including humans. However, most scientific literature reports injuries caused by ATZ at high concentrations, which are not found in the environment. Therefore, the scope of this study was to investigate the impacts of realistic concentrations of ATZ found in surface waters (1, 2, 5, 10, 15 and 20 μg/L) using the bioindicators Allium cepa, Daphnia magna and zebrafish (Danio rerio). ATZ elicited a genotoxic effect in A. cepa, manifested by the induction of chromosomal aberrations, and a mutagenic effect with increased incidence of micronuclei formation, promotion of cell death and reduction in nuclear size revealed by flow cytometry analysis. D. magna exposed to 10, 15 and 20 μg/L of ATZ showed significant reduction in body size after 21 days, delayed first-brood release, decreased egg production and total offspring, as well as swimming behavioral changes. ATZ exposure promoted physiological and developmental alterations in zebrafish embryos, including an increased spontaneous movement rate, which led to premature hatching at all concentrations investigated. Increase in total body length, decrease of the yolk sac area, pericardial edema and higher heart rate were also detected in ATZ-treated zebrafish. In summary, environmentally relevant concentrations of ATZ can induce substantial alterations in the three bioindicators investigated. This study evidences the deleterious effects of ATZ on three aquatic bioindicators employing established and current techniques, and may contribute to elucidate the risks caused by this widely used herbicide even at low concentrations and short-to-medium-term exposure.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tatiana da Silva Souza
- Laboratory of Ecotoxicology, Department of Biology, Federal University of Espírito Santo, Alegre, Brazil
| | | | - Luiza Araújo de Oliveira
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves Moreira Ribeiro
- Laboratory of Ichthyohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
8
|
Pastre MMG, Cunha DL, Marques M. Design of biomass-based composite photocatalysts for wastewater treatment: a review over the past decade and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9103-9126. [PMID: 36441319 DOI: 10.1007/s11356-022-24089-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
This investigation applied a systematic review approach on publications covering primary data during 2012-2022 with a focus on photocatalytic degradation of pollutants in aqueous solution by composite materials synthesized with biomass and, at least, TiO2 and/or ZnO semiconductors to form biomass-based composite photocatalysts (BCPs). After applying a set of eligibility criteria, 107 studies including 832 observations/entries were analyzed. The average removal efficiency and degradation kinetic rate reported for all model pollutants and BCPs were 77.5 ± 21.5% and 0.064 ± 0.174 min-1, respectively. Principal component analysis (PCA) was applied to analyze BCPs synthesis methods, experimental conditions, and BCPs' characteristics correlated with the removal efficiency and photodegradation kinetics. The relevance of adsorption processes on the pollutants' removal efficiency was highlighted by PCA applied to all categories of pollutants (PCA_pol). The PCA applied to textile dyes (PCA_dyes) and pharmaceutical compounds (PCA_pharma) also indicate the influence of variables related to the composite synthesis (i.e., thermal treatment and time spent on BCPs synthesis) and photocatalytic experimental parameters (catalyst concentration, pollutant concentration, and irradiation time) on the degradation kinetic accomplished by BCPs. Furthermore, the multivariate analysis (PCA_pol) revealed that the specific surface area and the narrow band gap are key characteristics for BCPs to serve as a competitive photocatalyst. The effect of scavengers on pollutants' degradation and the recyclability of BCPs are also discussed, as necessary aspects for scalability trends. Further investigations are recommended to compare the performance of BCPs and commercial catalysts, as well as to assess the costs to treat real wastewater.
Collapse
Affiliation(s)
- Marina M G Pastre
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil.
| | - Deivisson Lopes Cunha
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil
| |
Collapse
|
9
|
Goh PS, Ahmad NA, Wong TW, Yogarathinam LT, Ismail AF. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward. CHEMOSPHERE 2022; 307:136018. [PMID: 35973494 DOI: 10.1016/j.chemosphere.2022.136018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The noxious side effects of pesticides on human health and environment have prompted the search of effective and reliable treatment techniques for pesticide removal. The removal of pesticides can be accomplished through physical, chemical and biologicals. Physical approaches such as filtration and adsorption are prevailing pesticide removal strategies on account of their effectiveness and ease of operation. Membrane-based filtration technology has been recognized as a promising water and wastewater treatment approach that can be used for a wide range of organic micropollutants including pesticides. Nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) have been increasingly explored for pesticide removal from aquatic environment owing to their versatility and high treatment efficiencies. This review looks into the remedial strategies of pesticides from aqueous environment using membrane-based processes. The potentials and applications of three prevailing membrane processes, namely NF, RO and FO for the treatment of pesticide-containing wastewater are discussed in terms of the development of advanced membranes, separation mechanisms and system design. The challenges in regards to the practical implementation of membrane-based processes for pesticide remediation are identified. The corresponding research directions and way forward are highlighted. An in depth understanding of the pesticide nature, water chemistry and the pesticide-membrane interactions is the key to achieving high pesticide removal efficiency. The integration of membrane technology and conventional removal technologies represents a new dimension and the future direction for the treatment of wastewater containing recalcitrant pesticides.
Collapse
Affiliation(s)
- P S Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - N A Ahmad
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - T W Wong
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - L T Yogarathinam
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| |
Collapse
|
10
|
Schönenberger UT, Beck B, Dax A, Vogler B, Stamm C. Pesticide concentrations in agricultural storm drainage inlets of a small Swiss catchment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43966-43983. [PMID: 35124778 PMCID: PMC9200698 DOI: 10.1007/s11356-022-18933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Agricultural pesticides transported to surface waters pose a major risk for aquatic ecosystems. Modelling studies indicate that the inlets of agricultural storm drainage systems can considerably increase the connectivity of surface runoff and pesticides to surface waters. These model results have however not yet been validated with field measurements. In this study, we measured discharge and concentrations of 51 pesticides in four out of 158 storm drainage inlets of a small Swiss agricultural catchment (2.8 km2) and in the receiving stream. For this, we performed an event-triggered sampling during 19 rain events and collected plot-specific pesticide application data. Our results show that agricultural storm drainage inlets strongly influence surface runoff and pesticide transport in the study catchment. The concentrations of single pesticides in inlets amounted up to 62 µg/L. During some rain events, transport through single inlets caused more than 10% of the stream load of certain pesticides. An extrapolation to the entire catchment suggests that during selected events on average 30 to 70% of the load in the stream was transported through inlets. Pesticide applications on fields with surface runoff or spray drift potential to inlets led to increased concentrations in the corresponding inlets. Overall, this study corroborates the relevance of such inlets for pesticide transport by establishing a connectivity between fields and surface waters, and by their potential to deliver substantial pesticide loads to surface waters.
Collapse
Affiliation(s)
- Urs T Schönenberger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Birgit Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Anne Dax
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Bernadette Vogler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Christian Stamm
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| |
Collapse
|