1
|
Verma M, Loganathan VA. Uranium removal from contaminated groundwater using goethite-loaded composite microporous membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177075. [PMID: 39454795 DOI: 10.1016/j.scitotenv.2024.177075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
In this study, we have coupled adsorption and membrane separation for the removal of uranium from contaminated groundwater in environmentally relevant conditions at low energy requirements. The study mainly focuses on elucidating uranium [U(VI)] adsorption mechanisms using surface complexation modeling approach in a novel goethite-loaded composite microfiltration membrane (GLM). The experiments involved immobilizing goethite nanorods in a microporous (0.22 μm pore size) poly (vinylidene fluoride) (PVDF) membrane. The effect of varying goethite loading and hydraulic residence time on U(VI) removal was investigated at field-relevant pH (i.e. pH 8.5). U(VI) adsorption (i.e. 4.95 μg·mg-1) was optimum at a goethite loading of 1.20 mg·cm-2. The effect of varying hydraulic residence time had no impact on U(VI) removal which was also confirmed via performing batch adsorption kinetic experiments. GLM membrane loaded at 1.2 mg·cm-2 could treat 275 L of U(VI) contaminated water having 200 μg of U L-1 below WHO drinking water limit (i.e. 30 μg of U L-1) with 1 m2 of membrane surface area at a maximum adsorption capacity of 6.12 μg·mg-1. Varying the pH of aqueous solution, containing U(VI) from pH 4.0 to pH 10.0, showed a significant impact on uranium uptake ranging from 0.7 μg·mg-1 to 2.63 μg·mg-1 by the composite membrane. The adsorption mechanism of uranium onto goethite was explained via the formation of bidentate surface complexes using the Surface Complexation Model (SCM). The results of batch pH edge experiments and SCM have been compared with pH experiments performed using GLM. The results of SCM predicted the batch pH edge experiment within a RMSE of 0.055. The trend of U(VI) removal in membrane experiments was observed to be similar to that of batch pH edge experiments and was well predicted by the SCM model. Our results show that the novel goethite-loaded membrane has the potential for effective removal of uranium with a lower specific energy consumption.
Collapse
Affiliation(s)
- Mohit Verma
- Civil Engineering Department, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Vijay A Loganathan
- Civil Engineering Department, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
2
|
Verma M, Loganathan VA. U(VI) mitigation via forward osmosis: Elucidation of retention mechanisms and co-ion effects. CHEMOSPHERE 2024; 363:142742. [PMID: 38971441 DOI: 10.1016/j.chemosphere.2024.142742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Uranium (U) is a chemical and radioactive toxic contaminant affecting many groundwater systems. The focus of this study was to evaluate the suitability of forward osmosis (FO) for uranium rejection from contaminated groundwater under field-relevant conditions. Laboratory experiments with aqueous solution containing uranium were performed with FO membrane to understand the uranium rejection mechanism under varied pH, draw solution concentration, and presence of co-ions. Further, experiments were performed with U-contaminated field groundwater. Results of the hydrogeochemcial modelling using PHREEQC indicated that the rejection mechanism of uranium was highly dependent on aqueous speciation. Uranium rejection was maximum at alkaline pH with ca. 99% rejection due to charge-based interactions between membrane and dominant uranyl complexes. The results of the co-ion study indicated that nitrate and phosphate ions decrease uranium rejection. Whereas, bicarbonates, calcium, and magnesium ions concentrated uranium in feed solution. Further, the uranium adsorption onto the membrane surface primarily depended on pH of the aqueous solution with maximum adsorption at pH 5.5. Our results show that the World Health Organization's drinking water guideline value of 30 μgL-1 for U could be achieved via FO process in field groundwater containing low dissolved solids.
Collapse
Affiliation(s)
- Mohit Verma
- Civil Engineering Department, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Vijay A Loganathan
- Civil Engineering Department, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
3
|
Mouttoucomarassamy S, Virk HS, Dharmalingam SN. Evaluation and health risk assessment of arsenic and potentially toxic elements pollution in groundwater of Majha Belt, Punjab, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:208. [PMID: 38806960 DOI: 10.1007/s10653-024-02002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Concentrations of potentially toxic elements (PTEs) like arsenic, uranium, iron, and nitrate in the groundwater of the Majha Belt (including Tarn Taran, Amritsar, Gurdaspur, and Pathankot districts) in Punjab, India were measured to evaluate the health risks associated with its consumption and daily use. The average concentrations of these elements in some locations exceeded the WHO-recommended values. Arsenic and iron toxicity levels were found to be higher in the Amritsar district, while uranium toxicity was more prevalent in Tarn Taran. The Trace Element Evaluation Index suggests that Amritsar is one of the districts most affected by toxic elements. According to the US Environmental Protection Agency's (USEPA) guidelines, the HQ values of U, Fe, and nitrate were less than one, indicating that there is no non-carcinogenic health risk for adults and children. However, the hazard quotient (HQ) value for arsenic was greater than one, indicating a higher possibility of health risk due to arsenic in the study area. The total hazard index values of 44.10% of samples were greater than four for arsenic, indicating that people in the Majha Belt are at a very high health risk due to the usage of water for drinking and domestic purposes. The cancer risk assessment values for arsenic in children (5.69E + 0) and adults (4.07E + 0) were higher than the accepted limit of USEPA (10-4 to 10-6) in the Majha Belt. The average radiological cancer risk values of U for children and adults were 8.68E-07 and 9.45E-06, respectively, which are well below the permissible limit of 1.67 × 10-4 suggested by the Atomic Energy Regulatory Board of DAE, India. The results of this study confirm that the residents of the Majha Belt who use contaminated groundwater are at a serious risk of exposure to arsenic in the Amritsar district and uranium in Tarn Taran district.
Collapse
|
4
|
Ding L, Tao C, Zhang S, Zheng B, Dang Z, Zhang L. One-step synthesis of phospho-rich, silica-enhanced chitosan aerogel for the efficient adsorption of uranium(VI). Int J Biol Macromol 2024; 259:129101. [PMID: 38163503 DOI: 10.1016/j.ijbiomac.2023.129101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
In this study, an amorphous silica reinforced, phosphoric-crosslinked chitosan foam (P-CTS@SixOy) was prepared. The introduction of amorphous silica not only increased the affinity of the adsorbent for uranium, but also improved the stability of the material. The number of active sites of P-CTS@SixOy was increased by the introduction of phosphate groups. The material exhibited excellent uranium adsorption performance with the removal capacity and efficiency of 850.5 mg g-1 and 98.1 %, respectively. After regenerations, the morphology of P-CTS@SixOy still maintained, and the uranium adsorption efficiency remained above 90 %, manifesting the excellent cycle performance of P-CTS@SixOy. In the dynamic adsorption experiment, P-CTS@SixOy successfully concentrated the volume of uranium-containing solution, and exhibited excellent uranium adsorption performance. The analysis of kinetics, isotherms, and thermodynamics manifested that the uranium adsorption behavior of P-CTS@SixOy was a spontaneous, endothermic, monolayer chemical adsorption process. X-ray photoelectron spectroscopy, Scanning Electron Microscope, and Fourier Transform Infrared Spectrometer were used to characterized the P-CTS@SixOy before and after adsorption, which demonstrated that the main interaction mechanism between uranium and P-CTS@SixOy was the complexation. These studies indicated the huge application prospect of P-CTS@SixOy in the treatment of large-scale uranium-containing wastewater.
Collapse
Affiliation(s)
- Ling Ding
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China
| | - Chaoyou Tao
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China
| | - Shuai Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China.
| | - Bowen Zheng
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China
| | - Zhenhua Dang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China
| | - Lin Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, PR China.
| |
Collapse
|
5
|
Xue S, Wang Y, Jiang J, Tang L, Xie Y, Gao W, Tan X, Zeng J. Groundwater heavy metal(loid)s risk prediction based on topsoil contamination and aquifer vulnerability at a zinc smelting site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122939. [PMID: 37981182 DOI: 10.1016/j.envpol.2023.122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Groundwater pollution is a recurrent problem in abandoned non-ferrous metal smelting sites, and its severity is influenced by topsoil contamination, hydrogeological characteristics, and hydrogeochemical conditions. In such unique areas, traditional methods for evaluating groundwater pollution risk are biased, as the long production history of these sites have led to highly polluted and heterogeneous soil and groundwater. Herein, based on a typical lead-zinc smelting site, As, Pb, Zn, Cd, Mn, and Ni were found to be the predominant heavy metal (loid)s in groundwater, with respective exceedance rates of 44.4%, 50.0%, 72.2%, 88.9%, 88.9%, and 61.1%. Combined with the groundwater pollution characteristics, the representative hydrogeochemical factors were screened out to optimize the following aquifer vulnerability evaluation using the AHP-DRASTICH method. A comprehensive evaluation model (DI-NCPI) for groundwater pollution risk was established by combining the DRASTICH index (DI) obtained after optimization and the Nemerow comprehensive contamination index (NCPI) of topsoil. The fit between DI-NCPI and groundwater heavy metal (loid) pollution index reached 0.956, which laterally confirms that the model has some reference value. In terms of distribution, the high-risk and very high-risk zones were mainly concentrated in the zinc smelting system, located in the southeastern and central-western parts of the site. These areas have relatively high levels of topsoil contamination and aquifer vulnerability and require focused attention in site remediation. This research highlights the importance of combining topsoil contamination and aquifer vulnerability to evaluate groundwater pollution risk in smelting areas. It provides a more targeted reference for groundwater remediation strategies in abandoned smelting sites, as well as severely polluted industrial areas.
Collapse
Affiliation(s)
- Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China.
| | - Yuanyuan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China
| | - Lu Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yi Xie
- New World Environment Protection Group of Hunan, Changsha 410083, PR China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xingyao Tan
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiaqing Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| |
Collapse
|
6
|
Li H, Song J, Ma C, Shen C, Chen M, Chen D, Zhang H, Su M. Uranium recovery from weakly acidic wastewater using recyclable γ-Fe 2O 3@meso-SiO 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119347. [PMID: 37897898 DOI: 10.1016/j.jenvman.2023.119347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
U(VI)-containing acidic wastewater produced from uranium mining sites is an environmental hazard. Highly efficient capture of U(VI) from such wastewater is of great significance. In this study, a mesoporous core-shell material (i.e. γ-Fe2O3@meso-SiO2) with magnetically and vertically oriented channels was rationally designed through a surfactant-templating method. Batch experiment results showed that the material had an efficiency level of >99.7% in removing U(VI) and a saturated adsorption capacity of approximately 41.40 mg/g, with its adsorption reaching equilibrium in 15 min. The U(VI) adsorption efficiency of the material remained above 90% in a solution with competing ions and in acidic radioactive wastewater, indicating its ability to selectively adsorb U(VI). The material exhibited high adsorption efficiency and desorption efficiency in five cycles of desorption and regeneration experiments. According to the results, the mechanism through which γ-Fe2O3@meso-SiO2 adsorbs U(VI) was dominated by chemical complexation and electrostatic attraction between these two substances. Therefore, γ-Fe2O3@meso-SiO2 is not only beneficial to control the environmental migration of uranium, but also has good selective adsorption and repeated regeneration performance when used to recover U(VI) from weakly acidic wastewater in uranium mining.
Collapse
Affiliation(s)
- Hong Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Juexi Song
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, Shandong, China
| | - Chuqin Ma
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Congjie Shen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Miaoling Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Minhua Su
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
7
|
Zheng F, Zhai Y, Yue W, Teng Y. Coupling flow and electric fields to simulate migration and remediation of uranium in groundwater remediated by electroosmosis and a permeable reactive bio-barrier. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118947. [PMID: 37699289 DOI: 10.1016/j.jenvman.2023.118947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Combined remediation technologies are increasingly being considered to uranium contaminated groundwater, such as the joint utilize of permeable reactive bio-barrier (Bio-PRB) and electrokinetic remediation (EKR). While the assessment of uranium plume evolution in the combined remediation system (CRS) have often been impeded by insufficient understanding of multi-physical field superposition. Therefore, advanced knowledge in multi-physical field coupling in groundwater flow will be crucial to the practical application of these techniques. A two-dimensional multi-physical field coupling model was constructed for predicting the uranium degradation in CRS. The study demonstrates that the coupling model is able to predict the uranium plume evolution and rapidly evaluate the performance of CRS components. The results show that field electric direction and flow field strength are the key factors that affect the retardation and remediation performance of CRS. The reverse electric field direction significantly affected the contact reaction time of uranium in the system. The uranium residence time in the reverse electric field was 3.8 d, which was significantly greater than the original electric field (2.0 d). Depending on the voltage, the reverse electric field direction was 16%-36% more efficient than the original direction. The strength of the flow field was about two orders of magnitude higher than that of the electric field, so the groundwater flow rate dominated remediation efficiency. Reducing the flow rate by 1/2 could improve the performance of the system by approximately 66%. In addition, the coupling model can be utilized to design standard CRS for real site of uranium contaminated groundwater. To meet the optimal performance, the direction of the electric field should be set opposite to the flow field. This work has successfully used a coupling model to predict uranium contaminant-plume evolution in CRS and estimate the performance of each component.
Collapse
Affiliation(s)
- Fuxin Zheng
- Engineering Research Center for Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuanzheng Zhai
- Engineering Research Center for Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Weifeng Yue
- Engineering Research Center for Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanguo Teng
- Engineering Research Center for Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
8
|
Kaur L, Rishi MS, Chaudhary BS, Sharma S, Pandey S. Groundwater hydrogeochemistry and non-carcinogenic health risk assessment in major river basins of Punjab, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113335-113363. [PMID: 37848789 DOI: 10.1007/s11356-023-30157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
The Indian Punjab state is drained by the four rivers, along with a well-connected network of canals, and is now dealing with a slew of water quality issues and problems. In this study, basin-wise hydrogeochemical modelling of 323 groundwater samples and identification of NO3- and F- enrichment pathways in aquifer systems of Punjab were studied using different plots and multivariate statistics. To evaluate the groundwater quality and human health risks, an entropy-based water quality index and Monte Carlo simulation were used, respectively. Spatial distribution of NO3- indicated that its very high values were prominent in parts of southwestern Punjab falling under LSRB, along with few pockets in eastern and northeastern Punjab falling under MSRB and GRB. High NO3- values (> 45.0 mg/L) were found in 15.0% of Ravi River Basin (RRB) groundwater samples, 22.86% of Beas River Basin (BRB), 23.52% of Middle Sutlej River Basin (MSRB), 36.9% of Lower Sutlej River Basin (LSRB), and 21.31% of Ghaggar River Basin (GRB). The spatial distribution of NO3- revealed elevated concentrations (> 100 mg/L) in the southwestern part of Punjab, particularly in LSRB and localized pockets in the eastern and northeastern areas of Punjab within MSRB and GRB. High F- concentration (> 1.5 mg/L) was observed in 15.12% and 21.31% groundwater samples of LSRB and GRB, respectively. Spatially southern parts falling under LSRB and GRB reflected high F- content (> 1.5 mg/L) in groundwater. In LSRB, evaporative and anthropogenic processes influence the groundwater quality. The results of interionic relationships and statistical analysis revealed that NO3- has anthropogenic origin and that is being aggravated by leaching, the evaporation processes, animal excreta, septic tanks and irrigation return flows in LSRB and GRB, while F- is geogenic in nature. Hazard index (HI) values in 14.63%, 22.2%, 24.6%, 49.58%, and 34.42% samples for adults and 21.95%, 27.7%, 42.0%, 72.3%, and 52.46% samples for children were higher than unity in RRB, BRB, MSRB, LSRB, and GRB, respectively. The basin-wise demarcation of various groundwater quality parameter and assessment of human health risk would be of significance for the management of water resources.
Collapse
Affiliation(s)
- Lakhvinder Kaur
- Department of Geophysics, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
- Department of Environment Studies, Panjab University, Sector 14, Chandigarh, 160014, India.
- Department of Environmental Science, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, 110007, India.
| | - Madhuri S Rishi
- Department of Environment Studies, Panjab University, Sector 14, Chandigarh, 160014, India
| | | | - Sakshi Sharma
- Department of Environment Studies, Panjab University, Sector 14, Chandigarh, 160014, India
- Center for International Projects Trust, 95-C, BRS Nagar, Ludhiana, 41012, India
| | - Sanjay Pandey
- Central Ground Water Board, NHR, Dharamsala, 176215, Himachal Pradesh, India
| |
Collapse
|
9
|
Zhang Y, Huang S, Mei B, Jia L, Liao J, Zhu W. Construction of dopamine supported Mg(Ca)Al layered double hydroxides with enhanced adsorption properties for uranium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163525. [PMID: 37068682 DOI: 10.1016/j.scitotenv.2023.163525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
A novel dopamine-supported Mg(Ca)Al layered double hydroxide composite was synthesized by co-precipitation method. The existence of Ca2+ and dopamine could promote the capture of uranium on the layered double hydroxides. In batch experiments, the composite exhibited good uranium removal performance, including high adsorption capacity (687.3 mg/g), strong anti-interference and good reusability (the removal percentage was still higher than 90 % after five cycles). At low initial uranium concentration, the uranium removal percentage on the composite exceeded 99.7 % and the residual concentration of uranium in the solution was <0.03 mg/L, reaching the limited standard of the World Health Organization. The studies of adsorption kinetics and isotherm indicated that the uranium adsorption behavior on the composite conformed to the pseudo-second-order kinetic and Langmuir isotherm models, suggesting that the process was a monolayer adsorption dominated by chemical adsorption. Furthermore, the high-efficiency uranium adsorption on the Mg(Ca)Al layered double hydroxide was mainly attributed to the strong complexation between the active sites (-OH and -NH2) and uranium, the precipitation of interlayer intercalation ions (CO32- and OH-) to uranium and the ion exchange of Ca2+ to uranium. Due to these advantages, the dopamine-supported Mg(Ca)Al layered double hydroxide composite is expected to be used as fine adsorbent to remove uranium from wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Siqi Huang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
10
|
Raja V, Neelakantan MA. Toxic uranium contamination in groundwater of Thoothukudi district, India: Evaluation of health risks using the geochemical and statistical approach. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2150648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Velayutham Raja
- Chemistry Research Centre, National Engineering College, Kovilpatti, India
| | | |
Collapse
|
11
|
Sarkar S, Mukherjee A, Senapati B, Duttagupta S. Predicting Potential Climate Change Impacts on Groundwater Nitrate Pollution and Risk in an Intensely Cultivated Area of South Asia. ACS ENVIRONMENTAL AU 2022; 2:556-576. [PMID: 37101727 PMCID: PMC10125289 DOI: 10.1021/acsenvironau.2c00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
One of the potential impacts of climate change is enhanced groundwater contamination by geogenic and anthropogenic contaminants. Such impacts should be most evident in areas with high land-use change footprint. Here, we provide a novel documentation of the impact on groundwater nitrate (GWNO3 ) pollution with and without climate change in one of the most intensely groundwater-irrigated areas of South Asia (northwest India) as a consequence of changes in land use and agricultural practices at present and predicted future times. We assessed the probabilistic risk of GWNO3 pollution considering climate changes under two representative concentration pathways (RCPs), i.e., RCP 4.5 and 8.5 for 2030 and 2040, using a machine learning (Random Forest) framework. We also evaluated variations in GWNO3 distribution against a no climate change (NCC) scenario considering 2020 status quo climate conditions. The climate change projections showed that the annual temperatures would rise under both RCPs. The precipitation is predicted to rise by 5% under RCP 8.5 by 2040, while it would decline under RCP 4.5. The predicted scenarios indicate that the areas at high risk of GWNO3 pollution will increase to 49 and 50% in 2030 and 66 and 65% in 2040 under RCP 4.5 and 8.5, respectively. These predictions are higher compared to the NCC condition (43% in 2030 and 60% in 2040). However, the areas at high risk can decrease significantly by 2040 with restricted fertilizer usage, especially under the RCP 8.5 scenario. The risk maps identified the central, south, and southeastern parts of the study area to be at persistent high risk of GWNO3 pollution. The outcomes show that the climate factors may impose a significant influence on the GWNO3 pollution, and if fertilizer inputs and land uses are not managed properly, future climate change scenarios can critically impact the groundwater quality in highly agrarian areas.
Collapse
Affiliation(s)
- Soumyajit Sarkar
- School
of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Abhijit Mukherjee
- School
of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
- Department
of Geology and Geophysics, Indian Institute
of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Balaji Senapati
- Centre
For Oceans, Rivers, Atmosphere and Land Science (CORAL), Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Srimanti Duttagupta
- Graduate
School of Public Health, San Diego State
University, San Diego, California 92182, United States
| |
Collapse
|