1
|
Guo F, Wang H, Wei X, Luo B, Song X. Baffled flow constructed wetland-microbial fuel cell coupling systems for combined secondary and tertiary wastewater treatment with simultaneous bioelectricity generation. BIORESOURCE TECHNOLOGY 2024; 412:131419. [PMID: 39233180 DOI: 10.1016/j.biortech.2024.131419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Baffled flow constructed wetland-microbial fuel cell (BFCW-MFC) coupling systems were constructed with baffles embedded in cathode chamber. The performance of BFCW-MFCs operated at different hydraulic retention times (HRTs) was evaluated. At the representative HRT of 48 h, embedding 1 or 2 baffles (i.e., BFCW-MFC1 and BFCW-MFC2) produced 32.9 % (29.5 mW/m3) and 53.2 % (34.0 mW/m3) more power density than control system (22.2 mW/m3), respectively. Comparable organics biodegradation efficiencies were observed in BFCW-MFCs at the same HRTs. BFCW-MFC1 and BFCW-MFC2 had higher ammonium and total nitrogen removal efficiency. All systems had decreased nitrogen removal performance as shortening HRT from 72 to 12 h. Multiple nitrogen removal processes were involved, including ammonium oxidation, anammox, and heterotrophic and autotrophic denitrification. The predominant bacteria on electrodes were identified for analyzing bioelectricity generation and wastewater treatment processes. Generally, simultaneous wastewater treatment and bioelectricity generation were obtained in BFCW-MFCs, and embedding 1 or 2 baffles was preferable.
Collapse
Affiliation(s)
- Fei Guo
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China.
| | - Hang Wang
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
| | - Xin Wei
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
| | - Benfu Luo
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
| | - Xiaoming Song
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
2
|
Li C, Yuan Q, Hao L, Xu M, Cao J, Liu W. Synergistic reduction of pollution and carbon mitigation in constructed wetlands-microbial fuel cell using sludge-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:172979. [PMID: 38705303 DOI: 10.1016/j.scitotenv.2024.172979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Integrating microbial fuel cells (MFC) into constructed wetland systems (CW) has been an efficient wastewater treatment to improve the pollutants removal and regenerate power energy. This study fabricated a sludge biochar material (SBM) to sequestrate the carbon of residual sludge. Thereafter used SBM and modified SBM as the substrate materials to construct three groups of CW-MFC for decreasing the greenhouse gas (GHG) emission. The water quality improvement in removal efficiency achieved (2.59 %, 3.10 %, 5.21 % for COD; 3.31 %, 3.60 %, 6.71 % for TN; 1.80 %, 7.38 %, 4.93 % for TP) by the application of MFC, SBM, and modified SBM in wastewater treatment, respectively. Additionally, the reduction in global warming potential (GWP) realized 17.2 %, 42.2 %, and 64.4 % resulting from these applications. The carbon flow and fate diagrams showed MFC shifted the gas phase‑carbon flow from CH4 to CO2, and SBM promoted this shift trends. Microbial diversity indicated enrichment of electrochemically active bacteria (EAB), denitrifying bacteria, and phosphate accumulating organisms (PAOs) by SBM. Metabolic pathways analysis showed that introduction of MFC and SBM exhibited significant increases of key functional genes in metabolic pathway of anaerobic oxidation of methane (AOM). This study highlights the benefit of CW-MFC in and provides a new strategy for removing pollutants and abating GHG emissions in wastewater treatment.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Quan Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Liangshan Hao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Weijing Liu
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| |
Collapse
|
3
|
Li D, Zhao Y, Wei D, Tang C, Wei T. Key issues to consider toward an efficient constructed wetland-microbial fuel cell: the idea and the reality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11559-11575. [PMID: 38225491 DOI: 10.1007/s11356-024-31984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The research on constructed wetland (CW) and microbial fuel cell (MFC) has been separate studies worldwide with crucial achievements being made in both fields. Due to environmentally friendly feature (of CW) and rich microbial population and excellent electrode catalytic activity (of MFC), CW and MFC have their own anticipated application prospect in wastewater purification and biological electricity generation. More significantly, the idea of embedding MFC into CW to form CW-MFC expands the scope for both of them and this has received much interest in recent years due to its striking features of sewage treatment efficiency, electricity generation, sustainability, and environmental friendliness. The increasing interest and the lack of soul of CW-MFC emerging to the new researchers reflect the need to recall the idea and summarize its development with regard to achieving its reality via some key issues This forms the basis of the paper. The paper also includes how to enhance the efficiency of electricity generation and supplement energy consumption, the degradation of emerging pollutants, and the degradation mechanism as well as the potential joint application of CW-MFC with other treatment technique. A mass of CW-MFC design parameters has been synthesized from the literature. Challenges and potential directions of CW-MFC in the future are prospected. It is expected that the paper can serve as a linkage for bridging knowledge gaps for further studies of CW-MFC.
Collapse
Affiliation(s)
- Diaodiao Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
- Department of Municipal and Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- Department of Municipal and Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
| | - Dan Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
- Department of Municipal and Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Cheng Tang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
- Department of Municipal and Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
- Department of Municipal and Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| |
Collapse
|
4
|
Wang Y, Gao S, Yan X, Wang S, Zhang R, Zhou Y, Ren L, Li C. The impact of water quality on the formation of halogenated benzoquinones and the adsorption efficiency by activated carbon. J Environ Sci (China) 2024; 135:693-702. [PMID: 37778839 DOI: 10.1016/j.jes.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 10/03/2023]
Abstract
Halogenated benzoquinones (HBQs) could cause bladder cancer, but there were few related studies on the generation and control. In this study, the impact of different precursors, pH, bromide concentration, and algae-derived organic matters on the formation of HBQs and the removal efficiency by activated carbon were investigated. It was found that the chlorination of bisphenol A produced the most 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), reaching 14.86 µg/L at 1 hr, followed by tyrosine, 2-chlorophenol, P-hydroxybenzoic acid, trichlorophenol, and N-methylaniline. The production of 2,6-DCBQ increased first and then decreased from 0 to 36 hr (chlorination doses 0-20 mg/L), indicating that HBQs were unstable in water. Trihalomethanes (THMs) were detected during chlorination, and the concentration increased with prolongation of reaction time. 2,6-DCBQ production decreased and 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ) production increased with increment bromide concentration and the bromide promoted the formation of tribromomethane. The production of 2,6-DCBQ decreased with increase of pH, and the maximum production was 141.38 µg/L at pH of 5. Microcystis aeruginosa, Chlorella algae cells, and intracellular organic matters (IOM) could be chlorinated as potential precursors for HBQs. The most amount of 2,6-DCBQ was generated from algae cells of Microcystis aeruginosa, followed by Chlorella algae cells, Microcystis aeruginosa IOM, and Chlorella IOM. This study compared the removal efficiency of HBQs by granular activated carbon (GAC) and columnar activated carbon (CAC) under different carbon doses and initial concentrations of HBQs. It was found that the removal efficiency by GAC (80.1%) was higher than that by CAC (51.8%), indicating that GAC has better control for HBQs.
Collapse
Affiliation(s)
- Yongjing Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Song Gao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xinyu Yan
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Songtao Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ruolin Zhang
- Institute of Scientific and Technical Information of China, Beijing 100038, China
| | - Yan Zhou
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Lianhai Ren
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
5
|
Han J, Zhao J, Wang Y, Shu L, Tang J. Performance optimization of two-stage constructed wetland-microbial fuel cell system for the treatment of high-concentration wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63620-63630. [PMID: 37052840 DOI: 10.1007/s11356-023-26488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 05/11/2023]
Abstract
Constructed wetland-microbial fuel cell (CW-MFC) has attracted much attention because of its dual functions of wastewater treatment and energy recovery. However, its performance in treating high-concentration wastewater is degraded by the decreased dissolved oxygen at the cathode and insufficient electron acceptors. In this study, two CW-MFC systems with cathodic aeration were connected in series to investigate the effects of aeration rate and hydraulic retention time (HRT) on the removal of pollutants and the performance of electricity production in high-concentration wastewater. Results showed that aeration enhanced NH4+-N and TP removal by 45.0-49.8% and 11.5-18.0%, compared with the unaerated condition, respectively. Meanwhile, no significant change regarding COD removal was observed. Aeration enhances the output voltage and power density of the system, especially the first stage CW-MFC, which improved the power production performance by 1 to 2 orders-of-magnitude. Increasing HRT improves the system's pollutant treatment efficiency and power generation performance for high-concentration wastewater. Still, the extension of HRT to 2 days will not contribute much to improving the removal efficiency. Under optimized conditions, the maximum total removal rates of COD, NH4+-N, and TP for the two-stage tandem CW-MFC system were 99.3 ± 0.2%, 92.4 ± 1.6%, and 79.5 ± 3.4%, respectively. Meanwhile, the maximum output voltage and maximum power density of the first-stage CW-MFC were 405 mV and 138.0 mW/m3, respectively. In contrast, the maximum output voltage and maximum power density of the second stage are 105 mV and 14.7 mW/m3, respectively.
Collapse
Affiliation(s)
- Jiabi Han
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jinhui Zhao
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China.
| | - Yangyang Wang
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Lisha Shu
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jixian Tang
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Qiu Y, Zhang Z, Li Z, Li J, Feng Y, Liu G. Enhanced performance and microbial interactions of shallow wetland bed coupling with functional biocathode microbial electrochemical system (MES). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156383. [PMID: 35654178 DOI: 10.1016/j.scitotenv.2022.156383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
It is essential to remediate the polluted urban river, which endangers the aquatic creatures and affected human body's senses. The treatment wetland combined with microbial electrochemical system (MES) used for the remediation is becoming a new research focus due to its ideal pollutants removal efficiency and small footprint. Here this paper provided a kind of novel shallow wetland bed coupling with close-circuit microbial electrochemical system (WB-CMES) to remove pollutants in surface water. In contrast to the shallow wetland bed coupling with open-circuit MES (WB-OMES) and the shallow wetland bed without MES (WB), the enhancing effects and pollutants removal pathway were evaluated. After 62-day operation, average TN removal efficiency in WB-CMES was 87.7%, which was 19.7% and 13.8% higher than that of WB-OMES and WB respectively. The rate coefficient k of NO3--N degradation in WB-CMES was 1.6 and 1.8 times higher than that in WB-OMES and WB. The results of chlorophyll, protein and superoxide dismutase (SOD) in WB-CMES were 27.3%, 44.3% and 12.9% higher than those in WB. The microbial community structure analysis indicated that electroactive bacteria on anode like Desulfobulbus could oxidize organics and generate electrons to compensate cathode, meanwhile, cathode could enrich more species of functional bacteria like Rhodobacter, Pirellula, Hyphomicrobium, Thauera, which had a synergistic effect on oxygen reduction, nitrogen removal and plant growth. The results indicated that oxygen produced by submerged plants could be utilized by the oxygen-reducing functional biocathode of MES and the proper aerobic and anoxic environment might enhance nitrate removal mainly through simultaneous nitrification and denitrification (SND), aerobic denitrification and anammox. This research provided a novel technology with advantages of simple operation, flexible configuration, easy scale-up and low cost for application in remediation of highly polluted surface water.
Collapse
Affiliation(s)
- Ye Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Xue L, Chen N, Zhao J, Yang C, Feng C. Rice husk-intensified cathode driving bioelectrochemical reactor for remediating nitrate-contaminated groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155917. [PMID: 35568175 DOI: 10.1016/j.scitotenv.2022.155917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
To achieve economical and eco-friendly denitrification, rice husk-intensified cathode driving bioelectrochemical reactor (RCBER) was constructed with rice husk as solid-phase carbon source and microbial carrier. Results demonstrated that the application of current improved the utilization of rice husk and enhanced the denitrification, and the quenching of anodic hydroxyl radicals by rice husk also improved the microbial resistance to current. The highest nitrate removal rate as 0.34 mg-N/(L∙d), higher economic benefits, i.e., current efficiency as 31.6% and energy consumption as 2.43 kWh/g NO3--N, and the highest environmental benefit, i.e., hydrogenotrophic denitrification contribution as 37.9%, were obtained at 200 mA/m2. The best performance at 200 mA/m2 was related to its better microenvironment, such as lower accumulation of anodic by-products and higher bioavailability of rice husks, as well as higher microbial metabolic activity, such as stable extracellular polymeric substance, the maximum electron transport system activity as 11.63 ± 0.14 μg O2·g-1·min-1·mg protein-1 and the highest activity of nitrate reductase (3.15-fold that of control check). The application of current realized the coexistence of heterotrophic and hydrogenotrophic denitrifiers, and multiple functional bacteria such as anaerobic denitrifiers Flavobacterium, aerobic denitrifiers Comamonas, hydrogenotrophic denitrifiers Thermomonas and electron transfer-related Enterobacter coexisted at 200 mA/m2, thereby improving RCBER's adaptability to the complex microenvironment. This study provides the theoretical basis for realizing a win-win situation of environmental pollution remediation and agricultural waste disposal.
Collapse
Affiliation(s)
- Lijing Xue
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jiamin Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chen Yang
- College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|