1
|
Peng S, Wang F, Wei D, Wang C, Ma H, Du Y. Application of FTIR two-dimensional correlation spectroscopy (2D-COS) analysis in characterizing environmental behaviors of microplastics: A systematic review. J Environ Sci (China) 2025; 147:200-216. [PMID: 39003040 DOI: 10.1016/j.jes.2023.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.
Collapse
Affiliation(s)
- Shuang Peng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feipeng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | - Haijun Ma
- North Minzu University, Yinchuan 750001, China
| | - Yuguo Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Gray A, Mayer K, Gore B, Gaesser M, Ferguson N. Microplastic burden in native (Cambarus appalachiensis) and non-native (Faxonius cristavarius) crayfish along semi-rural and urban streams in southwest Virginia, USA. ENVIRONMENTAL RESEARCH 2024; 258:119494. [PMID: 38936498 DOI: 10.1016/j.envres.2024.119494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Our comparative assessment is the first study to investigate microplastic body burden in native (Cambarus appalachiensis) and non-native (Faxonius cristavarius) crayfish along a semi-rural and urban stream across different seasons. Crayfish, sediment, and surface water were collected, processed, and characterized using μRaman spectroscopy to compare microplastic polymer types and shapes across compartments. Average surface water concentrations were significantly higher in our urban stream compared to our semi-rural stream (17.3 ± 2.4 particles/L and 9.9 ± 1.3 particles/L, respectively; P = 0.015). Average sediment concentrations were similar between urban and semi-rural streams (140 ± 14.5 particles/kg and 139 ± 22.5 particles/kg, respectively; P = 0.957). Our findings showed a significant interactive effect of season, site, and nativity (i.e., species) regarding microplastic body burden in crayfish (P = 0.004). The smaller, non-native crayfish amassed more microplastic particles than the native crayfish (0.4-2.0 particles/g versus 0.4-0.8 particles/g, respectively). Fibers and fragments were the most common polymer shapes across compartments, with white and black being the dominant particle colors. Our study identified 13 plastic polymer types in crayfish and three in surface water and sediment; polypropylene was the most common polymer across compartments. This study provides evidence that crayfish body burden of microplastics can differ across species, seasons, and locations, highlighting the need for future studies to consider that sublethal impacts associated with microplastic body burden may vary by region and species.
Collapse
Affiliation(s)
- Austin Gray
- Department of Biological Sciences Virginia Polytechnic Institute and State University, 926 W Campus Dr., Blacksburg, VA, 24060, USA.
| | - Kathleen Mayer
- Department of Biological Sciences Virginia Polytechnic Institute and State University, 926 W Campus Dr., Blacksburg, VA, 24060, USA
| | - Beija Gore
- Department of Biological Sciences Virginia Polytechnic Institute and State University, 926 W Campus Dr., Blacksburg, VA, 24060, USA
| | - Megan Gaesser
- Department of Biological Sciences Virginia Polytechnic Institute and State University, 926 W Campus Dr., Blacksburg, VA, 24060, USA
| | - Nathan Ferguson
- Department of Biological Sciences Virginia Polytechnic Institute and State University, 926 W Campus Dr., Blacksburg, VA, 24060, USA; Department of Fish and Wildlife Conservation Virginia Polytechnic Institute and State University, Cheatham Hall, RM 101 (MC0321) 310 West Campus Drive, Blacksburg, VA, 24061, USA
| |
Collapse
|
3
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
4
|
Liu C, Jiao Y, Guo J, Li B, Gu C, Qian T, Liu X. Tracing the entry process of submicrometre plastics in soybean sprouts by leaf-derived fluorescent carbon dots. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134272. [PMID: 38613953 DOI: 10.1016/j.jhazmat.2024.134272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
As a global emerging contaminant, microplastics (MPs) in water or soil can accumulate in vegetables, making them easily ingested through the diet. With excellent and tunable optical properties, carbon dots (CDs) are highly advantageous for tracing the entry process of MPs. Originally, long-wavelength CDs were synthesized from leaf-derived extracts, and fluorescent submicrometer plastics (CDs-MPs) with clean surfaces and concentrated particle sizes were obtained by soap-free microemulsion polymerization. The concentration of CDs-MPs exhibits a significant linear relationship with long-wavelength fluorescence intensity (λEx/λEm: 415/676 nm). Soybean sprouts (SBS), as an important type of food, are susceptible to contamination of MPs due to their soft epidermis and rapidly growing biomass. The results showed that CDs-MPs could be embedded into the cortex of SBS and enter the plant with cell division and elongation, leading to an increase in pore size on the cell wall surface. After entering the root system, CDs-MPs will pass through the Casparian strip and migrate in the vessels. Then, CDs-MPs enter the leaves through vascular bundles, and the distribution and size of epicuticular wax on leaves have changed. Furthermore, SBS showed resistant growth and increased levels of oxidative response when exposed to MPs/CDs-MPs. It is the first study to demonstrate the application of leaf-derived CDs in the prevention of MPs pollution by revealing the migration behavior of submicrometre plastics in SBS.
Collapse
Affiliation(s)
- Chao Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Junmei Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Bo Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Changxin Gu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China.
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China.
| |
Collapse
|
5
|
Zhou Z, Song X, Dong D, Li X, Sun Y, Wang L, Huang Z, Li M. Occurrence, distribution and sources of microplastics in typical marine recirculating aquaculture system (RAS) in China: The critical role of RAS operating time and microfilter. WATER RESEARCH 2024; 255:121476. [PMID: 38503181 DOI: 10.1016/j.watres.2024.121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Industrial mariculture, a vital means of providing high quality protein to humans, is a potential source of microplastics (MPs) which have recently received increasing attention. This study investigated the occurrence and distribution of microplastics in feed, source water and recirculating aquaculture system (RAS) with long & short operating times as well as in fish from typical industrial mariculture farms in China. Results showed that microplastics occurred in all samples with the average concentration of 3.53 ± 1.39 particles/g, 0.70 ± 0.17 particles/L, 1.53 ± 0.21 particles/L and 2.21 ± 0.62 particles/individual for feed, source water, RAS and fish, respectively. Microplastics were mainly fiber in shape, blue in color and 20-500 μm in size. Compared with short operated RAS, long operating time led to higher microplastic concentration in RAS, especially that of microplastic in 20-500 μm, granular and blue. Regardless of short or long operating time, microplastics in RAS mainly gathered in culture tank, tank before microfilter and fixed-bed biological filter, and the microfilter removed efficiently the microplastic with the shape of film, granule, fragment as well as those with size > 1000 μm. As for the polymer types, polyamide (PA, 71.9 %) and polyethylene terephthalate (PET, 65.7 %) dominated in feed and source water, respectively, which may be the reason for the high proportion of PA (38.8 % and 26.4 %) and PET (31.8 % and 30.2 %) in RAS and fish. In addition, polypropylene (PP) was also detected in RAS (18.7 %) and fish (22.6 %), indicating that other plastic facilities such as PP brush carrier also made a contribution. Positive matrix factorization (PMF) model revealed three sources of MP in RAS, namely plastic facilities, industrial sewage and plastic packaging products. Our results provided a theoretical basis for the management of MP in RAS.
Collapse
Affiliation(s)
- Zheng Zhou
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China
| | - Xiefa Song
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China.
| | - Dengpan Dong
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China
| | - Xian Li
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China
| | - Yue Sun
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China
| | - Liwei Wang
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China
| | - Zhitao Huang
- Norwegian Institute for Water Research (NIVA), Thormøhlengate 53 D, Bergen 5006, Norway
| | - Meng Li
- College of Fisheries, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
6
|
Zhang S, Li Y, Jiang L, Chen X, Zhao Y, Shi W, Xing Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170217. [PMID: 38307274 DOI: 10.1016/j.scitotenv.2024.170217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China.
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Shafi M, Lodh A, Khajuria M, Ranjan VP, Gani KM, Chowdhury S, Goel S. Are we underestimating stormwater? Stormwater as a significant source of microplastics in surface waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133445. [PMID: 38198866 DOI: 10.1016/j.jhazmat.2024.133445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Stormwater represent a critical pathway for transporting microplastics (MPs) to surface waters. Due to complex dynamics of MPs in stormwater, its dispersion, weathering, risk, and transport are poorly understood. This review bridges those gaps by summarizing the latest findings on sources, abundance, characteristics, and dynamics involved in stormwater MP pollution. Weathering starts before or after MPs enter stormwater and is more pronounced on land due to continuous heat and mechanical stress. Land use patterns, rainfall intensity, MPs size and density, and drainage characteristics influence the transport of MPs in stormwater. Tire and road wear particles (TRWPs), littering, and road dust are major sources of MPs in stormwater. The concentrations of MPs varies from 0.38-197,000 particles/L globally. Further MP concentrations showed regional variations, highlighting the importance of local monitoring efforts needed to understand local pollution sources. We observed unique signatures associated with the shape and color of MPs. Fibers and fragments were widely reported, with transparent and black being the predominant colors. We conclude that the contribution of stormwater to MP pollution in surface waters is significantly greater than wastewater treatment plant effluents and demands immediate attention. Field and lab scale studies are needed to understand its behavior in stormwater and the risk posed to the downstream water bodies.
Collapse
Affiliation(s)
- Mozim Shafi
- Environmental Engineering and Management Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ayan Lodh
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Medha Khajuria
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Ved Prakash Ranjan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sudha Goel
- Environmental Engineering and Management Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
8
|
Huang W, Jiang G, Xie L, Chen X, Zhang R, Fan X. Effect of oxygen-containing functional groups on the micromechanical behavior of biodegradable plastics and their formation of microplastics during aging. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132911. [PMID: 37939564 DOI: 10.1016/j.jhazmat.2023.132911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Biodegradable plastics (BPs) are more prone to generate harmful microplastics (MPs) in a short time, which have always been ignored. Oxygenated functional group formation is considered to be a key indicator for assessing microplastic formation, while it is difficult to characterize at a very early stage. The micromechanical properties of the aging plastic during the formation of the MPs are highly influenced by the evolution of oxygen-containing functional groups, however, their relationship has rarely been revealed. Herein, we compared changes in the physicochemical properties of BPs and non-degradable plastic bags during aging in artificial seawater, soil, and air. The results showed that the oxidation of plastics in the air was the most significant, with the most prominent oxidation in BPs. The accumulation of carbonyl groups leads to a significant increase in the micromechanical properties and surface brittleness of the plastic, further exacerbating the formation of MPs. It was also verified by the FTIR, 2D-COS, AFM, and Raman spectroscopy analyses. Furthermore, the increased adhesion and roughness caused by oxygen-containing functional groups suggest that the environmental risks of BPs cannot be ignored. Our findings suggest that the testing of micromechanical properties can predicate the formation of the MPs at an early stage.
Collapse
Affiliation(s)
- Wenyi Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Guoqiang Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Lidan Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xueqin Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Runzhe Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Fan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Zhou T, Wu J, Hu X, Cao Z, Yang B, Li Y, Zhao Y, Ding Y, Liu Y, Xu A. Microplastics released from disposable medical devices and their toxic responses in Caenorhabditis elegans. ENVIRONMENTAL RESEARCH 2023; 239:117345. [PMID: 37821065 DOI: 10.1016/j.envres.2023.117345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Owing to accelerated urbanization and industrialization, many plastic products have been manufactured and discharged into the environment, causing environmental and public health problems. Plastics in environmental media are further degraded by prolonged exposure to light, heat, mechanical friction, and other factors to form new pollutants called microplastics (MPs). Medical plastics have become a crucial source of plastics in environmental media. However, the release profiles of MPs from medical plastics and their potential ecological and health risks remain unclear. We used optical photothermal infrared spectroscopy to explore the release profiles of eight typical disposable medical devices under high-temperature steam disinfection (HSD). We also evaluated the toxicity of disposable medical devices-derived MPs in Caenorhabditis elegans (C. elegans). Our results showed that the changes in the surface morphology and modification of the disposable medical devices were mainly associated with the material. Polypropylene (PP) and polystyrene (PS) materials exhibited high aging phenomena (e.g., bumps, depressions, bulges and cracks), and HSD broke their oxygen-containing functional groups and carbon chains. By contrast, minor changes in the chemical and physical properties were observed in the polyvinyl chloride (PVC)-prepared disposable medical devices under the same conditions. Further physicochemical characterization indicated that the amount of MPs released from PP-prepared disposable medical devices (P4: 1.27 ± 0.34 × 106) was greater than that from PVC-prepared disposable medical devices (P7: 1.08 ± 0.14 × 105). The particle size of the released MPs was the opposite, PVC-prepared disposable medical devices (P7: 11.45 ± 1.79 μm) > PP-prepared disposable medical devices (P4: 7.18 ± 0.52 μm). Toxicity assessment revealed that disposable medical devices-released MPs significantly increased germ cell apoptosisin C. elegans. Moreover, MPs from PP-prepared disposable medical devices disrupted the intestinal barrier of worms, decreasing their lifespan. Our findings provided novel information regarding the profiles and mechanisms of MP release from disposable medical devices and revealed their potential risks to ecological environment.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jiajie Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Xi Hu
- Quantum Design (Beijing) Co., Ltd, Beijing, China
| | - Zhenxiao Cao
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Baolin Yang
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yang Li
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yanan Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuting Ding
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Hefei, Anhui, 230031, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
10
|
Liu H, Jiao Q, Pan T, Liu W, Li S, Zhu X, Zhang T. Aging behavior of biodegradable polylactic acid microplastics accelerated by UV/H 2O 2 processes. CHEMOSPHERE 2023; 337:139360. [PMID: 37392793 DOI: 10.1016/j.chemosphere.2023.139360] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
The usage of biodegradable plastics is expanding annually due to worldwide plastic limits, resulting in a substantial number of microplastics (MPs) particles formed from biodegradable plastic products entering the aquatic environment. Until now, the environmental behaviors of these plastic product-derived MPs (PPDMPs) have remained unclear. In this work, commercially available polylactic acid (PLA) straws and PLA food bags were used to evaluate the dynamic aging process and environmental behavior of PLA PPDMPs under UV/H2O2 conditions. By combining scanning electron microscopy, two-dimensional (2D) Fourier transform infrared correlation spectroscopy (COS) and X-ray photoelectron spectroscopy, it was determined that the aging process of the PLA PPDMPs was slower than that of pure MPs. The 2D-COS analysis revealed that the response orders for the functional groups on the PLA MPs differed during the aging process. The results demonstrated that the oxygen-containing functional groups of the PLA PPDMPs were the first to react. Subsequently, the -C-H and -C-C- structural responses began, and the polymer backbone was ruptured by the aging process. However, the aging of the pure-PLA MPs started with a brief oxidation process and then breakage of the polymer backbones, followed by continuous oxidation. Moreover, compared to the PLA PPDMPs, the pure-PLA MPs exhibited a greater adsorption capacity, which was increased by 88% after aging, whereas those of the two PPDMPs only increased by 64% and 56%, respectively. This work provides new insights into the behaviors of biodegradable PLA MPs in aquatic environments, which is critical for assessing the environmental risks and management policies for degradable MPs.
Collapse
Affiliation(s)
- Hang Liu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qingxin Jiao
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ting Pan
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Weiyi Liu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shangyi Li
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaobiao Zhu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Tingting Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
11
|
Belzagui F, Gutiérrez-Bouzán C, Carrillo-Navarrete F, López-Grimau V. Sustainable Filtering Systems to Reduce Microfiber Emissions from Textiles during Household Laundering. Polymers (Basel) 2023; 15:3023. [PMID: 37514412 PMCID: PMC10383179 DOI: 10.3390/polym15143023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
During laundering, synthetic textiles (polyester, polyamide, etc.) can release small fiber debris with a length of <5 mm. These are a type of microplastics (MPs), usually referred to as microfibers (MFs), which are considered high-concern pollutants due to their continuous and cumulative entrance into the environment. Currently, as far as we know, there are no feasible alternatives to remove them. In this work, four new and sustainable filtering systems are proposed to retain the MFs emitted from domestic washing machines. The filters contain a replaceable cartridge partially filled with recycled low-density polyethylene pellets. The four designed filtering systems of different sizes were tested in a household washing machine determining the retention efficiency of the MFs after several washing cycles. It was found that all four assessed filter arrangements have a good performance for retaining MFs from the washers' effluents. Filter F1 (diameter of 4 cm and a height of 30 cm) started retaining more than 50% of the MFs, at the 10th washing cycle, the retention climbed to 66%, while in the 20th washing cycle, its retention was greater than 80%. MFs retention was higher for filter F2 (diameter of 6.3 cm and a height of 41 cm), achieving a performance greater than 90% in the 20th washing cycle. Filter F3 was arranged by turning the F1 model flow upside down and the retention efficiency is higher compared with filter F1 values, reaching a retention efficiency of almost 100% in the 15th washing cycle. Finally, filter F4 arrangement was developed using the existing washing machine filter, obtaining better performance than the F1 and F2 filters, reaching efficiencies higher than 90% at the 20th washing cycle. In summary, depending on the arrangement, the microfiber retention efficiency was estimated between 52% and 86% in the 1st washing cycle and up to 83% to 99% in the 20th. Additionally, all arrangements demonstrated that the cartridges may last for more than 30 washing cycles before needing to be replaced.
Collapse
Affiliation(s)
- Francisco Belzagui
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| | - Carmen Gutiérrez-Bouzán
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| | - Fernando Carrillo-Navarrete
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| | - Víctor López-Grimau
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| |
Collapse
|
12
|
Jessieleena A, Rathinavelu S, Velmaiel KE, John AA, Nambi IM. Residential houses - a major point source of microplastic pollution: insights on the various sources, their transport, transformation, and toxicity behaviour. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67919-67940. [PMID: 37131007 PMCID: PMC10154189 DOI: 10.1007/s11356-023-26918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Municipal wastewater has been considered as one of the largest contributors and carriers of microplastics to the aquatic environment. However, the various residential activities that generate municipal wastewater are equally significant whenever the source of microplastics in aquatic system is accounted. However, so far, only municipal wastewater has received wide attention in previous review articles. Hence, this review article is written to address this gap by highlighting, firstly, the chances of microplastics arising from the usage of personal care products (PCPs), laundry washing, face masks, and other potential sources. Thereafter, the various factors influencing the generation and intensity of indoor microplastic pollution and the evidence available on the possibility of microplastic inhalation by humans and pet animals are explained. Followed by that, the removal efficiency of microplastics observed in wastewater treatment plants, the fate of microplastics present in the effluent and biosolids, and their impact on aquatic and soil environment are explored. Furthermore, the impact of aging on the characteristics of microsized plastics has been explored. Finally, the influence of age and size of microplastics on the toxicity effects and the factors impacting the retention and accumulation of microplastics in aquatic species are reviewed. Furthermore, the prominent pathway of microplastics into the human body and the studies available on the toxicity effects observed in human cells upon exposure to microplastics of different characteristics are explored.
Collapse
Affiliation(s)
- Angel Jessieleena
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Sasikaladevi Rathinavelu
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Kiruthika Eswari Velmaiel
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Anju Anna John
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Indumathi M Nambi
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India.
| |
Collapse
|
13
|
Liu C, Zhang X, Liu J, Li Z, Zhang Z, Gong Y, Bai X, Tan C, Li H, Li J, Hu Y. Ageing characteristics and microplastic release behavior from rainwater facilities under ROS oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161397. [PMID: 36608825 DOI: 10.1016/j.scitotenv.2023.161397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) are ubiquitous in the natural environment that are generated by chemical or biochemical processes. Plastic rainwater facilities, as an important part of modern rainwater systems, are inevitably deteriorated by ROS. As a consequence, microplastics will be released. However, information on how ROS affect the ageing characteristics of plastic rainwater facilities and the subsequent microplastic release behavior is still insufficient. To address this knowledge gap, Fenton reagents were used to simulate the reactive oxygen species (ROS) induced ageing process of three typical plastic rainwater components (rainwater pipe, made of polyvinyl chloride; modular storage tank, made of polypropylene; inspection well, made of high-density polyethylene) and the subsequent microplastic release behavior. After 6 days of Fenton ageing, an increase in sharpness, holes, and fractures on the rainwater facilities' surface was observed by scanning electron microscope (SEM). The functional group changes on the rainwater facilities' surface were analyzed by Fourier transform infrared spectrometer (FTIR) and two-dimensional correlation spectroscopy (2D-COS) and compared with the results of X-ray photoelectron spectroscopy (XPS). During the ageing process, oxygen-containing functional groups were generated and the carbon chains were broken, which promoted peeling and the release of microplastics. The amount of released microplastics (ranging from 158 to 6617 items/g facility) varied with the type of rainwater facilities, and the order was modular storage tank > inspection well > rainwater pipe. The release amount increased with ageing time, and a significant linear relationship was observed (r2 > 0.91). The particle size of the released microplastics ranged from 2 to 1362 μm, among which 10-30 μm particles accounted for the largest proportion (62.7 %). The release amount increased exponentially with decreasing particle size (r2 > 0.71). This study indicates that large amounts of microplastics could be released from plastic rainwater components during ROS-induced ageing.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaoran Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Junfeng Liu
- Department of Water Conservancy and Civil Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Zhifei Li
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd, Beijing 100044, China
| | - Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chaohong Tan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Haiyan Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Yuansheng Hu
- Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic Technological University Sligo, Ash Lane, Sligo F91YW50, Ireland
| |
Collapse
|
14
|
Österlund H, Blecken G, Lange K, Marsalek J, Gopinath K, Viklander M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159781. [PMID: 36309285 DOI: 10.1016/j.scitotenv.2022.159781] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Urban areas play a key role in the production of microplastics (MPs) and their entry into water bodies. This article reviews the literature on the sources, transport, and control of MPs in urban environments with the aim of clarifying the mechanisms underlying these processes. Major MP sources include atmospheric deposition, micro-litter, and tire and road wear particles (TRWPs). MPs deposited from the atmosphere are mostly fibers and may be particularly important in catchments without traffic. Littering and attrition of textiles and plastic products is another important MP source. However, the quantities of MPs originating from this source may be hard to estimate. TRWPs are a significant source of MPs in urban areas and are arguably the best quantified source. The mobilization of MPs in urban catchments is poorly understood but it appears that dry unconsolidated sediments and MP deposits are most readily mobilized. Sequestration of MPs occurs in green areas and is poorly understood. Consequently, some authors consider green/pervious parts of urban catchments to be MP sinks. Field studies have shown that appreciable MP removal occurs in stormwater quality control facilities. Street cleaning and snow removal also remove MPs (particularly TRWPs), but the efficacy of these measures is unknown. Among stormwater management facilities, biofiltration/retention units seem to remove MPs more effectively than facilities relying on stormwater settling. However, knowledge of MP removal in stormwater facilities remains incomplete. Finally, although 13 research papers reported MP concentrations in stormwater, the total number of field samples examined in these studies was only 189. Moreover, the results of these studies are not necessarily comparable because they are based on relatively small numbers of samples and differ widely in terms of their objectives, sites, analytical methods, size fractions, examined polymers, and even terminology. This area of research can thus be considered "data-poor" and offers great opportunities for further research in many areas.
Collapse
Affiliation(s)
- Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Godecke Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Katharina Lange
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jiri Marsalek
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Kalpana Gopinath
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
15
|
Franco AA, Martín-García AP, Egea-Corbacho A, Arellano JM, Albendín G, Rodríguez-Barroso R, Quiroga JM, Coello MD. Assessment and accumulation of microplastics in sewage sludge at wastewater treatment plants located in Cádiz, Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120689. [PMID: 36435286 DOI: 10.1016/j.envpol.2022.120689] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Sludge from Wastewater treatment plants (WWTPs) have been determined as a sink of microplastics (MP) removed from wastewater. The aim of this research work has been to evaluate the presence of these pollutants in the sludge of seven WWTPs (five urban and two industrial), located in southern Spain. Samples were collected in the primary, secondary and digested sludge matrixes, MPs were extracted following wet peroxide oxidation and the removal of cellulose, finally the samples were analyzed according to their abundance, size (from 100 μm to 5 mm), shape, colour, and polymer type. Subsequently, the data obtained on the WWTPs were compared, the main difference among the WWTPs and different sample points showed high heterogeneity in terms of abundance of microplastics, due to the differences in the sludge loaded, the processes and the type of sludge. The results from this study established that the most abundant shape was fibers; regarding the size, 100-355 μm fraction was the most abundant, showing that the amount of MPs increased when the size decreased. Regarding the type of polymers, 23 were identified by ATR-FTIR. Further, Acrylate, PE, EAA and PP were the most abundant found polymers. The presence of MPs in the digested sludge varied from 0.02 ± 0.006 MP g DW-1 to 57.18 ± 20.69 MP g DW-1 in the WWTP 6 (food industry) and WWTP 3 (urban city over 212,000 inhabitants), respectively; higher abundance of MPs found in the primary sludge in respect to secondary sludge; in concordance with the removal from wastewater line reported in other studies. The results obtained showed that MPs were widely present in sludge, becoming a sink of these pollutants, estimating that among 8.05 · 104 and 1.77 · 109 MPs · day-1 were loaded to sludge; therefore, these facilities act as a significant source of MPs into agriculture when sludge is used as soil amendment.
Collapse
Affiliation(s)
- A A Franco
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - A P Martín-García
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - A Egea-Corbacho
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - J M Arellano
- Toxicology Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - G Albendín
- Toxicology Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - R Rodríguez-Barroso
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - J M Quiroga
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - M D Coello
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
16
|
Wang C, O'Connor D, Wang L, Wu WM, Luo J, Hou D. Microplastics in urban runoff: Global occurrence and fate. WATER RESEARCH 2022; 225:119129. [PMID: 36170770 DOI: 10.1016/j.watres.2022.119129] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Public concerns on microplastic (MP) pollution and its prevalence in urban runoff have grown exponentially. Huge amounts of MPs are transported from urban environments via surface runoff to different environment compartments, including rivers, lakes, reservoirs, estuaries, and oceans. The global concentrations of MPs in urban runoff range from 0 to 8580 particles/L. Understanding the sources, abundance, composition and characteristics of MPs in urban runoff on a global scale is a critical challenge because of the existence of multiple sources and spatiotemporal heterogeneity. Additionally, dynamic processes in the mobilization, aging, fragmentation, transport, and retention of MPs in urban runoff have been largely overlooked. Furthermore, the MP flux through urban runoff into rivers, lakes and even oceans is largely unknown, which is very important for better understanding the fate and transport of MPs in urban environments. Here, we provide a critical review of the global occurrence, transport, retention process, and sinks of MPs in urban runoff. Relevant policies, regulations and measures are put forward. Future global investigations and mitigation efforts will require us to address this issue cautiously, cooperating globally, nationally and regionally, and acting locally.
Collapse
Affiliation(s)
- Chengqian Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester GL7 1RS, United Kingdom
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305-4020, United States
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Bao R, Cheng Z, Hou Y, Xie C, Pu J, Peng L, Gao L, Chen W, Su Y. Secondary microplastics formation and colonized microorganisms on the surface of conventional and degradable plastic granules during long-term UV aging in various environmental media. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129686. [PMID: 36104912 DOI: 10.1016/j.jhazmat.2022.129686] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Recently, biodegradable plastics (BPs) as an alternative of conventional plastics have been widely advocated and applied. However, there is still a large research gap between the formation of secondary microplastics (MPs) and colonized microorganisms on their surface under long-term aging in different environments. In this study, the generation of secondary MPs and the formation of surface biofilms on the micro-sized (3-5 mm) biodegradable plastic poly (butyleneadipate-co-terephthalate) (BP-PBAT) and conventional plastic polyvinyl chloride (CP-PVC) under long-term UV aging was investigated. The results showed that hundreds and even thousands of MPs (185.53 ± 85.73 items/g - 1473.27 ± 143.67 items/g) were generated by BP-PBAT and CP-PVC after aged for 90 days, and the abundance of MPs produced by BP-PBAT was significantly higher than that of CP-PVC. Moreover, the α diversities and detected OTU number of biofilm communities formed on MPs increased with MPs-aging. The genes related to the formation of biofilms was significantly expressed on aged MPs and the genes related to human pathogens and diseases were also detected in enriching on MPs surface. Overall, BPs may lead to greater ecological risks as it releases thousands of secondary MPs after being aged, and their environmental behavior needs to be further explored.
Collapse
Affiliation(s)
- Ruiqi Bao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, PR China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, PR China
| | - Zhiruo Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, PR China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, PR China
| | - Yipeng Hou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, PR China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, PR China
| | - Chaolin Xie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, PR China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, PR China
| | - Jingrun Pu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, PR China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, PR China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, PR China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, PR China.
| | - Liu Gao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, PR China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, PR China
| | - Wei Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, PR China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, PR China
| | - Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province 570228, PR China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, PR China
| |
Collapse
|
18
|
Tanaka M, Kataoka T, Nihei Y. Variance and precision of microplastic sampling in urban rivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119811. [PMID: 35934151 DOI: 10.1016/j.envpol.2022.119811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), plastic particles <5 mm in diameter, have become an emerging ubiquitous concern for the environment. Rivers are the primary pathways that transport MPs from the land to the ocean; however, standardized methodologies for in-situ sampling in freshwater environments remain undefined. Notably, uncertainties in MP sampling methods lead to errors in estimating MP discharge through rivers. In the present study, the inter-sample variance of plankton net-obtained MP concentrations for two urban rivers in Japan was investigated. Numerical concentrations, expressed in particles·m-3, revealed that variance s2 was proportional to the mean m of replicated estimates of numerical concentrations. A derived statistical model suggested that river MPs disperse according to purely random processes; that is, Poisson point processes. Accordingly, a method was established to project the "precision," the ratio of the standard error to m, of numerical concentrations based on the number of net sampling repetitions. It was found that the mean of two replicates maintained sufficient precision of <30% for conditions with high concentrations of ≥3 particles·m-3. Projected precisions under different levels of MP concentrations are also presented to help design future field campaigns.
Collapse
Affiliation(s)
- Mamoru Tanaka
- Department of Civil Engineering, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan.
| | - Tomoya Kataoka
- Department of Civil and Environmental Engineering, Faculty of Engineering, Ehime University, Ehime, 790-8577, Japan
| | - Yasuo Nihei
- Department of Civil Engineering, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan
| |
Collapse
|