1
|
Jesus F, Mesquita F, Serpa D, Virumbrales Aldama E, Magalhães L, Ré A, Campos I, Abrantes N, Pereira JL, Gonçalves FJM, Nogueira AJA, Gonçalves AMM. Effects of wildfire ash on the fatty acid and sugar profiles of bivalves - A comparative study of a freshwater and a marine species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125540. [PMID: 39694314 DOI: 10.1016/j.envpol.2024.125540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Wildfires can impact both freshwater and marine ecosystems through post-fire runoff, but its effects on bivalves, particularly those living in marine habitats, remain largely overlooked. While evidence exists that wildfire ash can alter the fatty acid (FA) and sugar profiles of aquatic biota, its influence on the biochemical profiles of bivalves have not been addressed to date. This study aimed to assess the effects of ash exposure on the FA and sugar profiles of two bivalve species used for human consumption: a freshwater clam (Corbicula fluminea) and a marine bivalve (Cerastoderma edule), additionally evaluating potential effects on their nutritional value. Both species were exposed to environmentally relevant concentrations of aqueous extracts of Eucalypt ash (AEAs) for 96 h. Results showed species-specific responses to ash extracts exposure, with more pronounced effects on C. edule. This species exhibited a trend for reduced FA content, statistically significant for C17:0 but also evident for unsaturated FAs, which is relevant for human health as they represent a decrease in the nutritional value. Conversely, an increase in the sugar content of this species was observed with increasing AEA concentrations, despite only statistically significant for galactose and xylose. In contrast, the clams exhibited only minor effects, showing a trend for increased FA and decreased sugar contents, but only significant for the monounsaturated FA content. This study suggests a higher sensitivity of marine bivalves to wildfire ash compared to their freshwater counterparts. Moreover, it highlights, for the first time, the potential of post-fire runoff to alter the biochemical profiles of bivalve species, raising concerns about broader impacts on aquatic trophic webs and human health, an issue that becomes particularly relevant given the forecasted increase in wildfire's frequency and extension due to global warming.
Collapse
Affiliation(s)
- Fátima Jesus
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Filipa Mesquita
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Dalila Serpa
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Elisa Virumbrales Aldama
- Faculty of Veterinary and Experimental Sciences, Catholic University of Valencia, Calle Guillem de Castro 94, 46001, Valencia, Spain
| | - Luísa Magalhães
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Ré
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Isabel Campos
- CESAM, Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - António J A Nogueira
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana M M Gonçalves
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; CFE, Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
2
|
Rondon R, Cárdenas CA, Cosseau C, Bergami E, Balbi T, Corsi I, González-Aravena M. Physiological and molecular effects of contaminants of emerging concerns of micro and nano-size in aquatic metazoans: overview and current gaps in Antarctic species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34457-6. [PMID: 39066941 DOI: 10.1007/s11356-024-34457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Although Antarctica is the most isolated continent on Earth, its remote location does not protect it from the impacts of human activities. Antarctic metazoans such as filter-feeding invertebrates are a crucial component of the Antarctic benthos. They play a key role in the benthic-pelagic carbon flux in coastal areas by filtering particles and planktonic organisms from the sediment-water interface. Due to their peculiar ecological niche, these organisms can be considered a wasp-waist in the ecosystem, making them highly sensitive to marine pollution. Recently, anthropogenic particles such as micro-nanoplastics and manufactured nanoparticles (MNP) have been classified as contaminants of emerging concern (CEC) due to their small size range, which also overlaps with the preferred particle size ingested by aquatic metazoans. Indeed, it has been demonstrated that some species such as Antarctic krill can ingest, transform, and release MNPs, making them newly bioavailable for other Antarctic filter-feeding organisms. Similarly, the production and use of anthropogenic MNP are rapidly increasing, leading to a growing presence of materials, such as nano-sized metal-oxides, in the environment. For these reasons, it is important to provide evidence of the adverse effects of such emerging contaminants at sub-lethal concentrations in environmental risk assessments. These contaminants may cause cascade effects with consequences not only on individuals but also at the community and ecosystem levels. In this review, we discuss the state-of-the-art knowledge on the physiological and molecular effects of anthropogenic MNP in Antarctic aquatic metazoans. We further highlight the importance of identifying early biomarkers using sessile metazoans as sentinels of environmental health.
Collapse
Affiliation(s)
- Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan "Via Domitia", Perpignan, France
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/D, Modena, Italy
| | - Teresa Balbi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
3
|
Zhou L, Lian C, He Y, Chi X, Chen H, Zhong Z, Wang M, Cao L, Wang H, Zhang H, Li C. Toxicology assessment of deep-sea mining impacts on Gigantidas platifrons: A comparative in situ and laboratory metal exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173184. [PMID: 38750754 DOI: 10.1016/j.scitotenv.2024.173184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Deep-sea toxicology is essential for deep-sea environmental impact assessment. Yet most toxicology experiments are conducted solely in laboratory settings, overlooking the complexities of the deep-sea environment. Here we carried out metal exposure experiments in both the laboratory and in situ, to compare and evaluate the response patterns of Gigantidas platifrons to metal exposure (copper [Cu] or cadmium [Cd] at 100 μg/L for 48 h). Metal concentrations, traditional biochemical parameters, and fatty acid composition were assessed in deep-sea mussel gills. The results revealed significant metal accumulation in deep-sea mussel gills in both laboratory and in situ experiments. Metal exposure could induce oxidative stress, neurotoxicity, an immune response, altered energy metabolism, and changes to fatty acid composition in mussel gills. Interestingly, the metal accumulating capability, biochemical response patterns, and fatty acid composition each varied under differing experimental systems. In the laboratory setting, Cd-exposed mussels exhibited a higher value for integrated biomarker response (IBR) while in situ the Cu-exposed mussels instead displayed a higher IBR value. This study emphasizes the importance of performing deep-sea toxicology experiments in situ and contributes valuable data to a standardized workflow for deep-sea toxicology assessment.
Collapse
Affiliation(s)
- Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yameng He
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xupeng Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
4
|
Wang N, Zhang Z, Wang Y, Zhang L, Sun A, Liu H, Shi X. Comparative antioxidant and metabolomic analysis for the identification of differential response of mussel (Mytilus coruscus) to four succinate dehydrogenase inhibitor fungicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16819-16831. [PMID: 38324158 DOI: 10.1007/s11356-024-32309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Succinate dehydrogenase inhibitor fungicides (SDHIs) are frequently detected in the marine environment. However, studies on the toxicity of SDHIs to marine organisms, Mytilus coruscus (M. coruscus), are poorly reported. Therefore, the antioxidant activities and metabolomic response of four SDHIs, namely, boscalid (BC), thifluzamide (TF), fluopyram (FO), and bixafen (BIX), to (M. coruscus), were comprehensively investigated. The antioxidant activity of BC and TF was significantly increased (p<0.05), whereas those of FO and BIX were significantly decreased. Furthermore, metabolite discriminations among M. coruscus to four SDHIs were illustrated by an untargeted metabolomics approach. A total of 52, 50, 93, and 129 differential metabolites were obtained for BC, TF, FO, and BIX. KEGG of the different metabolites show that the four SDHIs had differential effects on the metabolic pathways of M. coruscus. The current study demonstrated four SDHIs triggered glucose metabolism, lipid metabolism, tricarboxylic acid cycle, and oxidative phosphorylation processes and caused the disruption of nutrient and energy conversion processes in mussels. Finally, five biomarkers were screened by analyzing common differential metabolites that emerged from the four SDHI exposures, which could be used for risk assessment of marine ecosystem exposure to SDHIs. Our results demonstrated the use of metabolomics to understand the potential mechanisms of toxicity of four SDHIs to mussels and to identify potential targets for future targeted risk assessment.
Collapse
Affiliation(s)
- Ningbo Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Yinan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Liuquan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Hua Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China.
| |
Collapse
|
5
|
Falfushynska H, Wu F, Sokolov EP, Sokolova IM. Salinity variation modulates cellular stress response to ZnO nanoparticles in a sentinel marine bivalve, the blue mussel Mytilussp. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105834. [PMID: 36521302 DOI: 10.1016/j.marenvres.2022.105834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles are released into marine environments from industrial, medical and consumer uses sparking concerns about their potential ecotoxicological effects. Ecological hazard assessment of nZnO in marine ecosystems is hindered by the lack of understanding of the potential interactive effects of nZnO toxicity with other common abiotic stressors, such as salinity fluctuations, in marine organisms. To close this gap in our knowledge, we carried out a comprehensive biomarker-based assessment of the combined effects of salinity and nZnO in a sentinel marine bivalve, the blue mussels Mytilus edulis. The mussels were exposed for 21 days to clean seawater (control), an environmentally relevant concentration (100 μg Zn l-1) of nZnO or dissolved Zn (to identify the toxic effects attributable to Zn2+ toxicity) under the normal (15), low (5) and fluctuating (5-15) salinity regimes. The selected molecular and biochemical markers focused on the oxidative stress, apoptosis, detoxification system and inflammation in the gills and the digestive gland of the mussels. Biomarker analysis showed different effects of nZnO and dissolved Zn on biomarkers of oxidative stress, xenobiotic detoxification and apoptosis but similar effects of both pollutants on the levels of metallothioneins and inflammatory markers. Exposure to nZnO led to elevated levels of lipid peroxidation, upregulation of p53 and p38 stress kinases and apoptosis-related genes, most notably in the gills. Exposure to dissolved Zn led to accumulation of protein carbonyls and activated redox-sensitive detoxification enzymes (NADPH-P450 reductase and glutathione-S-transferase) in the mussels. The ambient salinity had significant effects the cellular adverse effects of nZnO in the mussels. The nZnO-induced cellular stress was detectable under the normal (15) and fluctuating (5-15) salinity conditions in the studied brackish water population of the mussels. At low salinity (5), nZnO toxicity signal was almost completely dampened. These findings indicate that chronic osmotic stress close to the tolerance limits of M. edulis prevails over the effects of the environmentally relevant nZnO and dissolved Zn concentrations in combined exposures. These stressor interactions might ameliorate the cellular toxicity of nZnO in the mussels but limit applicability of cellular stress biomarkers for detecting the toxic effects of nanopollutants in low salinity habitats.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Anhalt University of Applied Sciences, Köthen, Germany
| | - Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz ScienceCampus Phosphorus Research Rostock, Warnemünde, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
6
|
Layglon N, Abdou M, Massa F, Castellano M, Bakker E, Povero P, Tercier-Waeber ML. Speciation of Cu, Cd, Pb and Zn in a contaminated harbor and comparison to environmental quality standards. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115375. [PMID: 35751235 DOI: 10.1016/j.jenvman.2022.115375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The water column of harbors contains significant amounts of (priority) hazardous trace metals that may be released into coastal areas of high societal and economic interests where they may disturb their fragile equilibria. To deepen our understanding of the processes that influence the transport of the various metal fractions and allow for a more rigorous environmental risk assessment, it is important to spatially monitor the relevant chemical speciation of these metals. It is of particular interest to assess their so-called dynamic fraction, which comprises the dissolved chemical forms that are potentially bioavailable to living organisms. In this study this was achieved in the Genoa Harbor (NW Italy) for copper (Cu), lead (Pb), cadmium (Cd) and zinc (Zn) by applying a multi-method approach. For the first time in this system the dynamic fractions of the target metals (CuDyn, CdDyn, PbDyn, ZnDyn) were observed in real-time on-board by voltammetry using innovative electrochemical sensing devices. Trace metals in the operationally defined dissolved <0.2 μm and <0.02 μm fractions were equally quantified through sampling/laboratory-based techniques. The obtained results showed a clear spatial trend for all studied metals from the enclosed contaminated part of the harbor towards the open part. The highest CuDyn and CdDyn fractions were found in the inner part of the harbor while the highest PbDyn fraction was found in the open part. The proportion of ZnDyn was negligible in the sampled area. Small and coarse colloids were involved in Cu, Cd and Zn partitioning while only coarse colloids played an important role in Pb partitioning. The determined concentrations were compared to the Environmental Quality Standards (EQS) established by the EU and those determined by the Australia and New Zealand to trigger for 99 and 95% species protection values. The results of this work allow us to highlight gaps in the EQS for which metal concentration thresholds are excessively high or non-existent and should urgently be revised. They also reflect the need to quantify the potentially bioavailable fraction of hazardous trace metals instead of just their total dissolved concentrations. The data support the establishment of environmental quality standards and guidelines based on realistic risk assessment to protect aquatic life and resources and ultimately human health.
Collapse
Affiliation(s)
- Nicolas Layglon
- University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221, Geneva 4, Switzerland.
| | - Melina Abdou
- University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221, Geneva 4, Switzerland; CIIMAR, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | | | | | - Eric Bakker
- University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221, Geneva 4, Switzerland
| | - Paolo Povero
- University of Genoa, DISTAV-DCCI, 16132, Genoa, Italy
| | | |
Collapse
|
7
|
Tagliaferro M, Rocha C, Marques JC, Gonçalves AMM. Assessment of metal exposure (uranium and copper) in fatty acids and carbohydrate profiles of Calamoceras marsupus larvae (Trichoptera) and Alnus glutinosa leaf litter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155613. [PMID: 35523349 DOI: 10.1016/j.scitotenv.2022.155613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Physiological changes were explored in fatty acids (FA) and carbohydrate (CHO) composition in the shredder Calamoceras marsupus larvae (Trichoptera) and leaf litter (C. marsupus food) exposed to copper and uranium under natural and experimental conditions. We measured FA and CHO content in leaf litter and larvae specimens from reference and impacted streams, and exposed for 5 weeks to four realistic environmental concentrations of copper (35 μg L-1 and 70 μg L-1) and uranium (25 μg L-1 and 50 μg L-1). Regarding FA, (1) leaf litter had a reduced polyunsaturated FA (PUFA) content in metal treatments, s (14 to 33% of total FA), compared to natural conditions (≥39% of total FA). Leaf litter exposed to uranium also differed in saturated FA (SFA) composition, with lower values in natural conditions and higher values under low uranium concentrations. (2) C. marsupus had/showed low PUFA content under Cu and U exposure, particularly in high uranium concentrations. Detritivores also decreased in PUFA under exposure to both metals, particularly in high uranium concentrations. On the other hand, (1) microorganisms of the biofilm colonizing leaf litter differed in CHO composition between natural (impacted and reference) and experimental conditions, with glucose and galactose being consistently the most abundant sugars, found in different amounts under copper or uranium exposure; (2) CHO of detritivores showed similar high galactose and fucose concentrations in contaminated streams and high copper treatments, whereas low copper treatment showed distinct CHO profiles, with higher mannose, glucose, arabinose, and fucose concentrations. Our study provides evidence of metal exposure effects on FA and CHO contents at different trophic levels, which might alter the quality of food flow in trophic webs.
Collapse
Affiliation(s)
- Marina Tagliaferro
- IDEA - Instituto de Diversidad y Ecología Animal (Universidad Nacional de Córdoba - CONICET), Av, Vélez Sarsfield 299, X5000 JJC Córdoba, Argentina.
| | - Carolina Rocha
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, 3001-456 Coimbra, Portugal
| | - João C Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, 3001-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, 3001-456 Coimbra, Portugal; Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|