1
|
Luo Y, Zhao T, Meng K, Zhang L, Wu M, Bai Y, Kumar KR, Cheng X, Yang Q, Liang D. Distinct responses of urban and rural O 3 pollution with secondary particle changes to anthropogenic emission reductions: Insights from a case study over North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175340. [PMID: 39117216 DOI: 10.1016/j.scitotenv.2024.175340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Ozone (O3) pollution with excessive near-surface O3 levels has been an important environmental issue in China, although the anthropogenic emission reductions (AER) have improved air quality since 2013. In this study, we investigated the sensitivities of atmospheric chemical environment with the urban and rural changes to the AER targeting a typical O3 pollution episode over North China in summer 2019, by conducting two WRF-Chem simulation experiments under two scenarios of anthropogenic emission inventories of years 2012 and 2019 with the meteorological conditions in the 2019 summertime O3 pollution episode for excluding the meteorological impacts on O3 pollution. The results show that the unbalanced AER aroused more serious O3 pollution in urban and rural areas. The intense NO reduction was responsible for the significant increments of urban O3, while the falling NO2 and NO synergistically devoted to the slight O3 variations in rural areas. Induced by the recent-year AER, the urban O3 production was governed by VOCs-limited and transition regime, whereas the NOx-limited regime dominated over rural areas in North China. Also, the AER reinforced the atmospheric oxidation capacity with the elevations of atmospheric oxidants O3 and ROx radicals, strengthening the chemical conversions to secondary inorganic particles. In both urban and rural areas, the sharp drop in SO2 caused a decrease in sulfate fraction, while the enhanced AOC accelerated the transformation to nitrate even when NOx was reduced. The AER induced nitrate to occupy the principal position in secondary PM2.5 in urban and rural areas. The AER promoted daytime and suppressed nighttime the nitrate production in urban areas, and more vigorous conversion of secondary aerosols were found in rural areas with much lower AOC increments. This study provides insights from a case study over North China in distinct responses of urban and rural O3 pollution with secondary particle changes to AER in urban and rural atmospheric environment changes, with implications for an effective abatement strategy on O3 pollution.
Collapse
Affiliation(s)
- Yuehan Luo
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tianliang Zhao
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Kai Meng
- Key Laboratory of Meteorology and Ecological Environment of Hebei Province, Hebei Provincial Institute of Meteorological Sciences, Shijiazhuang 050021, China
| | - Lei Zhang
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Ming Wu
- Key Laboratory of Meteorology and Ecological Environment of Hebei Province, Hebei Provincial Institute of Meteorological Sciences, Shijiazhuang 050021, China
| | - Yongqing Bai
- Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
| | - Kanike Raghavendra Kumar
- Department of Engineering Physics, College of Engineering, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, 522302 Guntur, Andhra Pradesh, India
| | - Xinghong Cheng
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Qingjian Yang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Dingyuan Liang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
2
|
Wang M, Liu Y, Li S, Azimi P, Chen S, Yim SHL. Air quality and health benefits of achieving carbon-neutrality in building sector over Beijing, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122652. [PMID: 39362163 DOI: 10.1016/j.jenvman.2024.122652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
To meet the goal of the Paris Agreement, China pledges to realize the "Dual Carbon" targets by 2060. As the capital of China, Beijing plays a leading role in becoming zero-emission or carbon neutral in the future. We project the pollutants emissions of building sector based on current strict clean air policies (PO scenario) and China's carbon neutrality target by 2060 (CN scenario) from 2019 to 2050. Results show that PM2.5 concentration will increase by 2.62 μg/m3 under PO scenario; under the CN scenario, ozone concentration will increase by 2.53 μg/m3 but PM2.5 concentration will reduce by 9.04 μg/m3. It is projected that China carbon neutrality goals could avoid 11.12% of PM2.5-related health burden; With strict clean air policies, health burdens of ozone (3.9%) and PM2.5 (4.1%) could be avoided, respectively. This study highlights the importance of achieving co-benefits of air quality and public health.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yingying Liu
- College of Environmental Science and Engineering, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Sumei Li
- College of Environmental Science and Engineering, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Parham Azimi
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Sha Chen
- College of Environmental Science and Engineering, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China.
| | - Steve Hung Lam Yim
- Asian School of the Environment, Nanyang Technological University, 639798, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
3
|
Qin C, Fu X, Wang T, Gao J, Wang J. Control of fine particulate nitrate during severe winter haze in "2+26" cities. J Environ Sci (China) 2024; 136:261-269. [PMID: 37923436 DOI: 10.1016/j.jes.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 11/07/2023]
Abstract
The "2+26" cities, suffering the most severe winter haze pollution, have been the key region for air quality improvement in China. Increasing prominent nitrate pollution is one of the most challenging environmental issues in this region, necessitating development of an effective control strategy. Herein, we use observations, and state-of-the-art model simulations with scenario analysis and process analysis to quantify the effectiveness of the future SO2-NOX-VOC-NH3 emission control on nitrate pollution mitigation in "2+26" cities. Focusing on a serious winter haze episode, we find that limited NOX emission reduction alone in the short-term period is a less effective choice than VOC or NH3 emission reduction alone to decrease nitrate concentrations, due to the accelerated NOX-HNO3 conversion by atmospheric oxidants and the enhanced HNO3 to NO3- partition by ammonia, although deep NOX emission reduction is essential in the long-term period. The synergistic NH3 and VOC emission control is strongly recommended, which can counteract the adverse effects of nonlinear photochemistry and aerosol chemical feedback to decrease nitrate more. Such extra benefits will be reduced if the synergistic NH3 and VOC reduction is delayed, and thus reducing emission of multiple precursors is urgently required for the effective control of increasingly severe winter nitrate pollution in "2+26" cities.
Collapse
Affiliation(s)
- Chuang Qin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiao Fu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Tao Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 99907, China
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10084, China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10084, China
| |
Collapse
|
4
|
Zhang H, Wang X, Lv L, Li G, Liu X, Li X, Yao Z. Insights into quantitative evaluation technology of PM 2.5 transport at multi-perspective and multi-spatial and temporal scales in the north China plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122693. [PMID: 37802287 DOI: 10.1016/j.envpol.2023.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Cross-border transport is a crucial factor affecting air quality, while how to quantify the transport contribution through different technologies at multi-perspective and multi-scale have not been fully understood. This study established three quantification techniques, and conducted a systematic assessment of PM2.5 transport over the North China Plain (NCP) based on numerical simulations and vertical observations. Results suggested that the annual local emissions, inter-urban and outer-regional transport contributed 44.5%-64.6%, 15.2%-27.9% and 18.0%-28.2% of total surface PM2.5 concentrations, respectively, with transport intensity stronger in July and April, yet weaker in January and October. The southwest-northeast, northeast-southwest, and southeast-northwest were three prevailing transport directions near the surface. By comparison, the annual PM2.5 transport contribution below the atmospheric boundary layer height increased by 16.8%-24.5% in Beijing, Tianjin and Shijiazhuang, with inter-urban and outer-regional contribution of 29.8%-32.1% and 18.5%-23.1%. Furthermore, observed fluxes from fixed-point and vehicle-based mobile lidar were in good agreement with the simulated flux. PM2.5 net flux intensity varied with height, with generally larger at the middle- and high-altitude layer than that of low-altitude layer. In the early, during and late period of haze peak formation (Stage Ⅰ, Ⅱ, Ⅲ, respectively), the largest absolute flux intensity on average was Stage Ⅱ (566.7 t/d), followed by Stage Ⅲ (307.0 t/d) and Ⅰ (191.4 t/d). Besides, external transport may dominate the second concentration peak, while local emissions may play a more vital role in the first and third peaks. It has been noted that joint prevention and control measures should be proposed 1-2 days before reaching PM2.5 extremes. These findings could improve our understanding of transport influence mechanism of PM2.5 and propose effective emission reduction measures in the NCP region.
Collapse
Affiliation(s)
- Hanyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xuejun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Longyue Lv
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Guohao Li
- Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Urban Environmental Pollution Control Engineering Research Center, Beijing, 100037, China
| | - Xiaoyu Liu
- Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Urban Environmental Pollution Control Engineering Research Center, Beijing, 100037, China
| | - Xin Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
5
|
Madronich S, Sulzberger B, Longstreth JD, Schikowski T, Andersen MPS, Solomon KR, Wilson SR. Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate. Photochem Photobiol Sci 2023; 22:1129-1176. [PMID: 37310641 PMCID: PMC10262938 DOI: 10.1007/s43630-023-00369-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV) radiation drives the net production of tropospheric ozone (O3) and a large fraction of particulate matter (PM) including sulfate, nitrate, and secondary organic aerosols. Ground-level O3 and PM are detrimental to human health, leading to several million premature deaths per year globally, and have adverse effects on plants and the yields of crops. The Montreal Protocol has prevented large increases in UV radiation that would have had major impacts on air quality. Future scenarios in which stratospheric O3 returns to 1980 values or even exceeds them (the so-called super-recovery) will tend to ameliorate urban ground-level O3 slightly but worsen it in rural areas. Furthermore, recovery of stratospheric O3 is expected to increase the amount of O3 transported into the troposphere by meteorological processes that are sensitive to climate change. UV radiation also generates hydroxyl radicals (OH) that control the amounts of many environmentally important chemicals in the atmosphere including some greenhouse gases, e.g., methane (CH4), and some short-lived ozone-depleting substances (ODSs). Recent modeling studies have shown that the increases in UV radiation associated with the depletion of stratospheric ozone over 1980-2020 have contributed a small increase (~ 3%) to the globally averaged concentrations of OH. Replacements for ODSs include chemicals that react with OH radicals, hence preventing the transport of these chemicals to the stratosphere. Some of these chemicals, e.g., hydrofluorocarbons that are currently being phased out, and hydrofluoroolefins now used increasingly, decompose into products whose fate in the environment warrants further investigation. One such product, trifluoroacetic acid (TFA), has no obvious pathway of degradation and might accumulate in some water bodies, but is unlikely to cause adverse effects out to 2100.
Collapse
Affiliation(s)
- S Madronich
- National Center for Atmospheric Research, Boulder, USA.
- USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, USA.
| | - B Sulzberger
- Academic Guest after retirement from Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Duebendorf, Switzerland
| | - J D Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, USA
| | - T Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - M P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University, Northridge, USA
| | - K R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
6
|
Li J, Kohno N, Sakamoto Y, Pham HG, Murano K, Sato K, Nakayama T, Kajii Y. Potential Factors Contributing to Ozone Production in AQUAS-Kyoto Campaign in Summer 2020: Natural Source-Related Missing OH Reactivity and Heterogeneous HO 2/RO 2 Loss. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12926-12936. [PMID: 36069610 DOI: 10.1021/acs.est.2c03628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study presents total OH reactivity, ancillary trace species, HO2 reactivity, and complex isoprene-derived RO2 reactivity due to ambient aerosols measured during the air quality study (AQUAS)-Kyoto campaign in September, 2020. Observations were conducted during the coronavirus disease (COVID-19) pandemic (associated with reduced anthropogenic emissions). The spatial distribution of missing OH reactivity highlights that the origin of volatile organic compounds (VOCs) may be from natural-emission areas. For the first time, the real-time loss rates of HO2 and RO2 onto ambient aerosols were measured continuously and alternately. Ozone production sensitivity was investigated considering unknown trace species and heterogeneous loss effects of XO2 (≡HO2 + RO2) radicals. Missing OH reactivity enhanced the ozone production potential by a factor of 2.5 on average. Heterogeneous loss of radicals could markedly suppress ozone production under low NO/NOx conditions with slow gas-phase reactions of radicals and change the ozone regime from VOC- to NOx-sensitive conditions. This study quantifies the relationship of missing OH reactivity and aerosol uptake of radicals with ozone production in Kyoto, a low-emission suburban area. The result has implications for future NOx-reduction policies. Further studies may benefit from the combination of chemical transport models and inverse modeling over a wide spatiotemporal range.
Collapse
Affiliation(s)
- Jiaru Li
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Regional Environment Conservation Division, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Nanase Kohno
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yosuke Sakamoto
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Regional Environment Conservation Division, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8316, Japan
| | - Huy Gia Pham
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Kentaro Murano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Kei Sato
- Regional Environment Conservation Division, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Tomoki Nakayama
- Faculty of Environmental Science and Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshizumi Kajii
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Regional Environment Conservation Division, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8316, Japan
| |
Collapse
|