1
|
Martínez-Álvarez S, Höfle U, Châtre P, Alonso CA, Asencio-Egea MÁ, François P, Cardona-Cabrera T, Zarazaga M, Madec JY, Haenni M, Torres C. One Health bottom-up analysis of the dissemination pathways concerning critical priority carbapenemase- and ESBL-producing Enterobacterales from storks and beyond. J Antimicrob Chemother 2025; 80:68-78. [PMID: 39526970 DOI: 10.1093/jac/dkae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND 'One Health' initiatives to tackle the rising risk of antimicrobial resistance (AMR) have flourished due to increasing detection of Enterobacterales producing extended-spectrum beta-lactamases (ESBLs) and carbapenemases (CPs). OBJECTIVES This study aimed to conduct an in-depth holistic analysis of Escherichia coli (Ec) and Klebsiella pneumoniae (Kp) isolates recovered from landfill-foraging white stork faecal samples and clinical isolates from a nearby hospital. METHODS Faecal samples (n = 211) were collected from storks foraging at two landfills in Spain. Ec/Kp stork isolates were recovered on selective media and whole-genome sequencing (WGS), together with isolates obtained from the nearby hospital. These genomic data were compared with public genomes from different contexts (clinical, environmental, or animal hubs) to understand global transmission dynamics. RESULTS A wide range of blaESBL/blapAmpC (blaCTX-M/blaSHV-12/blaDHA) were detected in 71 stork samples (33.6%), while blaCP (blaKPC/blaNDM/blaOXA-48/blaVIM) were identified in 28 (13.3%) samples. Clonal and plasmid transmissions were evidenced inside and between both landfills. Mapping against 10 624 public Ec/Kp genomes and from those of nearby hospital revealed that identical strains (<10 allelic differences with Ec-ST38/ST131 and Kp-ST512 lineages) and epidemic plasmids (full identity/coverage with IncN/blaKPC-2, IncF/blaKPC-3, IncX3/blaNDM-7, IncL/blaOXA-48) were found from clinical isolates in countries located along the storks' migration routes. CONCLUSIONS Storks may be contaminated by bacterial isolates from a likely human origin and become non-human reservoirs of critical genes, which can be dispersed over long distances. Identifying strains/plasmids along the stork's routes that are identical or closely related to those described here opens new perspectives for large-scale research to understand the AMR transmission dynamics.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Ursula Höfle
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Pierre Châtre
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Carla Andrea Alonso
- Department of Biomedical Diagnostics, Microbiology Laboratory, Hospital San Pedro, Logroño, Spain
| | | | - Pauline François
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Teresa Cardona-Cabrera
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Jean-Yves Madec
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES-Université de Lyon, Unité Antibiorésitance et Virulence Bactériennes, Lyon, France
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| |
Collapse
|
2
|
Sattar F, Hu X, Saxena A, Mou K, Shen H, Ali H, Ghauri MA, Sarwar Y, Ali A, Li G. Analyzing Antibiotic Resistance in Bacteria from Wastewater in Pakistan Using Whole-Genome Sequencing. Antibiotics (Basel) 2024; 13:937. [PMID: 39452204 PMCID: PMC11504851 DOI: 10.3390/antibiotics13100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Wastewater is a major source of Antibiotic-Resistant Bacteria (ARB) and a hotspot for the exchange of Antibiotic-Resistant Genes (ARGs). The occurrence of Carbapenem-Resistant Bacteria (CRB) in wastewater samples is a major public health concern. Objectives: This study aimed to analyze Antibiotic resistance in bacteria from wastewater sources in Pakistan. Methods: We analyzed 32 bacterial isolates, including 18 Escherichia coli, 4 Klebsiella pneumoniae, and 10 other bacterial isolates using phenotypic antibiotic susceptibility assay and whole-genome sequencing. This study identified the ARGs, plasmid replicons, and integron genes cassettes in the sequenced isolates. One representative isolate was further sequenced using Illumina and Oxford nanopore sequencing technologies. Results: Our findings revealed high resistance to clinically important antibiotics: 91% of isolates were resistant to cefotaxime, 75% to ciprofloxacin, and 62.5% to imipenem, while 31% showed non-susceptibility to gentamicin. All E. coli isolates were resistant to cephalosporins, with 72% also resistant to carbapenems. Sequence analysis showed a diverse resistome, including carbapenamases (blaNDM-5, blaOXA-181), ESBLs (blaCTX-M-15, blaTEM), and AmpC-type β-lactamases (blaCMY). Key point mutations noticed in the isolates were pmrB_Y358N (colistin) and ftsI_N337NYRIN, ftsI_I336IKYRI (carbapenem). The E. coli isolates had 11 different STs, with ST410 predominating (28%). Notably, the E. coli phylogroup A isolate 45EC1, (ST10886) is reported for the first time from wastewater, carrying blaNDM-5, blaCMY-16, and pmrB_Y358N with class 1 integron gene cassette of dfrA12-aadA2-qacEΔ1 on a plasmid-borne contig. Other carbapenamase, blaNDM-1 and blaOXA-72, were detected in K. pneumoniae 22EB1 and Acinetobacter baumannii 51AC1, respectively. The integrons with the gene cassettes encoding antibiotic resistance, and the transport and bacterial mobilization protein, were identified in the sequenced isolates. Ten plasmid replicons were identified, with IncFIB prevalent in 53% of isolates. Combined Illumina and Oxford nanopore sequencing revealed blaNDM-5 on an IncFIA/IncFIC plasmid and is identical to those reported in the USA, Myanmar, and Tanzania. Conclusions: These findings highlight the environmental prevalence of high-risk and WHO-priority pathogens with clinically important ARGs, underscoring the need for a One Health approach to mitigate ARB isolates.
Collapse
Affiliation(s)
- Fazal Sattar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Xiao Hu
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Anugrah Saxena
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Kathy Mou
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Huigang Shen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Hazrat Ali
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Muhammad Afzal Ghauri
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Yasra Sarwar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Aamir Ali
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Ramos CA, Ferreira JC, Ballaben AS, Filho RACP, Darini ALDC. Analysis of antibiotic resistance in Gram-negative bacilli in wild and exotic healthy birds in Brazil: A warning sign. Vet Microbiol 2024; 296:110196. [PMID: 39067146 DOI: 10.1016/j.vetmic.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Bacterial antibiotic resistance is a public health problem affecting humans and animals. This study focuses on identifying Gram-negative bacilli (GNB) (MALDI-TOF MS and Klebsiella MALDI TypeR) resistant to antimicrobials in freshly emitted feces of healthy captive and rescued wild birds from a zoo in Brazil. Birds from the zoo and rescued from sixteen different orders were investigated. Resistant bacteria from feces were selected (MacConkey agar with 2 μg/mL cefotaxime). Genomic similarity and plasmid were investigated by Pulsed-Field Gel Electrophoresis of XbaI fragments (XbaI-PFGE) and S1-PFGE. Polymerase Chain Reaction (PCR) was performed to search for beta-lactamase genes. From 80 birds included, 26 from the zoo (50 %) and 18 rescued wild birds (64 %) presented cefotaxime-resistant GNB. E. coli and Klebsiella spp were the most prevalent species. Among 65 isolates from the zoo and rescued wild birds, 75 % were considered multidrug-resistant (MDR). The majority of the isolates were extended-spectrum beta-lactamases (ESBL) producing and resistant to enrofloxacin. blaCTX-M-GROUP-1, blaTEM, and blaSHV were the most detected genes, and blaKPC was detected in K. pneumoniae complex. According to genomic similarity results, some identical profiles were found in birds with no known contact among the zoo or rescued birds. Several isolates carried one to three plasmids (15-350 kb). The presence of multidrug-resistant (MDR) isolates from healthy captive and wild birds brings novel data on the dissemination of these elements to the environment.
Collapse
Affiliation(s)
| | | | - Anelise Stella Ballaben
- São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, Brazil
| | | | | |
Collapse
|
4
|
Li X, Mowlaboccus S, Jackson B, Cai C, Coombs GW. Antimicrobial resistance among clinically significant bacteria in wildlife: An overlooked one health concern. Int J Antimicrob Agents 2024; 64:107251. [PMID: 38906487 DOI: 10.1016/j.ijantimicag.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a critical global health challenge. However, the significance of AMR is not limited to humans and domestic animals but extends to wildlife and the environment. Based on the analysis of > 200 peer-reviewed papers, this review provides comprehensive and current insights into the detection of clinically significant antimicrobial resistant bacteria and resistance genes in wild mammals, birds and reptiles worldwide. The review also examines the overlooked roles of wildlife in AMR emergence and transmission. In wildlife, AMR is potentially driven by anthropogenic activity, agricultural and environmental factors, and natural evolution. This review highlights the significance of AMR surveillance in wildlife, identifies species and geographical foci and gaps, and demonstrates the value of multifaceted One Health strategies if further escalation of AMR globally is to be curtailed.
Collapse
Affiliation(s)
- Xing Li
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia
| | - Bethany Jackson
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Chang Cai
- School of Information Technology, College of Science, Technology, Engineering and Mathematics, Murdoch University, Perth, Australia
| | - Geoffrey Wallace Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia.
| |
Collapse
|
5
|
Furlan JPR, Ramos MS, Sellera FP, Gonzalez IHL, Ramos PL, Stehling EG. Gram-negative bacterial diversity and evidence of international clones of multidrug-resistant strains in zoo animals. Integr Zool 2024; 19:417-423. [PMID: 37984552 DOI: 10.1111/1749-4877.12790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Enterobacterales and Pseudomonas aeruginosa have been colonizing or infecting wild hosts and antimicrobial-resistant strains are present in mammals and birds. Furthermore, international high-risk clones of multidrug-resistant Escherichia coli are identified and the implications of multidrug-resistant Gram-negative bacteria in zoo animals are discussed.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fábio Parra Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Irys Hany Lima Gonzalez
- Coordination of Wild Fauna, Secretary of Environment, Infrastructure and Logistics, São Paulo, Brazil
| | - Patrícia Locosque Ramos
- Coordination of Wild Fauna, Secretary of Environment, Infrastructure and Logistics, São Paulo, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Mansoor MH, Lu X, Woksepp H, Sattar A, Humak F, Ali J, Li R, Bonnedahl J, Mohsin M. Detection and genomic characterization of Klebsiella pneumoniae and Escherichia coli harboring tet(X4) in black kites (Milvus migrans) in Pakistan. Sci Rep 2024; 14:9054. [PMID: 38643223 PMCID: PMC11032342 DOI: 10.1038/s41598-024-59201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The emergence of plasmid-mediated tigecycline resistance gene tet(X4) among clinically relevant bacteria has promoted significant concerns, as tigecycline is considered a last-resort drug against serious infections caused by multidrug-resistant bacteria. We herein focused on the isolation and molecular characterization of tet(X4)-positive Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) in wild bird populations with anthropogenic interaction in Faisalabad, Pakistan. A total of 150 birds including black kites (Milvus migrans) and house crows (Corvus splendens) were screened for the presence of tigecycline resistance K. pneumoniae and E. coli. We found two K. pneumoniae and one E. coli isolate carrying tet(X4) originating from black kites. A combination of short- and long-read sequencing strategies showed that tet(X4) was located on a broad host range IncFII plasmid family in K. pneumoniae isolates whereas on an IncFII-IncFIB hybrid plasmid in E. coli. We also found an integrative and conjugative element ICEKp2 in K. pneumoniae isolate KP8336. We demonstrate the first description of tet(X4) gene in the WHO critical-priority pathogen K. pneumoniae among wild birds. The convergence of tet(X4) and virulence associated ICEKp2 in a wild bird with known anthropogenic contact should be further investigated to evaluate the potential epidemiological implications. The potential risk of global transmission of tet(X4)-positive K. pneumoniae and E. coli warrant comprehensive evaluation and emphasizes the need for effective mitigation strategies to reduce anthropogenic-driven dissemination of AMR in the environment.
Collapse
Affiliation(s)
| | - Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Hanna Woksepp
- Department of Development and Public Health, Kalmar County Hospital, 391 85, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 392 31, Kalmar, Sweden
| | - Amna Sattar
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Farwa Humak
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Jabir Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
- Department of Infectious Diseases, Region Kalmar County, 391 85, Kalmar, Sweden.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
7
|
Umair M, Walsh TR, Mohsin M. A systematic review and meta-analysis of carbapenem resistance and its possible treatment options with focus on clinical Enterobacteriaceae: Thirty years of development in Pakistan. Heliyon 2024; 10:e28052. [PMID: 38596009 PMCID: PMC11001782 DOI: 10.1016/j.heliyon.2024.e28052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Background Carbapenem resistance is epidemic worldwide, these last resort antimicrobials are listed in the WHO 'watch group' with higher resistance potential. During the years 2017-18 Pakistan Antimicrobial Resistance Surveillance System reported an increase in carbapenem resistance. However, a comprehensive information on prevalence and molecular epidemiology of carbapenem resistance in Pakistan is not available. This systematic review and meta-analysis is aimed to report the current carbapenem resistance situation in Pakistan and its treatment options. Methods In this systematic review and meta-analysis, we investigated the pooled prevalence (PPr) of carbapenem resistance in Enterobacteriaceae and non-Enterobacteriaceae by organizing available data, from Web of Science and PubMed by April 2, 2020, in various groups and subgroups including species, years, provinces, extended spectrum β-lactamase production, clinical presentation, carbapenemase and metallo-β-lactamase production, and New Delhi metallo-β-lactamase (NDM) prevalence. Literature review was updated for the studies publisehd by December 07, 2023. Moreover, we descriptively reviewed the molecular epidemiology of carbapenem resistance in Enterobacteriaceae and non-Enterobacteriaceae in Pakistan. Lastly, we statistically explored different treatment options available for carbapenem resistant infections. We used R package 'metafor' for performing meta-analysis and influence diagnostics and determining treatment options. Results From two academic databases Web of Science and PubMed we identified 343 studies. Eighty-eight studies were selected for the systematic review and meta-analysis. Seventy-four studies were selected for phenotypic analysis, 36 for genotypic analysis, and 31 for available treatment options. PPr-ID of 12% [0.12 (0.07, 0.16)] was observed for phenotypic carbapenem resistance in Enterobacteriaceae with more prevalence recorded in Klebsiella pneumoniae 24% [0.24 (0.05, 0.44)] followed by 9% [0.09 (-0.03, 0.20)] in Escherichia coli. During the last two decades we observed a striking increase in carbapenem resistance PPr i.e., from 0% [0.00 (-0.02, 0.03)] to 36% [0.36 (0.17, 0.56)]. blaNDM with PPr 15% [0.15 (0.06, 0.23)] in naive isolates was found to be the fundamental genetic determinant for carbapenem resistance in Enterobacteriaceae in Pakistan. Polymyxin B, colistin, tigecycline, and fosfomycin were identified as the suggested treatment options available for multidrug resistant infections not responding to carbapenems. Various studies reported carbapenem resistance from human, animal, and environment sources. Conclusion In conclusion, we found that NDM-1 producing carbapenem resistant Enterobacteriaceae are increasing in Pakistan. Meta-analysis showed that metallo-β-lactamases producing E. coli ST405 and K. pneumoniae sequence type11 are the major resistant clones. Number of reported studies in various subgroups and inconsistency in following CLSI guidelines are the potential limitations of this meta-analysis. A National antimicrobial resistance (AMR) surveillance strategy based on One Health is urgently needed to check any future AMR crisis in Pakistan.
Collapse
Affiliation(s)
- Muhammad Umair
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Timothy R. Walsh
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| |
Collapse
|
8
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
9
|
Gargano V, Gambino D, Oddo AM, Pizzo M, Sucato A, Cammilleri G, La Russa F, Di Pasquale ML, Parisi MG, Cassata G, Giangrosso G. Scolopax rusticola Carrying Enterobacterales Harboring Antibiotic Resistance Genes. Antibiotics (Basel) 2024; 13:234. [PMID: 38534669 DOI: 10.3390/antibiotics13030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
The Eurasian woodcock (Scolopax rusticola) belongs to those bird species that make systematic migratory flights in spring and autumn in search of favorable breeding and wintering areas. These specimens arrive in the Mediterranean Area from northeastern European countries during the autumn season. The purpose of this study was to assess whether woodcocks can carry antibiotic resistance genes (ARGs) along their migratory routes. Although the role of migratory birds in the spread of some zoonotic diseases (of viral and bacterial etiology) has been elucidated, the role of these animals in the spread of antibiotic resistance has not yet been clarified. In this study, we analyzed the presence of beta-lactam antibiotic resistance genes. The study was conducted on 69 strains from 60 cloacal swabs belonging to an equal number of animals shot during the 2022-2023 hunting season in Sicily, Italy. An antibiogram was performed on all strains using the microdilution method (MIC) and beta-lactam resistance genes were investigated. The strains tested showed no phenotypic resistance to any of the 13 antibiotics tested; however, four isolates of Enterobacter cloacae and three of Klebsiella oxytoca were found to carry the blaIMP-70, blaVIM-35, blaNDM-5 and blaOXA-1 genes. Our results confirm the importance of monitoring antimicrobial resistance among migratory animals capable of long-distance bacteria spread.
Collapse
Affiliation(s)
- Valeria Gargano
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - Delia Gambino
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | | | | | | | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | | | - Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Dipartimento di Scienze della Terra e del Mare, University of Palermo, 90100 Palermo, Italy
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | | |
Collapse
|
10
|
Daaboul D, Kassem II, El Omari K, Hamze M, Daboussi F, Oueslati S, Naas T, Osman M. Emergence of blaNDM-5-harbouring Escherichia coli ST617 in refugee and host communities and their environment. J Travel Med 2024; 31:taad141. [PMID: 37952235 DOI: 10.1093/jtm/taad141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Antimicrobial resistance disproportionately affects displaced and vulnerable populations. Here, we performed an in-depth investigation of blaNDM-5-harbouring Escherichia coli ST617 isolated from disenfranchised Lebanese patients, Syrian refugees, and livestock and the environment of refugee camps. We highlight the need for proactive One Health strategies to combat antimicrobial resistance in vulnerable populations.
Collapse
Affiliation(s)
- Dina Daaboul
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
- Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, CEA, LabEx LERMIT, Faculty of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Issmat I Kassem
- Center for Food Safety, Department of Food Sciences and Technology, University of Georgia, Griffin, GA 30223-1797, USA
| | - Khaled El Omari
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli 1300, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Fouad Daboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Saoussen Oueslati
- Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, CEA, LabEx LERMIT, Faculty of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, CEA, LabEx LERMIT, Faculty of Medicine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
11
|
Eckenko R, Maiboroda O, Muzyka N, Stegniy B, Mezinov O, Rula O, Muzyka D. Circulation of Antibiotic-Resistant Escherichia coli in Wild and Domestic Waterfowl in Ukraine. Vector Borne Zoonotic Dis 2024; 24:17-26. [PMID: 37883639 DOI: 10.1089/vbz.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Background: Antibiotic resistance is becoming an increasingly urgent problem for human and animal health due to the widespread use of antibiotics in medicine, veterinary medicine, and agriculture. At the same time, the natural reservoirs of antibiotic-resistant pathogens remain unclear. Wild birds may play a role in this due to their biology. Escherichia coli is a representative indicator pathogen for antibiotic resistance studies. Materials and Methods: In 2020-2021, sampling of feces and cloacal swabs from six species of wild waterfowl (Eurasian wigeon Anas penelope, Eurasian teal Anas crecca, white-fronted goose Anser albifrons, red-breasted goose Rufibrenta ruficollis, graylag goose Anser anser, shelduck Tadorna tadorna) and from two species of domestic waterfowl (ducks and geese) was conducted in the Kherson, Zaporizhzhia, Odesa, Kharkiv, and Cherkasy regions of Ukraine. Biological material was collected, stored, and transported in cryotubes with transport medium (brain heart infusion broth [BHIB] with the addition of 15% glycerol) in liquid nitrogen. Bacteriological studies were carried out according to standard methods for the isolation and identification of microorganisms. Drug resistance of E. coli was carried out by a standard disk diffusion method. Results: Bacteria representing six families (Enterobacteriaceae, Yersiniaceae, Morganellaceae, Bacillaceae, Pseudomonadaceae, Staphylococcaceae) were isolated from clinically healthy wild birds (wigeon, Eurasian teal, white-fronted goose, red-breasted goose, mallard, graylag goose, shelduck) in the southern regions of Ukraine with isolation rates ranging from 26.7% to 100%. A total of 19 E. coli isolates were cultured from 111 samples from wild birds, and 30 isolates of E. coli were cultured from 32 poultry samples. E. coli was isolated from birds of all species. The prevalence of E. coli ranged from 5.0% to 33.3% in wild waterfowl and from 90.9% to 100% in domestic waterfowl. The prevalence of multidrug-resistant (MDR) E. coli ranged from 10.0% to 31.8% in wild and domestic waterfowl: 3 of 15 (20%) specimens from wild mallard were MDR in the Kherson region, as well as 7 of 22 domestic ducks (31.8%) and 1 of 10 geese (10%) in the Kharkiv and Cherkasy regions. Isolates from wild birds were the most resistant to ampicillin (AMP), amoxiclav (AMC), amoxicillin (AMX), doxycycline (DO), and chloramphenicol (C). Isolates from poultry were resistant to ampicillin, amoxiclav, doxycycline, amoxicillin, chloramphenicol, and enrofloxacin (EX). Most of the other E. coli isolates from wild waterfowl were classified as non-multidrug-resistant (non-MDR) forms. Analysis of antibiotic sensitivity phenotypes showed that only four antibiotic-resistant phenotypes were detected among non-MDR bacteria, whereas among the MDR bacteria, two antibiotic-resistant phenotypes were detected in mallards and six in domestic waterfowl. Conclusion: The results of this study showed that wild waterfowl in Ukraine, which live in natural conditions and do not receive any antimicrobial drugs, are carriers of E. coli that are resistant to a number of antibiotics that are actively used in industrial poultry.
Collapse
Affiliation(s)
- Ruslana Eckenko
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Olha Maiboroda
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Nataliia Muzyka
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Borys Stegniy
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Oleksandr Mezinov
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
- Department of Zoology, H.S. Skovoroda Kharkiv National Pedagogical University, Kharkiv, Ukraine
- The F.E. Falz-Fein Biosphere Reserve "Askania Nova" Askania-Nova Ukraine
| | - Oleksandr Rula
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Denys Muzyka
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| |
Collapse
|
12
|
Mohamed HS, Galal L, Hayer J, Benavides JA, Bañuls AL, Dupont C, Conquet G, Carrière C, Dumont Y, Didelot MN, Michon AL, Jean-Pierre H, Aboubaker MH, Godreuil S. Genomic epidemiology of carbapenemase-producing Gram-negative bacteria at the human-animal-environment interface in Djibouti city, Djibouti. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167160. [PMID: 37730061 DOI: 10.1016/j.scitotenv.2023.167160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
The emergence of carbapenem resistance is a major public health threat in sub-Saharan Africa but remains poorly understood, particularly at the human-animal-environment interface. This study provides the first One Health-based study on the epidemiology of Carbapenemase-Producing Gram-Negative Bacteria (CP-GNB) in Djibouti City, Djibouti, East Africa. In total, 800 community urine samples and 500 hospital specimens from humans, 270 livestock fecal samples, 60 fish samples, and 20 water samples were collected and tested for carbapenem resistance. The overall estimated CP-GNB prevalence was 1.9 % (32/1650 samples) and specifically concerned 0.3 % of community urine samples, 2.8 % of clinical specimens, 2.6 % of livestock fecal samples, 11.7 % of fish samples, and 10 % of water samples. The 32 CP-GNB included 19 Escherichia coli, seven Acinetobacter baumannii, five Klebsiella pneumoniae, and one Proteus mirabilis isolate. Short-read (Illumina) and long-read (Nanopore) genome sequencing revealed that carbapenem resistance was mainly associated with chromosomal carriage of blaNDM-1, blaOXA-23, blaOXA-48, blaOXA-66, and blaOXA-69 in A. baumannii, and with plasmid carriage in Enterobacterales (blaNDM-1 and blaOXA-181 in E. coli, blaNDM-1, blaNDM-5 and blaOXA-48 in K. pneumoniae, and blaNDM-1 in P. mirabilis). Moreover, 17/32 CP-GNB isolates belonged to three epidemic clones: (1) A. baumannii sequence type (ST) 1697,2535 that showed a distribution pattern consistent with intra- and inter-hospital dissemination; (2) E. coli ST10 that circulated at the human-animal-environment interface; and (3) K. pneumoniae ST147 that circulated at the human-environment interface. Horizontal exchanges probably contributed to carbapenem resistance dissemination in the city, especially the blaOXA-181-carrying ColKP3-IncX3 hybrid plasmid that was found in E. coli isolates belonging to different STs. Our study highlights that despite a relatively low CP-GNB prevalence in Djibouti City, plasmids harboring carbapenem resistance circulate in humans, animals and environment. Our findings stress the need to implement preventive and control measures for reducing the circulation of this potentially emerging public health threat.
Collapse
Affiliation(s)
- Hasna Saïd Mohamed
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; Hôpital Général Peltier de Djibouti, Djibouti ville, Djibouti; Laboratoire de Biologie Médicale de la Mer Rouge, Djibouti City, Djibouti
| | - Lokman Galal
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.
| | - Juliette Hayer
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Julio A Benavides
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; Doctorado en Medicina de la Conservación y Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago, Chile
| | - Anne-Laure Bañuls
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; LMI DRISA, Montpellier, France
| | - Chloé Dupont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Guilhem Conquet
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Christian Carrière
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Yann Dumont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Marie-Noëlle Didelot
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Anne-Laure Michon
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Hélène Jean-Pierre
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Mohamed Houmed Aboubaker
- Laboratoire de Biologie Médicale de la Mer Rouge, Djibouti City, Djibouti; Laboratoire de la Caisse Nationale de Sécurité Sociale, Djibouti City 696, Djibouti
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France; Jeune Equipe Associée à l'IRD (JEAI), FASORAM, Montpellier, France
| |
Collapse
|
13
|
Sellera FP, Fuentes-Castillo D, Fuga B, Goldberg DW, Kolesnikovas CK, Lincopan N. New Delhi metallo-β-lactamase-1-producing Citrobacter portucalensis belonging to the novel ST264 causing fatal sepsis in a vulnerable migratory sea turtle. One Health 2023; 17:100590. [PMID: 37388191 PMCID: PMC10302118 DOI: 10.1016/j.onehlt.2023.100590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Olive ridley (Lepidochelys olivacea) turtles migrate across tropical regions of the Atlantic, Pacific, and Indian Oceans. Worryingly, olive ridley populations have been declining substantially and is now considered a threatened species. In this regard, habitat degradation, anthropogenic pollution, and infectious diseases have been the most notorious threats for this species. We isolated a metallo-β-lactamase (NDM-1)-producing Citrobacter portucalensis from the blood sample of an infected migratory olive ridley turtle found stranded sick in the coast of Brazil. Genomic analysis of C. portucalensis confirmed a novel sequence type (ST), named ST264, and a wide resistome to broad-spectrum antibiotics. The production of NDM-1 by the strain contributed to treatment failure and death of the animal. Phylogenomic relationship with environmental and human strains from African, European and Asian countries confirmed that critical priority clones of C. portucalensis are spreading beyond hospital settings, representing an emerging ecological threat to marine ecosystems.
Collapse
Affiliation(s)
- Fábio P. Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Bruna Fuga
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas, University of São Paulo, São Paulo, Brazil
| | | | | | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Nagy JB, Koleszár B, Khayer B, Róka E, Laczkó L, Ungvári E, Kaszab E, Bali K, Bányai K, Vargha M, Lovas-Kiss Á, Tóth Á, Kardos G. Carbapenem-resistant Escherichia coli in Black-headed gulls, the Danube, and human clinical samples: A One Health comparison of contemporary isolates. J Glob Antimicrob Resist 2023; 35:257-261. [PMID: 37832871 DOI: 10.1016/j.jgar.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/10/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES Our aim was to characterize and compare contemporary carbapenem-resistant Enterobacterales (CRE) isolates from gulls, the River Danube, and humans in Hungary, Budapest. METHODS Multiresistant Enterobacterales were sought for in 227 gull faecal and 24 Danube water samples from 2019 to 2020. Eosin-methylene blue agar containing 2 mg/L cefotaxime and Colilert-test containing 10 mg/L cefotaxime were used for gull and water samples, respectively. Isolates were characterized by polymerase chain reactions (PCRs); acquired carbapenemase producers were further analysed by whole-genome sequencing, together with 21 Hungarian human CR Escherichia coli (CREc) isolates. RESULTS Gull and water samples exhibited a CRE prevalence of 7.4% (9/122) and 6.7% (7/105), none and 5/12 water samples yielded CRE from 2019 and 2020, respectively; CRE were found only in samples taken downstream of Budapest. The dominant species was Escherichia coli and the most prevalent carbapenemase was blaNDM-1. High-risk CREc clones were found both in gulls (ST224, ST372, ST744) and the Danube (ST10, ST354, ST410); the closest associations were between ST410 from humans and the Danube, among ST1437 among gulls, and between ST1437 in gulls and the Danube (46, 0, and 22-24 allelic distances, respectively). Direct links between human and gull isolates were not demonstrated. CONCLUSION The study demonstrates potential epidemiological links among humans, a river crossing a city, and urbanised birds, suggesting a local transmission network. Water bodies receiving influent wastewater, together with animals using such habitats, may serve as a local reservoir system for CRE, highlighting the importance of One Health in CRE transmission, even in a country with a low CRE prevalence in humans.
Collapse
Affiliation(s)
- József Bálint Nagy
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary; Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary.
| | - Balázs Koleszár
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary; Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary
| | | | - Eszter Róka
- National Public Health Centre, Budapest, Hungary
| | - Levente Laczkó
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
| | | | - Eszter Kaszab
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary; Veterinary Medical Research Institute, Budapest, Hungary
| | - Krisztina Bali
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary; Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Márta Vargha
- National Public Health Centre, Budapest, Hungary
| | - Ádám Lovas-Kiss
- Wetland Ecology Research Group, Centre for Ecological Research-IAE, Debrecen, Hungary
| | - Ákos Tóth
- National Public Health Centre, Budapest, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary; Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
15
|
Dalazen G, Sellera FP, Fuentes-Castillo D, Sano E, Fontana H, Cardoso B, Esposito F, Silveira LF, Matushima ER, Lincopan N. Stenotrophomonas maltophilia Belonging to Novel Sequence Types ST473 and ST474 in Wild Birds Inhabiting the Brazilian Amazonia. Curr Microbiol 2023; 81:20. [PMID: 38008776 DOI: 10.1007/s00284-023-03532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 11/28/2023]
Abstract
Stenotrophomonas maltophilia is an opportunistic human pathogen associated with nosocomial and community-acquired infections. We have conducted a microbiological and genomic surveillance study of broad-spectrum cephalosporin- and carbapenem-resistant Gram-negative bacteria colonizing wild birds inhabiting the Brazilian Amazonia. Strikingly, two S. maltophilia strains (SM79 and SM115) were identified in Plain-throated antwren (Isleria hauxwelli) passerines affected by Amazonian fragmentation and degradation. Noteworthy, SM79 and SM115 strains belonged to new sequence types (STs) ST474 and ST473, respectively, displaying resistance to broad-spectrum β-lactams, aminoglycosides and/or fluoroquinolones. In this regard, resistome analysis confirmed efflux pumps (smeABC, smeDEF, emrAB-tolC and macB), blaL1 and blaL2, aph(3')-IIc and aac(6')-Iak, and Smqnr resistance genes. Comparative phylogenomic analysis with publicly available S. maltophilia genomes clustered ST473 and ST474 with human strains, whereas the ST474 was also grouped with S. maltophilia strains isolated from water and poultry samples. In summary, we report two novel sequence types of S. maltophilia colonizing wild Amazonian birds. The presence of opportunistic multidrug-resistant pathogens in wild birds, from remotes areas, could represent an ecological problem since these animals could easily promote long-distance dispersal of medically important antimicrobial-resistant bacteria. Therefore, while our results could provide a baseline for future epidemiological genomic studies, considering the limited information regarding S. maltophilia circulating among wild animals, additional studies are necessary to evaluate the clinical impact and degree of pathogenicity of this human opportunistic pathogen in wild birds.
Collapse
Affiliation(s)
- Gislaine Dalazen
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Fábio Parra Sellera
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Luis Fábio Silveira
- Zoology Museum of the University of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Eliana Reiko Matushima
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Ahlstrom CA, Woksepp H, Sandegren L, Ramey AM, Bonnedahl J. Exchange of Carbapenem-Resistant Escherichia coli Sequence Type 38 Intercontinentally and among Wild Bird, Human, and Environmental Niches. Appl Environ Microbiol 2023; 89:e0031923. [PMID: 37195171 PMCID: PMC10304903 DOI: 10.1128/aem.00319-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are a global threat to human health and are increasingly being isolated from nonclinical settings. OXA-48-producing Escherichia coli sequence type 38 (ST38) is the most frequently reported CRE type in wild birds and has been detected in gulls or storks in North America, Europe, Asia, and Africa. The epidemiology and evolution of CRE in wildlife and human niches, however, remains unclear. We compared wild bird origin E. coli ST38 genome sequences generated by our research group and publicly available genomic data derived from other hosts and environments to (i) understand the frequency of intercontinental dispersal of E. coli ST38 clones isolated from wild birds, (ii) more thoroughly measure the genomic relatedness of carbapenem-resistant isolates from gulls sampled in Turkey and Alaska, USA, using long-read whole-genome sequencing and assess the spatial dissemination of this clone among different hosts, and (iii) determine whether ST38 isolates from humans, environmental water, and wild birds have different core or accessory genomes (e.g., antimicrobial resistance genes, virulence genes, plasmids) which might elucidate bacterial or gene exchange among niches. Our results suggest that E. coli ST38 strains, including those resistant to carbapenems, are exchanged between humans and wild birds, rather than separately maintained populations within each niche. Furthermore, despite close genetic similarity among OXA-48-producing E. coli ST38 clones from gulls in Alaska and Turkey, intercontinental dispersal of ST38 clones among wild birds is uncommon. Interventions to mitigate the dissemination of antimicrobial resistance throughout the environment (e.g., as exemplified by the acquisition of carbapenem resistance by birds) may be warranted. IMPORTANCE Carbapenem-resistant bacteria are a threat to public health globally and have been found in the environment as well as the clinic. Some bacterial clones are associated with carbapenem resistance genes, such as Escherichia coli sequence type 38 (ST38) and the carbapenemase gene blaOXA-48. This is the most frequently reported carbapenem-resistant clone in wild birds, though it was unclear if it circulated within wild bird populations or was exchanged among other niches. The results from this study suggest that E. coli ST38 strains, including those resistant to carbapenems, are frequently exchanged among wild birds, humans, and the environment. Carbapenem-resistant E. coli ST38 clones in wild birds are likely acquired from the local environment and do not constitute an independent dissemination pathway within wild bird populations. Management actions aimed at preventing the environmental dissemination and acquisition of antimicrobial resistance by wild birds may be warranted.
Collapse
Affiliation(s)
| | - Hanna Woksepp
- Department of Research, Kalmar County Region, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Infection Biology, Antimicrobial Resistance and Immunology, Uppsala University, Uppsala, Sweden
| | - Andrew M. Ramey
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Kalmar County Region, Kalmar, Sweden
| |
Collapse
|
17
|
Ramírez-Castillo FY, Guerrero-Barrera AL, Avelar-González FJ. An overview of carbapenem-resistant organisms from food-producing animals, seafood, aquaculture, companion animals, and wildlife. Front Vet Sci 2023; 10:1158588. [PMID: 37397005 PMCID: PMC10311504 DOI: 10.3389/fvets.2023.1158588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Carbapenem resistance (CR) is a major global health concern. CR is a growing challenge in clinical settings due to its rapid dissemination and low treatment options. The characterization of its molecular mechanisms and epidemiology are highly studied. Nevertheless, little is known about the spread of CR in food-producing animals, seafood, aquaculture, wildlife, their environment, or the health risks associated with CR in humans. In this review, we discuss the detection of carbapenem-resistant organisms and their mechanisms of action in pigs, cattle, poultry, seafood products, companion animals, and wildlife. We also pointed out the One Health approach as a strategy to attempt the emergency and dispersion of carbapenem-resistance in this sector and to determine the role of carbapenem-producing bacteria in animals among human public health risk. A higher occurrence of carbapenem enzymes in poultry and swine has been previously reported. Studies related to poultry have highlighted P. mirabilis, E. coli, and K. pneumoniae as NDM-5- and NDM-1-producing bacteria, which lead to carbapenem resistance. OXA-181, IMP-27, and VIM-1 have also been detected in pigs. Carbapenem resistance is rare in cattle. However, OXA- and NDM-producing bacteria, mainly E. coli and A. baumannii, are cattle's leading causes of carbapenem resistance. A high prevalence of carbapenem enzymes has been reported in wildlife and companion animals, suggesting their role in the cross-species transmission of carbapenem-resistant genes. Antibiotic-resistant organisms in aquatic environments should be considered because they may act as reservoirs for carbapenem-resistant genes. It is urgent to implement the One Health approach worldwide to make an effort to contain the dissemination of carbapenem resistance.
Collapse
Affiliation(s)
- Flor Y. Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Francisco J. Avelar-González
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| |
Collapse
|
18
|
Fuentes-Castillo D, Castro-Tardón D, Esposito F, Neves I, Rodrigues L, Fontana H, Fuga B, Catão-Dias JL, Lincopan N. Genomic evidences of gulls as reservoirs of critical priority CTX-M-producing Escherichia coli in Corcovado Gulf, Patagonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162564. [PMID: 36870482 DOI: 10.1016/j.scitotenv.2023.162564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Extended spectrum β-lactamase (ESBL)-producing Enterobacterales has spread rapidly around the world, reaching remote areas. In this regard, wild birds that acquire ESBL producers from anthropogenically impacted areas can become reservoirs, contributing to further dissemination of antimicrobial-resistant bacteria categorized as critical priority pathogens to remote environments, during migration seasons. We have conducted a microbiological and genomic investigation on the occurrence and features of ESBL-producing Enterobacterales in wild birds from the remote Acuy Island, in the Gulf of Corcovado, at Chilean Patagonia. Strikingly, five ESBL-producing Escherichia coli were isolated from migratory and resident gulls. Whole-genome sequencing (WGS) analysis revealed the presence of two E. coli clones belonging to international sequence types (STs) ST295 and ST388, producing CTX-M-55 and CTX-M-1 ESBLs, respectively. Moreover, E. coli carried a wide resistome and virulome associated with human and animal infections. Phylogenomic analysis of global and publicly genomes of E. coli ST388 (n = 51) and ST295 (n = 85) clustered gulls isolates along to E. coli strains isolated from the environment, companion animal and livestock in the United States of America, within or close to the migratory route of Franklin's gull, suggesting a possible trans hemispheric movement of international clones of WHO critical priority ESBL producing pathogens.
Collapse
Affiliation(s)
- Danny Fuentes-Castillo
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile; Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Daniela Castro-Tardón
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca, Chile
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Ingrith Neves
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Larissa Rodrigues
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José L Catão-Dias
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Habib S, Gibbon MJ, Couto N, Kakar K, Habib S, Samad A, Munir A, Fatima F, Mohsin M, Feil EJ. The Diversity, Resistance Profiles and Plasmid Content of Klebsiella spp. Recovered from Dairy Farms Located around Three Cities in Pakistan. Antibiotics (Basel) 2023; 12:539. [PMID: 36978406 PMCID: PMC10043998 DOI: 10.3390/antibiotics12030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The rise of antimicrobial resistance (AMR) in bacterial pathogens such as Klebsiella pneumoniae (Kp) is a pressing public health and economic concern. The 'One-Health' framework recognizes that effective management of AMR requires surveillance in agricultural as well as clinical settings, particularly in low-resource regions such as Pakistan. Here, we use whole-genome sequencing to characterise 49 isolates of Klebisella spp. (including 43 Kp) and 2 presumptive Providencia rettgeri isolates recovered from dairy farms located near 3 cities in Pakistan-Quetta (n = 29), Faisalabad (n = 19), and Sargodha (n = 3). The 43 Kp isolates corresponded to 38 sequence types (STs), and 35 of these STs were only observed once. This high diversity indicates frequent admixture and limited clonal spread on local scales. Of the 49 Klebsiella spp. isolates, 41 (84%) did not contain any clinically relevant antimicrobial resistance genes (ARGs), and we did not detect any ARGs predicted to encode resistance to carbapenems or colistin. However, four Kp lineages contained multiple ARGs: ST11 (n = 2), ST1391-1LV (n = 1), ST995 (n = 1) and ST985 (n = 1). STs 11, 1391-1LV and 995 shared a core set of five ARGs, including blaCTX-M-15, harboured on different AMR plasmids. ST985 carried a different set of 16 resistance genes, including blaCTX-M-55. The two presumptive P. rettgeri isolates also contained multiple ARGs. Finally, the four most common plasmids which did not harbour ARGs in our dataset were non-randomly distributed between regions, suggesting that local expansion of the plasmids occurs independently of the host bacterial lineage. Evidence regarding how dairy farms contribute to the emergence and spread of AMR in Pakistan is valuable for public authorities and organizations responsible for health, agriculture and the environment, as well as for industrial development.
Collapse
Affiliation(s)
- Samia Habib
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Marjorie J. Gibbon
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Natacha Couto
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford OX3 7LF, UK
| | - Khadija Kakar
- Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 08763, Pakistan
| | - Safia Habib
- Sardar Bahadur Khan Womens’ University, Quetta 08763, Pakistan
| | - Abdul Samad
- Center for Advanced Studies in Vaccinology & Biotechnology (CASVAB), University of Balochistan, Quetta 08763, Pakistan
| | - Asim Munir
- Institute of Microbiology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fariha Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Edward J. Feil
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
20
|
Hans JB, Pfennigwerth N, Neumann B, Pfeifer Y, Fischer MA, Eisfeld J, Schauer J, Haller S, Eckmanns T, Gatermann S, Werner G. Molecular surveillance reveals the emergence and dissemination of NDM-5-producing Escherichia coli high-risk clones in Germany, 2013 to 2019. Euro Surveill 2023; 28:2200509. [PMID: 36892470 PMCID: PMC9999457 DOI: 10.2807/1560-7917.es.2023.28.10.2200509] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
BackgroundCarbapenemase-producing Enterobacterales (CPE) are rapidly increasing worldwide, also in Europe. Although prevalence of CPE in Germany is comparatively low, the National Reference Centre for Multidrug-resistant Gram-negative Bacteria noted annually increasing numbers of NDM-5-producing Escherichia coli isolates.AimAs part of our ongoing surveillance programme, we characterised NDM-5-producing E. coli isolates received between 2013 and 2019 using whole genome sequencing (WGS).MethodsFrom 329 identified NDM-5-producing E. coli, 224 isolates from known geographical locations were subjected to Illumina WGS. Analyses of 222 sequenced isolates included multilocus sequence typing (MLST), core genome (cg)MLST and single-nucleotide polymorphism (SNP)-based analyses.ResultsResults of cgMLST revealed genetically distinct clusters for many of the 43 detected sequence types (ST), of which ST167, ST410, ST405 and ST361 predominated. The SNP-based phylogenetic analyses combined with geographical information identified sporadic cases of nosocomial transmission on a small spatial scale. However, we identified large clusters corresponding to clonal dissemination of ST167, ST410, ST405 and ST361 strains in consecutive years in different regions in Germany.ConclusionOccurrence of NDM-5-producing E. coli rose in Germany, which was to a large extent due to the increased prevalence of isolates belonging to the international high-risk clones ST167, ST410, ST405 and ST361. Of particular concern is the supra-regional dissemination of these epidemic clones. Available information suggest community spread of NDM-5-producing E. coli in Germany, highlighting the importance of epidemiological investigation and an integrated surveillance system in the One Health framework.
Collapse
Affiliation(s)
- Jörg B Hans
- National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department for Medical Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Niels Pfennigwerth
- National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department for Medical Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Bernd Neumann
- Institute for Hospital Hygiene, Medical Microbiology and Clinical Infectiology, Paracelsus Medical University, Nuremberg General Hospital, Nuremberg, Germany.,Division of Nosocomial Pathogens and Antibiotic Resistance, Department of Infectious Diseases, Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
| | - Yvonne Pfeifer
- Division of Nosocomial Pathogens and Antibiotic Resistance, Department of Infectious Diseases, Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
| | - Martin A Fischer
- Division of Nosocomial Pathogens and Antibiotic Resistance, Department of Infectious Diseases, Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
| | - Jessica Eisfeld
- National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department for Medical Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Schauer
- Landeszentrum Gesundheit Nordrhein-Westfalen, Fachgruppe Infektionsepidemiologie, Bochum, Germany.,National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department for Medical Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Haller
- Department for Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Tim Eckmanns
- Department for Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Sören Gatermann
- National Reference Centre for Multidrug-resistant Gram-negative Bacteria, Department for Medical Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistance, Department of Infectious Diseases, Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
| |
Collapse
|
21
|
Dreyer S, Globig A, Bachmann L, Schütz AK, Schaufler K, Homeier-Bachmann T. Longitudinal Study on Extended-Spectrum Beta-Lactamase- E. coli in Sentinel Mallard Ducks in an Important Baltic Stop-Over Site for Migratory Ducks in Germany. Microorganisms 2022; 10:1968. [PMID: 36296245 PMCID: PMC9612239 DOI: 10.3390/microorganisms10101968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 08/17/2023] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health threat with extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales as the most critical ones. Studies on AMR in wild birds imply a possible dissemination function and indicate their potential role as sentinel animals. This study aimed to gain a deeper insight into the AMR burden of wild waterfowl by sampling semi-wild mallard ducks used as sentinels and to identify if AMR bacteria could be recommended to be added to the pathogens of public health risks to be screened for. In total, 376 cloacal and pooled fecal samples were collected from the sentinel plant over a period of two years. Samples were screened for ESBL-carrying E. coli and isolates found further analyzed using antimicrobial susceptibility testing and whole-genome sequencing. Over the sampling period, 4.26% (16/376) of the samples were positive for ESBL-producing E. coli. BlaCTX-M-1 and blaCTX-M-32 were the most abundant CTX-M types. Although none of the top global sequence types (ST) could be detected, poultry-derived ST115 and non-poultry-related STs were found and could be followed over time. The current study revealed low cases of ESBL-producing E. coli in semi-wild mallard ducks, which proves the suitability of sentinel surveillance for AMR detection in water-associated wildlife.
Collapse
Affiliation(s)
- Sylvia Dreyer
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Lisa Bachmann
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, 17033 Neubrandenburg, Germany
| | - Anne K. Schütz
- Institute of Epidemiology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | | |
Collapse
|
22
|
Athanasakopoulou Z, Diezel C, Braun SD, Sofia M, Giannakopoulos A, Monecke S, Gary D, Krähmer D, Chatzopoulos DC, Touloudi A, Birtsas P, Palli M, Georgakopoulos G, Spyrou V, Petinaki E, Ehricht R, Billinis C. Occurrence and Characteristics of ESBL- and Carbapenemase- Producing Escherichia coli from Wild and Feral Birds in Greece. Microorganisms 2022; 10:1217. [PMID: 35744734 PMCID: PMC9227375 DOI: 10.3390/microorganisms10061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
Wild and feral birds are known to be involved in the maintenance and dissemination of clinically-important antimicrobial-resistant pathogens, such as extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae. The aim of our study was to evaluate the presence of ESBL- and carbapenemase-producing Escherichia coli among wild and feral birds from Greece and to describe their antimicrobial resistance characteristics. In this context, fecal samples of 362 birds were collected and cultured. Subsequently, the antimicrobial resistance pheno- and geno-type of all the obtained E. coli isolates were determined. A total of 12 multidrug-resistant (MDR), ESBL-producing E. coli were recovered from eight different wild bird species. Eleven of these isolates carried a blaCTX-M-1 group gene alone or in combination with blaTEM and one carried only blaTEM. AmpC, fluoroquinolone, trimethoprim/sulfamethoxazole, aminoglycoside and macrolide resistance genes were also detected. Additionally, one carbapenemase-producing E. coli was identified, harboring blaNDM along with a combination of additional resistance genes. This report describes the occurrence of ESBL- and carbapenemase-producing E. coli among wild avian species in Greece, emphasizing the importance of incorporating wild birds in the assessment of AMR circulation in non-clinical settings.
Collapse
Affiliation(s)
- Zoi Athanasakopoulou
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Marina Sofia
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Alexios Giannakopoulos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Dominik Gary
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (D.K.)
| | - Domenique Krähmer
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (D.K.)
| | | | - Antonia Touloudi
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Periklis Birtsas
- Faculty of Forestry, Wood Science and Design, 43100 Karditsa, Greece;
| | - Matina Palli
- Wildlife Protection & Rehabilitation Center, 24400 Gargalianoi, Greece; (M.P.); (G.G.)
| | | | - Vassiliki Spyrou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece;
| | | | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller-University, 07745 Jena, Germany
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|