1
|
Patchaiyappan A, Singh A, Bautès N, Abimannan A. Face mask littering in coastal environment of Coromandel beaches, a comparison between street and beach littering - perspective and perceptions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61270-61282. [PMID: 39412720 DOI: 10.1007/s11356-024-35014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
The usage of face mask has been encouraged globally to combat the COVID-19 pandemic. However, their improper disposal has begun to impact the environment. In the present study, face mask littering was assessed in sixteen stations across the beaches in Coromandel coast of South India for a period of four weeks. Moreover, an online questionnaire was recorded to evaluate the people's perception about face mask usage and littering. In terms of land use pattern, stations with both fishing and tourism activities had higher abundance of face mask littering when compared with exclusive fishing and tourism stations. The study also found that mask littering was higher in streets when compared to the beaches. Of 163 respondents, most of the respondents preferred using disposable single use masks and 39.9% of the respondents preferred to dispose of the face masks along with other wastes. The study highlights the lack of proper solid waste management, negligent littering, and the need for raising awareness, strategic intervention to control this menace.
Collapse
Affiliation(s)
- Arunkumar Patchaiyappan
- Department of Social Sciences, French Institute of Pondicherry, UMIFRE 21 CNRSMAEE/USR 3330, 11, St. Louis Street, P.B. 33, Pondicherry, 60500, India.
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan.
- Svarnim, Sri Aurobindo Society, Puducherry, 605001, India.
| | - Abhishek Singh
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Nicolas Bautès
- Department of Social Sciences, French Institute of Pondicherry, UMIFRE 21 CNRSMAEE/USR 3330, 11, St. Louis Street, P.B. 33, Pondicherry, 60500, India
| | - Arulkumar Abimannan
- Department of Biotechnology, Achariya Arts and Science College, Affiliated to Pondicherry University, Pondicherry, 605014, India
| |
Collapse
|
2
|
Zhang Y, Jiang F, Li F, Lu S, Liu Z, Wang Y, Chi Y, Jiang C, Zhang L, Chen Q, He Z, Zhao X, Qiao J, Xu X, Leung KMY, Liu X, Wu F. Global daily mask use estimation in the pandemic and its post environmental health risks: Analysis based on a validated dynamic mathematical model. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134572. [PMID: 38772106 DOI: 10.1016/j.jhazmat.2024.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The outbreak of the COVID-19 pandemic led to a sharp increase in disposable surgical mask usage. Discarded masks can release microplastic and cause environmental pollution. Since masks have become a daily necessity for protection against virus infections, it is necessary to review the usage and disposal of masks during the pandemic for future management. In this study, we constructed a dynamic model by introducing related parameters to estimate daily mask usage in 214 countries from January 22, 2020 to July 31, 2022. And we validated the accuracy of our model by establishing a dataset based on published survey data. Our results show that the cumulative mask usage has reached 800 billion worldwide, and the microplastics released from discarded masks due to mismanagement account for 3.27% of global marine microplastic emissions in this period. Furthermore, we illustrated the response relationship between mask usage and the infection rates. We found a marginally significant negative correlation existing between the mean daily per capita mask usage and the rate of cumulative confirmed cases within the range of 25% to 50%. This indicates that if the rate reaches the specified threshold, the preventive effect of masks may become evident.
Collapse
Affiliation(s)
- Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Fei Jiang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zihao Liu
- School of information science and engineering, Shandong Normal University, Jinan 250358, China
| | - Yuwen Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Yiming Chi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chenchen Jiang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Zhipeng He
- Shandong Freshwater Fisheries Research Institude, Jinan 250013, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianmin Qiao
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Xiaoya Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaohui Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Han Y, Gu X, Lin C, He M, Wang Y. Effects of COVID-19 on coastal and marine environments: Aggravated microplastic pollution, improved air quality, and future perspective. CHEMOSPHERE 2024; 355:141900. [PMID: 38579953 DOI: 10.1016/j.chemosphere.2024.141900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
The COVID-19 pandemic during 2020-2023 has wrought adverse impacts on coastal and marine environments. This study conducts a comprehensive review of the collateral effects of COVID-19 on these ecosystems through literature review and bibliometric analysis. According to the output and citation analysis of these publications, researchers from the coastal countries in Asia, Europe, and America payed more attentions to this environmental issue than other continents. Specifically, India, China, and USA were the top three countries in the publications, with the proportion of 19.55%, 18.99%, and 12.01%, respectively. The COVID-19 pandemic significantly aggravated the plastic and microplastic pollution in coastal and marine environments by explosive production and unproper management of personal protective equipment (PPE). During the pandemic, the estimated mismanaged PPE waste ranged from 16.50 t/yr in Sweden to 250,371.39 t/yr in Indonesia. In addition, the PPE density ranged from 1.13 × 10-5 item/m2 to 2.79 item/m2 in the coastal regions worldwide, showing significant geographical variations. Besides, the emerging contaminants released from PPE into the coastal and marine environments cannot be neglected. The positive influence was that the COVID-19 lockdown worldwide reduced the release of air pollutants (e.g., fine particulate matter, NO2, CO, and SO2) and improved the air quality. The study also analyzed the relationships between sustainable development goals (SDGs) and the publications and revealed the dynamic changes of SDGs in different periods the COVID-19 pandemic. In conclusion, the air was cleaner due to the lockdown, but the coastal and marine contamination of plastic, microplastic, and emerging contaminants got worse during the COVID-19 pandemic. Last but not least, the study proposed four strategies to deal with the coastal and marine pollution caused by COVID-19, which were regular marine monitoring, performance of risk assessment, effective regulation of plastic wastes, and close international cooperation.
Collapse
Affiliation(s)
- Yixuan Han
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xiang Gu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yidi Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Gracia C A, Neal WJ, Rangel-Buitrago N. Emerging from lockdown: Medical and sanitary waste on a Colombian beach during the first holiday season after COVID pandemic. MARINE POLLUTION BULLETIN 2024; 202:116355. [PMID: 38615518 DOI: 10.1016/j.marpolbul.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Adriana Gracia C
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia.
| | - William J Neal
- Department of Geology, Grand Valley State University, The Seymour K. & Esther R. Padnos Hall of Science 213A, Allendale, MI, USA
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia.
| |
Collapse
|
5
|
Malvandi H. Metals concentration and human health risk assessment in some fish species from the southern Caspian Sea. MARINE POLLUTION BULLETIN 2024; 202:116336. [PMID: 38583218 DOI: 10.1016/j.marpolbul.2024.116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The main objectives of this study were to determine the mercury concentration in four species of valuable and widely consumed fish from the Caspian Sea, to assess the health risk due to their consumption. The average mercury concentrations for Chelon saliens, Chelon auratus, Acipenser persicus and Acipenser stellatus were 32.72, 39.51, 166.87 and 81.87 μg g-1 dw, respectively. There were correlations between the mercury concentrations in the muscle of Chelon saliens and morphological parameters, but these correlations were not observed in Chelon auratus. Our comparison of the mercury values obtained in all the samples with the recommended international standards, as well as the Hazard Quotients values, indicated that there is no potential risk for the health of consumers due to exposure to mercury from consuming these fish.
Collapse
Affiliation(s)
- Hassan Malvandi
- Department of Environmental Sciences and Engineering, Hakim Sabzevari University, 379 post box, 9617916487 Sabzevar, Khorasan Razavi, Iran; EthnoBiology Core (EBC), Hakim Sabzevari University, Sabzevar, Khorasan Razavi, Iran.
| |
Collapse
|
6
|
Rangel DF, Costa LL, Ribeiro VV, De-la-Torre GE, Castro ÍB. Protective personal equipment on coastal environments: Identifying key drivers at a global scale. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133839. [PMID: 38402681 DOI: 10.1016/j.jhazmat.2024.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
The contamination of coastal ecosystems by personal protective equipment (PPE) emerged as a significant concern immediately following the declaration of the COVID-19 pandemic by the World Health Organization (WHO). Hence, numerous studies have assessed PPE occurrence on beaches worldwide. However, no predictors on PPE contamination was so far pointed out. The present study investigated social and landscape drivers affecting the PPE density in coastal environments worldwide using a meta-analysis approach. Spatial variables such as urban modification levels, coastal vegetation coverage, population density (HPD), distance from rivers (DNR), and poverty degree (GGRDI) were derived from global satellite data. These variables, along with the time elapsed after WHO declared the pandemic, were included in generalized additive models as potential predictors of PPE density. HPD consistently emerged as the most influential predictor of PPE density (p < 0.00001), exhibiting a positive effect. Despite the presence of complex non-linear relationships, our findings indicate higher PPE density in areas with intermediate GGRDI levels, indicative of emerging economies. Additionally, elevated PPE density was observed in areas located further away from rivers (p < 0.001), and after the initial months of the pandemic. Despite the uncertainties associated with the varied sampling methods employed by the studies comprising our database, this study offers a solid baseline for tackling the global problem of PPE contamination on beachesguiding monitoring assessments in future pandemics.
Collapse
Affiliation(s)
| | - Leonardo Lopes Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil; Instituto Solar Brasil de Desenvolvimento Saúde e Pesquisa - ISOBRAS, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil.
| |
Collapse
|
7
|
Hu F, Zhao H, Ding J, Jing C, Zhang W, Chen X. Uptake and toxicity of micro-/nanoplastics derived from naturally weathered disposable face masks in developing zebrafish: Impact of COVID-19 pandemic on aquatic life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123129. [PMID: 38092337 DOI: 10.1016/j.envpol.2023.123129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The unprecedented proliferation of disposable face masks during the COVID-19 pandemic, coupled with their improper disposal, threatens to exacerbate the already concerning issue of plastic pollution. This study evaluates the role of environmentally weathered masks as potential sources of microplastics (MPs) and nanoplastics (NPs) and assesses their adverse impact on the early life stages of zebrafish. Experimental findings revealed that a single disposable mask could release approximately 1.79 × 109 particles, with nearly 70% measuring less than 1 μm, following 60 days of sunlight exposure and subsequent sand-induced physical abrasion. Remarkably, the MPs/NPs (MNPs) emanating from face masks have the potential to permeate the outer layer (chorion) of zebrafish embryos. Furthermore, due to their minute size, these particles can be consumed by the larvae's digestive system and subsequently circulated to other tissues, including the brain. Exposure to mask-derived MNPs at concentrations of 1 and 10 μg/L led to significant cases of developmental toxicity, incited oxidative stress, and prompted cell apoptosis. A subsequent metabolomics analysis indicated that the accumulation of these plastic particles perturbed metabolic functions in zebrafish larvae, primarily disrupting amino acid and lipid metabolism. The outcomes of this research underscore the accelerating possibility of environmental aging processes and physical abrasion in the release of MNPs from disposable face masks. Most importantly, these results shed light on the possible ecotoxicological risk posed by improperly disposed of face masks.
Collapse
Affiliation(s)
- Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haocheng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Jing
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
8
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Ortega-Borchardt JÁ, Barba-Acuña ID, De-la-Torre GE, Ramírez-Álvarez N, García-Hernández J. Personal protective equipment (PPE) pollution associated with the COVID-19 pandemic on beaches in the eastern region of the Gulf of California, Mexico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167539. [PMID: 37797773 DOI: 10.1016/j.scitotenv.2023.167539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
The COVID-19 pandemic has led to an increase in plastic pollution, including improper disposal of personal protective equipment (PPE). This study focuses on examining the presence and distribution of discarded PPE in three locations in Sonora, Mexico, located within the Gulf of California. Transects were conducted in 2021 and 2022, during which PPE items were visually identified, photographed, and classified. Face masks were found to be the most prevalent PPE type (96% of the total), with polymer-based masks being the most commonly observed (97% of the total). The density of PPE was higher on recreational beaches compared to non-recreational ones. Statistical analysis revealed a significant difference (W = 217.5, p = 0.014) in the PPE density between the sampled recreational beaches in 2021 and 2022, with a higher density recorded in the first year. Improper disposal of PPE poses environmental risks and potential threats to marine organisms. The documented discarded COVID-19-related PPE in this study provides important baseline information for future research and monitoring. This information is valuable to better understand the ecotoxicological effects of PPE and develop effective waste management strategies in the Gulf of California.
Collapse
Affiliation(s)
- José Ángel Ortega-Borchardt
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora C.P. 85480, Mexico.
| | - Isai David Barba-Acuña
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora C.P. 85480, Mexico
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas-UABC, Carretera Tijuana-Ensenada 3917, Col. Playitas, Ensenada, B.C. C.P. 22860, Mexico
| | - Jaqueline García-Hernández
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora C.P. 85480, Mexico
| |
Collapse
|
10
|
Paço A, Oliveira AM, Ferreira-Filipe DA, Rodrigues ACM, Rocha RJM, Soares AMVM, Duarte AC, Patrício Silva AL, Rocha-Santos T. Facemasks: An insight into their abundance in wetlands, degradation, and potential ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166232. [PMID: 37574074 DOI: 10.1016/j.scitotenv.2023.166232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Disposable facemasks represent a new form of environmental contamination worldwide. This study aimed at addressing the abundance of facemasks in an overlooked natural environment with high ecological and economic value - the wetlands (Ria de Aveiro, Portugal, as study case), evaluating their potential biodegradation using naturally occurring fungi and assessing the potential ecotoxicity of released microfibres on local bivalves. All masks collected within 6500 m2 area of Aveiro wetland were 100 % disposable ones (PP-based, confirmed by Fourier transform infrared spectroscopy - FTIR) with an initial abundance of 0.0023 items/m2 in Sept. 2021, which was reduced by ∼40 % in Apr. 2022 and ∼87 % in Sept. 2022, as a reflection of the government policies. Analysis of the carbonyl index (0.03 to 1.79) underlined their state of degradation, primarily due to sun exposure during low tides. In laboratory conditions, 1 mm2 microplastics obtained from new disposable facemasks were prone to biodegradation by Penicillium brevicompactum and Zalerion maritimum inferred from microplastics mass loss (∼22 to -26 % and ∼40 to 50 %, respectively) and FTIR spectra (particularly in the hydroxyl and carbonyl groups). In addition, microfibres released from facemasks induced sublethal effects on the clam, Venerupis corrugata, mostly in their UV-aged form when compared to pristine ones, characterised by a decrease in cellular energy allocation (CEA) and an increase in aerobic energy metabolism (ETS). Concomitantly, clams exposed to 1250 items/L of UV-aged microplastics (similar to field-reported concentrations) expressed greater clearance capacity, indicating a need to compensate for the potential energy unbalance. This study provides the first baseline monitoring of facemasks in wetlands while bringing new evidence on their biodegradation and ecotoxicity, considering environmentally relevant conditions and keystone organisms in such environments. Such studies require scientific attention for rapid regulatory action against this emerging and persistent pollutant, also targeting remediation and mitigation strategies considering these items under pandemic scenarios.
Collapse
Affiliation(s)
- Ana Paço
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia C M Rodrigues
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Araña KND, Dimaongon NG, Mauyag ND, Hadji Morad NM, Manupac SRR, Bacosa HP. Personal protective equipment (PPE) litter in terrestrial urban areas of Iligan City, Philippines. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1486. [PMID: 37973642 DOI: 10.1007/s10661-023-12044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In recent years, many countries have relied on the massive use of personal protective equipment (PPE) following the recommendation of the World Health Organization (WHO) to combat COVID-19, an infectious disease caused by the SARS-CoV-2 virus. These PPEs include facemasks, face shields, disinfectant wipes, and disposable gloves. While PPE serves as protection, it can also be a source of pollution. This study is the first to establish a baseline monitoring and assessment of the spatial distribution of COVID-19-related PPE litter approaching the post-pandemic from the urban areas in Iligan City, Philippines. A total of 1632 COVID-19 PPE litter were gathered in all surveyed locations, predominantly facemasks (90.7%) and disinfectant wipes (8.8%). Among the surveyed areas, the location that recorded the highest count and density of PPE litter is in a residential zone (52.14%; n = 851; 0.0317 item m-2); the lowest was determined in recreational parks (2.57%; n = 42; 0.0016 item m-2). The significant difference in the total count of PPE items in each location could be traced to the varying land uses and ecosystems as well as the human behavior and activities. FTIR results reveal that all types of facemasks sampled are principally made of polypropylene, a material that threatens environmental sustainability and low recyclability. As the country is embracing the new normal and somewhat returning to pre-pandemic activities, this study calls for the prioritization of the government agendas on ecological solid waste management in the country.
Collapse
Affiliation(s)
- Kent Naiah D Araña
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines
| | - Noralyn G Dimaongon
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines
| | - Noronimah D Mauyag
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines
| | - Nisriah M Hadji Morad
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines
| | - Shekinah Ruth R Manupac
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines
| | - Hernando P Bacosa
- Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines.
- Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Lanao del Norte, 9200, Iligan, Philippines.
- Main Campus Bataraza Extension (MCBE), Mindanao State University-Main Campus, Lanao del Sur, 9700, Marawi, Philippines.
| |
Collapse
|
12
|
Aslan H, Yılmaz O, Benfield MC, Becan SA. Temporal trends in personal protective equipment (PPE) debris during the COVID-19 pandemic in Çanakkale (Turkey). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165377. [PMID: 37422228 DOI: 10.1016/j.scitotenv.2023.165377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
This study examines trends in PPE (masks, gloves) and disinfecting wipes over three years of the pandemic. The densities of discarded masks, wet wipes, and gloves (personal protective equipment: PPE), were quantified on the streets of Canakkale, Turkey during similar time periods in 2020, 2021 and 2022. Geotagged images of PPE on the streets and sidewalks were documented with a smartphone, while the track of an observer was recorded using a fitness tracker app along a 7.777 km long survey route in the city center, parallel to the Dardanelles Strait. A total of 18 surveys were conducted over three years, and the survey route was subdivided into three zones based on utilization patterns: pedestrian zone, traffic zone and a recreational park zone. The combined densities of all types of PPE density were high in 2020, lower in 2021 and highest in 2022. The within year trend showed an increase over the three study years. The average density of gloves declined from an initially high level in 2020, when the SARS-CoV-2 virus was thought to be transmitted by contact, to near zero in 2021 and to zero in 2022. Densities of wipes were similar in 2020 and 2021 and higher in 2022. Masks were initially difficult to procure in 2020, and their densities progressively increased during that year reaching a plateau in 2021 with similar densities in 2022. PPE densities were significantly lower in the pedestrian route relative to the traffic and park routes, which were not different from each other. The partial curfews implemented by the Turkish government and the effects of prevention measures taken on the PPE concentration in the streets are discussed along with the importance of waste management practices.
Collapse
Affiliation(s)
- Herdem Aslan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Okan Yılmaz
- Department of Landscape Architecture, Faculty of Architecture and Design, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mark C Benfield
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - S Ahmet Becan
- Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
13
|
Dey S, Samanta P, Dutta D, Kundu D, Ghosh AR, Kumar S. Face masks: a COVID-19 protector or environmental contaminant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93363-93387. [PMID: 37548785 DOI: 10.1007/s11356-023-29063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Face masks, a prime component of personal protective equipment (PPE) items, have become an integral part of human beings to survive under the ongoing COVID-19 pandemic situation. The global population requires an estimated 130 billion face masks and 64 billion gloves/month, while the COVID-19 pandemic has led to the daily disposal of approximately 3.5 billion single-use face masks, resulting in a staggering 14,245,230.63 kg of face mask waste. The improper disposal of face mask wastes followed by its mismanagement is a challenge to the scientists as the wastes create pollution leading to environmental degradation, especially plastic pollution (macro/meso/micro/nano). Each year, an estimated 0.15-0.39 million tons of COVID-19 face mask waste, along with 173,000 microfibers released daily from discarded surgical masks, could enter the marine environment, while used masks have a significantly higher microplastic release capacity (1246.62 ± 403.50 particles/piece) compared to new masks (183.00 ± 78.42 particles/piece). Surgical face masks emit around 59 g CO2-eq greenhouse gas emissions per single use, cloth face masks emit approximately 60 g CO2-eq/single mask, and inhaling or ingesting microplastics (MPs) caused adverse health problems including chronic inflammation, granulomas or fibrosis, DNA damage, cellular damage, oxidative stress, and cytokine secretion. The present review critically addresses the role of face masks in reducing COVID-19 infections, their distribution pattern in diverse environments, the volume of waste produced, degradation in the natural environment, and adverse impacts on different environmental segments, and proposes sustainable remediation options to tackle environmental challenges posed by disposable COVID-19 face masks.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, 735 210, West Bengal, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
14
|
Chorographic assessment on the overburden of single-use plastics bio-medical wastes risks and management during COVID-19 pandemic in India. TOTAL ENVIRONMENT RESEARCH THEMES 2023; 7:100062. [PMCID: PMC10275774 DOI: 10.1016/j.totert.2023.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 09/03/2023]
Abstract
Amid the rapid influx of SARS‑CoV‑2 patients in various hospitals across India, the disposal of COVID-19 bio-medical wastes become a major challenging crisis in these days. As a consequence, the unexpected surge of utilizing Single-Use Plastics (SUP) from Personal Protection Equipments (PPEs) in particular protective gloves, nose masks, body aprons. is common in day to day and estimated as minimum of 730 g of waste can be generated per day/person in India. The research objectives on a national scale focuses that the document being active belongings, communications and preparations associated with hospital desecrates care and the existing facts on the physical condition and ecological risk on health care biomedical throw away which dropped during the SARS‑CoV‑2 virus disease pandemic. Based on number of confirmed COVID-19 cases 5,78,578 and 3,92,1149 health care workers as of 1st July 2020 (includes active, recovered and deaths) in India is assessed using GIS that an average 3150 tons per day of SUP waste generated only due to COVID-19 even though the hospitals make all safety measures to put away the clinical wastes. The States like Maharashtra (484.12tons/day), Tamil Nadu (337.76 tons/day), Andhra Pradesh (229.23 tons/day), Rajasthan (183.87 tons/day), Gujarat (181.41 tons/day), Karnataka, Kerala and Uttar Pradesh are over loaded with 212.73, 244.36 and 176.86 tons/day respectively greater than their normal per day bio-medical waste generated. This study finds the space in handling of Bio-Medical Waste Management of the pandemic COIVD-19 outbreaks and its’ remedial actions to improve the necessity in the future emergency in the developing countries like India.
Collapse
|
15
|
Karthikeyan P, Subagunasekar M, Lenin N, Prabhu K. Abundance, spatial distribution, and chemical characterization of face masks on the beaches of SE Kanyakumari, India. MARINE POLLUTION BULLETIN 2023; 192:115031. [PMID: 37210985 PMCID: PMC10198033 DOI: 10.1016/j.marpolbul.2023.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Personal Protective Equipment (PPE) is a new world of waste during the COVID-19 pandemic. In this baseline study, the occurrence of PPE faces masks were assessed on the eleven beaches of Kanyakumari, India concerning the abundance, spatial distribution, and chemical characterization (ATR-FTIR spectroscopy). A total of 1593 items/m2 of PPE face masks and their mean density of 0.16 PPE/m2, ranging from 0.02 to 0.54 PPE/m2 were determined in the study area. Kanyakumari beach (n = 430 items/m2) has the highest concentration of masks (26.99 %), with a mean density of 0.54 m2 due to recreational, sewage disposal, and tourism activities. This is perhaps the most important study describing the scientific data that focuses on the significant effects of communal activities and accessibility on COVID-19 PPE face mask pollution. It also highlights the need for sufficient management facilities to optimize PPE disposal.
Collapse
Affiliation(s)
- P Karthikeyan
- School of Marine Sciences, Department of Oceanography and Coastal Area Studies Alagappa University, Karaikudi 630 003, Tamil Nadu, India; Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695 581, Kerala, India.
| | - M Subagunasekar
- Centre for Geoinformatics, School of Health Sciences & Rural Development, The Gandhigram Rural Institute, Dindigul 624 302, Tamil Nadu, India
| | - N Lenin
- Department of Physics, Sethu Institute of Technology, Virudhunagar 626 115, Tamil Nadu, India
| | - K Prabhu
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
16
|
Ortega F, Calero M, Rico N, Martín-Lara MA. COVID-19 personal protective equipment (PPE) contamination in coastal areas of Granada, Spain. MARINE POLLUTION BULLETIN 2023; 191:114908. [PMID: 37086548 PMCID: PMC10080275 DOI: 10.1016/j.marpolbul.2023.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The use of disposable personal protective equipment (PPE) as a control measure to avoid transmission against COVID-19 has generated a challenge to the waste management and enhances plastic pollution in the environment. The research aims to monitor the presence of PPE waste and other plastic debris, in a time interval where the use of face mask at specific places was still mandatory, on the coastal areas of Granada (Spain) which belongs to the Mediterranean Sea. Four beaches called La Rijana, La Charca, La Rábita and Calahonda were examined during different periods. The total amount of sampled waste was 17,558 plastic units. The abundance, characteristics and distribution of PPE and other plastic debris were determined. Results showed that the observed amount of total plastic debris were between 2.531·10-2 and 24.487·10-2 units per square meter, and up to 0.136·10-2 for PPE debris, where face masks represented the 92.22 % of the total PPE debris, being these results comparable to previous studies in other coastal areas in the world. On the other hand, total plastic debris densities were in the range from 2.457·10-2 to 92.219·10-2 g/m2 and densities were up to 0.732·10-2 for PPE debris. PPE debris supposed 0.79 % of the weight of total waste and the 0.51 % of total items. Concerning non-PPE plastic waste: cigarettes filters, food containers and styrofoam were the most abundant items (42.95, 10.19 and 16.37 % of total items, respectively). During vacation periods, total plastic debris amount increased 92.19 % compared to non-vacation periods. Regarding type of beaches, the presence of plastic debris was significantly higher on touristic/recreational than in fishing beaches. Data showed no significant differences between accessible and no-accessible beaches, but between periods with restrictive policy about mask face use and periods with non-restrictive policy data suggest significant differences between densities (g/m2) for PPE litter. The amount of PPEs debris is also correlated with the number of cigarettes filters (Person's r = 0.650), food containers (r = 0.782) and other debris (r = 0.63). Finally, although interesting results were provided in this study, further research is required to better understand the consequences of this type of pollution and to provide viable solutions to this problem.
Collapse
Affiliation(s)
- F Ortega
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Granada, Spain.
| | - M Calero
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Granada, Spain.
| | - N Rico
- Department of Statistics and Operations Research, Faculty of Sciences, University of Granada, Granada, Spain.
| | - M A Martín-Lara
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
17
|
Rahman MN, Shozib SH, Akter MY, Islam ARMT, Islam MS, Sohel MS, Kamaraj C, Rakib MRJ, Idris AM, Sarker A, Malafaia G. Microplastic as an invisible threat to the coral reefs: Sources, toxicity mechanisms, policy intervention, and the way forward. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131522. [PMID: 37146332 DOI: 10.1016/j.jhazmat.2023.131522] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Microplastic (MP) pollution waste is a global macro problem, and research on MP contamination has been done in marine, freshwater, and terrestrial ecosystems. Preventing MP pollution from hurting them is essential to maintaining coral reefs' ecological and economic benefits. However, the public and scientific communities must pay more attention to MP research on the coral reef regions' distribution, effects, mechanisms, and policy evaluations. Therefore, this review summarizes the global MP distribution and source within the coral reefs. Current knowledge extends the impacts of MP on coral reefs, existing policy, and further recommendations to mitigate MPs contamination on corals are critically analyzed. Furthermore, mechanisms of MP on coral and human health are also highlighted to pinpoint research gaps and potential future studies. Given the escalating plastic usage and the prevalence of coral bleaching globally, there is a pressing need to prioritize research efforts on marine MPs that concentrate on critical coral reef areas. Such investigations should encompass an extensive and crucial understanding of the distribution, destiny, and effects of the MPs on human and coral health and the potential hazards of those MPs from an ecological viewpoint.
Collapse
Affiliation(s)
- Md Naimur Rahman
- Department of Geography and Environmental Science, Begum Rokeya University, Rangpur 5400, Bangladesh
| | | | - Mst Yeasmin Akter
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Salman Sohel
- Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Aniruddha Sarker
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
18
|
El-Sayyad GS, Elfadil D, Gaballah MS, El-Sherif DM, Abouzid M, Nada HG, Khalil MS, Ghorab MA. Implication of nanotechnology to reduce the environmental risks of waste associated with the COVID-19 pandemic. RSC Adv 2023; 13:12438-12454. [PMID: 37091621 PMCID: PMC10117286 DOI: 10.1039/d3ra01052j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
The COVID-19 pandemic is the largest global public health outbreak in the 21st century so far. It has contributed to a significant increase in the generation of waste, particularly personal protective equipment and hazardous medical, as it can contribute to environmental pollution and expose individuals to various hazards. To minimize the risk of infection, the entire surrounding environment should be disinfected or neutralized regularly. Effective medical waste management can add value by reducing the spread of COVID-19 and increasing the recyclability of materials instead of sending them to landfill. Developing an antiviral coating for the surface of objects frequently used by the public could be a practical solution to prevent the spread of virus particles and the inactivation of virus transmission. Relying on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to address this emergency. Here, through a multidisciplinary perspective encompassing various fields such as virology, biology, medicine, engineering, chemistry, materials science, and computer science, we describe how nanotechnology-based strategies can support the fight against COVID-19 well as infectious diseases in general, including future pandemics. In this review, the design of the antiviral coating to combat the spread of COVID-19 was discussed, and technological attempts to minimize the coronavirus outbreak were highlighted.
Collapse
Affiliation(s)
- Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU) Giza Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University New Galala City Suez Egypt
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca Morocco
| | - Mohamed S Gaballah
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University Beijing 100083 PR China
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences Rokietnicka 3 St. 60-806 Poznan Poland
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF) Cairo Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences Rokietnicka 3 St. 60-806 Poznan Poland
- Doctoral School, Poznan University of Medical Sciences 60-812 Poznan Poland
| | - Hanady G Nada
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Department of Microbiology, Faculty of Science, Ain Shams University Cairo Egypt
| | - Mohamed S Khalil
- Agricultural Research Center, Central Agricultural Pesticides Laboratory Alexandria Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University East Lansing MI 48824 USA
| |
Collapse
|
19
|
Ivanoska-Dacikj A, Oguz-Gouillart Y, Hossain G, Kaplan M, Sivri Ç, Ros-Lis JV, Mikucioniene D, Munir MU, Kizildag N, Unal S, Safarik I, Akgül E, Yıldırım N, Bedeloğlu AÇ, Ünsal ÖF, Herwig G, Rossi RM, Wick P, Clement P, Sarac AS. Advanced and Smart Textiles during and after the COVID-19 Pandemic: Issues, Challenges, and Innovations. Healthcare (Basel) 2023; 11:1115. [PMID: 37107948 PMCID: PMC10137734 DOI: 10.3390/healthcare11081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic has hugely affected the textile and apparel industry. Besides the negative impact due to supply chain disruptions, drop in demand, liquidity problems, and overstocking, this pandemic was found to be a window of opportunity since it accelerated the ongoing digitalization trends and the use of functional materials in the textile industry. This review paper covers the development of smart and advanced textiles that emerged as a response to the outbreak of SARS-CoV-2. We extensively cover the advancements in developing smart textiles that enable monitoring and sensing through electrospun nanofibers and nanogenerators. Additionally, we focus on improving medical textiles mainly through enhanced antiviral capabilities, which play a crucial role in pandemic prevention, protection, and control. We summarize the challenges that arise from personal protective equipment (PPE) disposal and finally give an overview of new smart textile-based products that emerged in the markets related to the control and spread reduction of SARS-CoV-2.
Collapse
Affiliation(s)
- Aleksandra Ivanoska-Dacikj
- Research Centre for Environment and Materials, Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Yesim Oguz-Gouillart
- Department of Building and Urban Environment, Innovative Textile Material, JUNIA, 59000 Lille, France
| | - Gaffar Hossain
- V-Trion GmbH Textile Research, Millennium Park 15, 6890 Lustenau, Austria
| | - Müslüm Kaplan
- Department of Textile Engineering, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Çağlar Sivri
- Management Engineering Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, İstanbul 34349, Turkey
| | - José Vicente Ros-Lis
- Centro de Reconocimiento Molecular y Desarrollo Tecnologico (IDM), Unidad Mixta Universitat Politecnica de Valencia, Universitat de Valencia, Departamento de Química Inorgánica, Universitat de València, Doctor Moliner 56, 46100 Valencia, Spain
| | - Daiva Mikucioniene
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 50404 Kaunas, Lithuania
| | - Muhammad Usman Munir
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 50404 Kaunas, Lithuania
| | - Nuray Kizildag
- Institute of Nanotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Pendik, Istanbul 34906, Turkey
| | - Serkan Unal
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Pendik, Istanbul 34906, Turkey
- Faculty of Engineering and Natural Sciences, Material Science and Nanoengineering, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Esra Akgül
- Department of Industrial Design Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Nida Yıldırım
- Trabzon Vocational School, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ayşe Çelik Bedeloğlu
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Ömer Faruk Ünsal
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Gordon Herwig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particle-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Pietro Clement
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particle-Biology Interactions, 9014 St. Gallen, Switzerland
| | - A. Sezai Sarac
- Department of Chemistry, Polymer Science and Technology, Faculty of Sciences and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
20
|
Petrescu DC, Rastegari H, Petrescu-Mag IV, Petrescu-Mag RM. Determinants of proper disposal of single-use masks: knowledge, perception, behavior, and intervention measures. PeerJ 2023; 11:e15104. [PMID: 37041977 PMCID: PMC10083004 DOI: 10.7717/peerj.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Background Although many studies testify to consumer behavior's role in the context of waste-related sustainability objectives, little research examined what people know, think, and feel about the environmental impacts of their personal protective equipment (PPE) or their behavior towards them, in general. Therefore, the present article complements existing information about the public perceptions, knowledge, and behavior of single-use masks in a context where the pandemic has put increasing pressure on waste management public services. From February to June 2020, municipal solid waste increased ten times in Romania. The study identified the factors that predicted the proper disposal of single-use masks and the measures preferred to prevent or minimize the negative impact of single-use mask waste. Method Data from a representative sample of 705 Romanians were collected using a structured questionnaire. The data were analyzed with SPSS and SmartPLS. The Cochran's Q test was run to determine the existence of differences between percentages of people who preferred various measures. Dunn's test with a Bonferroni correction was used to identify the exact pair of groups where the differences were located. The study utilized structural equation models (SEM) based on at least partial squares with SmartPLS software (3.2.8) to investigate causal links between constructs. The model considered that the dependent variable (environmentally friendly behavior: proper disposal of single-use masks) could be influenced by the knowledge, perception, behavior, and demographics variables. Results The findings indicated that knowledge of the type of material of single-use masks had a direct positive (β = 0.173) and significant effect on their proper disposal. The perception of mask waste impact has a negative and significant (β = -0.153, p < 0.001) impact on the proper disposal of single-use masks. This path coefficient illustrates that the worse the perceived impact of single-use masks on waste management activity, the higher the proper disposal of single-use masks. Gender has a positive (β = 0.115) and significant (p < 0.001) effect on the proper disposal of single-use masks. Conclusions It was concluded that the 5Rs waste management approach should be reconsidered for single-use mask waste. For example, "Reuse" and the classic "Recycle" have limited applications since they may lead to virus transmission and possible infection. "Reducing" the use of single-use masks could have repercussions on one's health. Summing up, the study outlined recommendations for effective interventions for the proper disposal of single-use masks from the perspective of behavioral studies.
Collapse
Affiliation(s)
- Dacinia Crina Petrescu
- Department of Hospitality Services, Faculty of Business, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hamid Rastegari
- Department of Rural Development Management, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Ioan Valentin Petrescu-Mag
- Department of Engineering and Environmental Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Cluj, Romania
| | - Ruxandra Malina Petrescu-Mag
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Department of Environmental Science, Faculty of Environmental Science and Engineering, Babes-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania
- Doctoral School “International Relations and Security Studies”, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
21
|
Costa LL, Rangel DF, Zalmon IR. The presence of COVID-19 face masks in the largest hypersaline lagoon of South America is predicted by urbanization level. MARINE POLLUTION BULLETIN 2023; 189:114746. [PMID: 36857992 PMCID: PMC9941313 DOI: 10.1016/j.marpolbul.2023.114746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 05/23/2023]
Abstract
The inadequate disposal of face masks has caused a widespread presence of COVID-19 litter in the environment. We monitored 10 beach arcs along approximately 15 km of the largest hypersaline lagoon of South America looking for face masks during the lockdown (2021) and in the "new normal" (2022) period. Our working hypothesis is that the probability of finding face masks increases with higher urbanization levels, which was estimated by the Human Modification Metric. Approximately 3 × 10-3 face masks m-2 were found on nine of 10 beaches (90 %) during the lockdown. However, this reduced to 1 × 10-4 face masks m-2 found in eight beaches (80 %) after the lockdown. The probability of finding a face mask was significantly higher as urbanization increased (z = 2.799; p = 0.005). This situation imposes the need for a better waste management and environmental education actions, targeting the reduction of direct littering on coastal ecosystem.
Collapse
Affiliation(s)
- Leonardo Lopes Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | | | - Ilana Rosental Zalmon
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Oliveira AM, Patrício Silva AL, Soares AMVM, Barceló D, Duarte AC, Rocha-Santos T. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109308. [PMID: 36643396 PMCID: PMC9832688 DOI: 10.1016/j.jece.2023.109308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
During the first year of the COVID-19 pandemic, facemasks became mandatory, with a great preference for disposable ones. However, the benefits of face masks for health safety are counteracted by the environmental burden related to their improper disposal. An unprecedented influx of disposable face masks entering the environment has been reported in the last two years of the pandemic, along with their implications in natural environments in terms of their biodegradability, released contaminants and ecotoxicological effects. This critical review addresses several aspects of the current literature regarding the (bio)degradation and (eco)toxicity of face masks related contaminants, identifying uncertainties and research needs that should be addressed in future studies. While it is indisputable that face mask contamination contributes to the already alarming plastic pollution, we are still far from determining its real environmental and ecotoxicological contribution to the issue. The paucity of studies on biodegradation and ecotoxicity of face masks and related contaminants, and the uncertainties and uncontrolled variables involved during experimental procedures, are compromising eventual comparison with conventional plastic debris. Studies on the abundance and composition of face mask-released contaminants (microplastics/fibres/ chemical compounds) under pre- and post-pandemic conditions should, therefore, be encouraged, along with (bio)degradation and ecotoxicity tests considering environmentally relevant settings. To achieve this, methodological strategies should be developed to overcome technical difficulties to quantify and characterise the smallest MPs and fibres, adsorbents, and leachates to increase the environmental relevancy of the experimental conditions.
Collapse
Affiliation(s)
- Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Damià Barceló
- Catalan Institute for Water research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101,17003 Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
23
|
Cueva A. Temporal considerations for an effective sampling of personal protective equipment litter derived from the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160047. [PMID: 36356729 PMCID: PMC9640211 DOI: 10.1016/j.scitotenv.2022.160047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Personal protective equipment (PPE) has become a new pollutant derived from the COVID-19 pandemic. Much of the efforts to characterize PPE litter has focused on its spatial distribution (i.e., trying to identify hotspots of PPE litter), however, such efforts have been limited in the temporal domain, which might result in under- or overestimations in annual projections. Here, using 55 continuous days of sampling in an urban and tropical neighborhood in south east Mexico, I show that in order to have a robust and defensible average and variance values it is needed at least 22 days of random sampling. Nonetheless, this minimum number might change in different ecosystems and land use areas of the built environment due to the temporal variability of the human behavior and activities related to the surveyed areas, as well as the influence of weather conditions that might affect the mobility of people. Furthermore, I discuss how it is recommended to report the daily average density of PPE litter (items m-2 day-1) and its variability (i.e., 95 % confidence intervals), rather than only the density of PPE litter (items m-2) in order to facilitate annual estimates of PPE litter disposal.
Collapse
Affiliation(s)
- Alejandro Cueva
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, Mexico.
| |
Collapse
|
24
|
Al Nahian S, Rakib MRJ, Kumar R, Haider SMB, Sharma P, Idris AM. Distribution, characteristics, and risk assessments analysis of microplastics in shore sediments and surface water of Moheshkhali channel of Bay of Bengal, Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158892. [PMID: 36411599 DOI: 10.1016/j.scitotenv.2022.158892] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Microplastic pollution in various ecosystems has gained significant attention across the globe. Due to ubiquitous abundance, terrestrial and aquatic ecosystems at regional scales are polluted via uncontrolled anthropogenic actions. Therefore, this study investigates microplastic pollution and distribution in sediments and surface water of the Moheshkhali channel of Bangladesh, Bay of Bengal, along with their shape, size, color, and polymeric analysis. It has been observed that both sediments and surface water are significantly contaminated with microplastics at 14 sediments and 12 surface water sampling sites. 291 particles of microplastic were observed in two quadrants, separated 10-m away from each other, across 14 sediment sampling sites, with average concentrations registered in the range of 6.66 to 138.33 particles/m2. At the same time, 163 particles were observed across 12 sampling sites in the surface water, ranging from 0 to ~0.1 particles/m3. Various shapes, like films, fragments, fiber/lines, foams, and pellets (resins), were observed extensively in the Moheshkhali channel. Besides, various risk assessments, like contamination factors, polymeric risk assessment, pollution risk index, and pollution load index, were analyzed for each sampling site across the channel. Pollution load index (PLI) of shore sediments and surface water were 2.51 and 1.67, respectively, indicating significant pollution in the Moheshkhali channel. This research investigation provides insight into anthropogenic activities and baseline microplastic pollution in the Moheshkhali channel of Bangladesh, which helps to prepare robust strategies for conservation and management to deal with such environmental issues.
Collapse
Affiliation(s)
- Sultan Al Nahian
- Bangladesh Oceanographic Research Institute, Ramu, Cox's Bazar, Bangladesh.
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India
| | | | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 61431 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
25
|
Kannan G, Mghili B, De-la-Torre GE, Kolandhasamy P, Machendiranathan M, Rajeswari MV, Saravanakumar A. Personal protective equipment (PPE) pollution driven by COVID-19 pandemic in Marina Beach, the longest urban beach in Asia: Abundance, distribution, and analytical characterization. MARINE POLLUTION BULLETIN 2023; 186:114476. [PMID: 36529014 PMCID: PMC9726691 DOI: 10.1016/j.marpolbul.2022.114476] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 05/13/2023]
Abstract
COVID-19 pandemic has enforced the use of personal protective equipment (PPE, masks and gloves). However, the mismanagement of litter are exacerbating the increasing plastic issue worldwide. In the present study, we sampled discarded PPE in 10 sites along Marina Beach, India. We characterized the litter types by chemical analysis techniques. A total of 1154 COVID-19-associated PPE items were found on Marina beach. The highest number of items were face masks (97.9 %) and the mean PPE density in the sites studied was 4 × 10-3 PPE m-2. The results demonstrate that poor solid waste management and lack of awareness are the main causes of pollution at Marina beach. FTIR spectroscopy revealed that face masks and gloves were principally made of polypropylene and latex, respectively. The FTIR spectra also showed signs of chemical degradation. Our results suggest that plastic pollution is increasing, possibly becoming more impactful to marine biota. Beach management measures were discussed.
Collapse
Affiliation(s)
- Gunasekaran Kannan
- Centre for Aquaculture, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India.
| | - Bilal Mghili
- LESCB, URL-CNRST N 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | | | - Prabhu Kolandhasamy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, India
| | - Mayakrishnan Machendiranathan
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | | | - Ayyappan Saravanakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India
| |
Collapse
|
26
|
Mohamadi S, Madadi R, Rakib MRJ, De-la-Torre GE, Idris AM. Abundance and characterization of personal protective equipment (PPE) polluting Kish Island, Persian Gulf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158678. [PMID: 36099950 PMCID: PMC9464308 DOI: 10.1016/j.scitotenv.2022.158678] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/13/2023]
Abstract
Plastic pollution is one of the major environmental threats the world is facing nowadays, which was exacerbated during the COVID-19 pandemic. In particular, multiple reports of single-use plastics driven by the pandemic, namely personal protective equipment (PPE) (e.g., face masks and gloves), contaminating coastal areas have been published. However, most studies focused solely on counting and visually characterizing this type of litter. In the present study, we complement conventional reports by characterizing this type of litter through chemical-analytical techniques. Standardized sampling procedures were carried out in Kish Island, The Persian Gulf, resulting in an average density of 2.34 × 10-4 PPE/m2. Fourier transformed infrared spectroscopy confirmed the polymeric composition of weathered face masks and showed the occurrence of additional absorption bands associated with the photooxidation of the polymer backbone. On the other hand, the three layers of typical surgical face masks showed different non-woven structures, as well as signs of physical degradation (ruptures, cracks, rough surfaces), possibly leading to the release of microplastics. Furthermore, elemental mapping through energy-dispersive X-ray spectroscopy showed that the middle layer of the masks allocated more elements of external origin (e.g., Na, Cl, Ca, Mg) than the outer and inner layers. This is likely to the overall higher surface area of the middle layer. Furthermore, our evidence indicates that improperly disposed PPE is already having an impact on a number of organisms in the study area.
Collapse
Affiliation(s)
- Sedigheh Mohamadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Reyhane Madadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
27
|
De-la-Torre GE, Dioses-Salinas DC, Dobaradaran S, Spitz J, Nabipour I, Keshtkar M, Akhbarizadeh R, Tangestani M, Abedi D, Javanfekr F. Release of phthalate esters (PAEs) and microplastics (MPs) from face masks and gloves during the COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2022; 215:114337. [PMID: 36116495 PMCID: PMC9476362 DOI: 10.1016/j.envres.2022.114337] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 05/11/2023]
Abstract
Marine pollution with personal protective equipment (PPE) has recently gained major attention. Multiple studies reported the release of microplastics (MPs) and chemical contaminants from face masks, the most used PPE type. However, not much is known concerning the release of phthalate esters (PAEs) in aquatic media, as well as the hazard posed by other types of PPE. In the present study, we investigated the release of MPs and PAEs from face masks and gloves recovered from the environment. The results indicated that both PPEs release MPs comparable to the literature, but higher concentrations were presented by face masks. In turn, the total concentration of six PAEs was higher in gloves than in face masks. The release of these contaminants is exacerbated over time. The present study allows researchers to understand the contribution of PPE to marine pollution while accounting for gloves, a generally overlooked source of contaminants.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.
| | - Jörg Spitz
- Akademie Fur Menschliche Medizin GmbH, Schlangenbad, Germany
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mozhgan Keshtkar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahbubeh Tangestani
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Delaram Abedi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Javanfekr
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
28
|
Dioses-Salinas DC, Pizarro-Ortega CI, Dobaradaran S, Ben-Haddad M, De-la-Torre GE. Face masks invading protected areas: Risks and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157636. [PMID: 35905957 PMCID: PMC9316628 DOI: 10.1016/j.scitotenv.2022.157636] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 05/05/2023]
Abstract
Among the indirect environmental impacts generated by the global COVID-19 pandemic, contamination with personal protective equipment (PPE), like face masks, may be one of the most relevant ones. PPE has been found in multiple aquatic, marine, and terrestrial environments, including places of absolute relevancy to biodiversity conservation, such as protected areas (PAs). Here, a brief report of the presence of PPE in six PAs of Peru is presented. PPE pollution in PAs consisted mainly of single-use and reusable face masks, as well as plastics associated with PAs, such as KN95 respirator wrappings. The mean PPE density was estimated as 1.32 × 10-3 PPE/m2. FTIR spectroscopy confirmed that face masks and wrappers mainly consisted of polypropylene and polyethylene, two of the most commonly available synthetic polymers. The material was poorly degraded according to their FTIR spectra, possibly suggesting that they were discarded recently. The recent ban on single-use plastic in Peruvian PAs is regarded as a great step forward toward the efforts made to preserve these invaluable places. However, these measures seemed insufficient to prevent PPE and other types of litter from contaminating areas of ecological importance. Considering the current scenario, several recommendations were proposed to be implemented in PAs in order to prevent PPE from becoming a new plastic issue to tackle. These recommendations are expected to also serve for future events where the use of single-use plastics becomes inevitable, like global pandemics.
Collapse
Affiliation(s)
| | | | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Morocco
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| |
Collapse
|
29
|
Al Nahian S, Rakib MRJ, Haider SMB, Kumar R, Walker TR, Khandaker MU, Idris AM. Baseline marine litter abundance and distribution on Saint Martin Island, Bay of Bengal, Bangladesh. MARINE POLLUTION BULLETIN 2022; 183:114091. [PMID: 36087485 DOI: 10.1016/j.marpolbul.2022.114091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Baseline marine litter abundance and distribution on Saint Martin Island, Bay of Bengal, were assessed. Seventy-two transects (100-150 m) along 12 km of coastline were surveyed for litter items every two weeks for two months. The most abundant items were polythene bags, food wrappers, plastic bottles/caps, straws, styrofoam, plastic cups, plastic fragments, fishing nets, clothes, and rubber buoys. Tourism, local markets, hotels, domestic waste, and fishing activities were primary sources of marine litter. According to the mean clean coast index (CCI), all transects were clean, of which 11.3 % and 14.1 % of sandy beaches and rocky shores with sandy beaches were reported dirty, respectively. Northern Saint Martin Island comprised sandy beaches (2.8 %) and was extremely dirty. In addition, plastic abundance index (PAI) analysis showed that 24 % of sites, out of 72 sites, were under "very high abundance", 33 % were "high abundance", 33 % showed "moderate abundance", and 4 % were classified as "low abundance". Establishing baseline results of marine litter abundance and distribution on Saint Martin Island may help improve island conservation and mitigation strategies (e.g., improved waste management, beach cleaning activities to raise public awareness, local government litter reduction policies, and increase local pro-environmental behavioral change).
Collapse
Affiliation(s)
- Sultan Al Nahian
- Bangladesh Oceanographic Research Institute, Ramu, Cox's Bazar, Bangladesh.
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | | | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar 803116, India
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia; Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University, DIU Rd, Dhaka 1341, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 61431 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
30
|
Sajorne RE, Cayabo GDB, Madarcos JRV, Madarcos KG, Omar DM, Ardines LB, Sabtal SA, Mabuhay-Omar JA, Cheung V, Creencia LA, Bacosa HP. Occurrence of COVID-19 personal protective equipment (PPE) litters along the eastern coast of Palawan Island, Philippines. MARINE POLLUTION BULLETIN 2022; 182:113934. [PMID: 35870359 PMCID: PMC9273530 DOI: 10.1016/j.marpolbul.2022.113934] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 05/19/2023]
Abstract
The emergence of the COVID-19 pandemic has caused worldwide health constraints. This study was conducted to establish a baseline monitoring survey to describe the distribution of PPE litters during the COVID-19 pandemic in the province of Palawan, Philippines. A total of 386 COVID-19-related PPE items were present in 83 % of coastal sampling sites with over a cumulative area of 48,200 m2, with a density of 8 × 10-3 items m-2. The facemask (98 %; n = 377) was the primary type of PPE, followed by face shield (2 %; n = 9). Meanwhile, the daily density of PPE litters in San Manuel, Puerto Princesa ranged from 0 to 9.9 × 10-2 items m-2, with a mean density of 8 × 10-3 items m-2. The accumulation rates of PPE items ranged from 3.27 × 10-1 items to 1.143 items d-1, with an average rate of 7.29 × 10-1 items d-1.
Collapse
Affiliation(s)
- Recca E Sajorne
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa Campus, Puerto Princesa, Palawan 5300, Philippines.
| | - Genese Divine B Cayabo
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa Campus, Puerto Princesa, Palawan 5300, Philippines
| | - John Roderick V Madarcos
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa Campus, Puerto Princesa, Palawan 5300, Philippines
| | - Karen G Madarcos
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa Campus, Puerto Princesa, Palawan 5300, Philippines
| | - Dawin M Omar
- College of Engineering, Architecture and Technology, Palawan State University, Palawan 5300, Philippines
| | - Lucio B Ardines
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa Campus, Puerto Princesa, Palawan 5300, Philippines
| | - Serdon A Sabtal
- Main Campus Bataraza Extension (MCBE), Mindanao State University-Main Campus, Marawi, Lanao del Sur 9700, Philippines
| | - Jhonamie A Mabuhay-Omar
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa Campus, Puerto Princesa, Palawan 5300, Philippines
| | - Victoria Cheung
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, South West England PL4 8AA, United Kingdom
| | - Lota A Creencia
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa Campus, Puerto Princesa, Palawan 5300, Philippines
| | - Hernando P Bacosa
- Environmental Science Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan, Lanao del Norte 9200, Philippines
| |
Collapse
|
31
|
Gunasekaran K, Mghili B, Saravanakumar A. Personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in coastal environment, Southeast Coast of India. MARINE POLLUTION BULLETIN 2022; 180:113769. [PMID: 35609465 PMCID: PMC9114149 DOI: 10.1016/j.marpolbul.2022.113769] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 05/09/2023]
Abstract
The rise in the use of single-use plastics and personal protective equipment (PPE) has increased plastic waste in the marine environment. In this study, we surveyed the presence of PPE (face masks and gloves) discharged in 6 beaches along the coast of India. A total of 496 PPE were counted with an average density of 1.08 × 10-3 PPE m-2. The PPE density found was comparable to previous studies. Face masks were the most recorded type of PPE (98.39%), with gloves accounting for only 1.61% of the total. However, a significant reduction in the appearance of PPE was recorded on all six beaches, likely due to the increase in vaccination rates. The most contaminated places were the beaches with recreational activities + fishing. It has been noticed that the lack of awareness of environmental pollution and the negligence of the population and the mismanagement of municipal waste are the main causes of beach pollution by PPE. This study confirms the potential threat of PPE to terrestrial and aquatic organisms of multiple taxa in India, but further studies are needed to quantify the impact of this type of waste on marine animals.
Collapse
Affiliation(s)
- Kannan Gunasekaran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Science, Annamalai University, Parangipettai 608502, Tamil Nadu, India; Centre for Aquaculture, Sathyabama Institute of Science and Technology, Chennai 600019, India
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Ayyappan Saravanakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Science, Annamalai University, Parangipettai 608502, Tamil Nadu, India
| |
Collapse
|
32
|
Al Nahian S, Rakib MRJ, Haider SMB, Kumar R, Mohsen M, Sharma P, Khandaker MU. Occurrence, spatial distribution, and risk assessment of microplastics in surface water and sediments of Saint Martin Island in the Bay of Bengal. MARINE POLLUTION BULLETIN 2022; 179:113720. [PMID: 35561514 DOI: 10.1016/j.marpolbul.2022.113720] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/09/2022] [Accepted: 04/29/2022] [Indexed: 05/14/2023]
Abstract
Microplastics (MPs) are emerging contaminants in aquatic and terrestrial ecosystems and have caused substantial concern worldwide. This study surveyed the presence of MPs in surface water and sediments across the coastal area of Saint Martin Island in the Bay of Bengal. MPs were collected following the standard protocol and identified as various types like expanded polystyrene, foam, filaments, fragments, lines, fibres, and paint flakes. Total MPs pollution in beach sediment was 317 particles/kg across 14 sampling sites, varied from 11 to 10589 particles/m2 of dry sediment and 0.95 particles/m3, having ~2 to 19 particles/30 min trawl in coastal surface water samples. Most of the frequent MPs in beach sediments ranged from 1.0 to 2.0 mm, whereas the fragments were predominant in sediment and surface water samples. MPs distribution revealed that different shapes were dominant at different sites within the Island. The calculated pollution risk index due to the presence of MPs indicated that the sediment and surface water samples were under the low-risk category. However, polymeric risk assessment and contamination factors suggest that the coastline is significantly polluted, as high pollution load indices (PLI >1) were observed for sediments and coastal surface water samples. This work provides the detailed MPs data in the coastal environment of Saint Martin Island for the first time; hence it may be helpful to develop proper strategies to deal with environmental problems.
Collapse
Affiliation(s)
- Sultan Al Nahian
- Environmental Oceanography and Climate Division, Bangladesh Oceanographic Research Institute, Cox's Bazar, Bangladesh.
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Sayeed Mahmood Belal Haider
- Environmental Oceanography and Climate Division, Bangladesh Oceanographic Research Institute, Cox's Bazar, Bangladesh
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India
| | - Mohamed Mohsen
- Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
33
|
De-la-Torre GE, Dioses-Salinas DC, Dobaradaran S, Spitz J, Keshtkar M, Akhbarizadeh R, Abedi D, Tavakolian A. Physical and chemical degradation of littered personal protective equipment (PPE) under simulated environmental conditions. MARINE POLLUTION BULLETIN 2022; 178:113587. [PMID: 35397345 DOI: 10.1016/j.marpolbul.2022.113587] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/06/2023]
Abstract
Investigations of the physicochemical degradation of personal protective equipment (PPE) under controlled environmental conditions are largely lacking. Here the chemical and physical changes of face masks and gloves (recovered from the marine environment) were evaluated after exposure time up to 60 days of simulated environmental conditions. The results suggested that the polymer backbone of PPE suffers typical changes induced by sun exposure. Changes in the intensity of diffraction peaks indicated shifts in the crystallinity of PPE, possibly altering their thermal behavior. Signs of physical degradation in PPE, such as ruptures, and rough surfaces, which exacerbated over time were also detected. Additionally, signals of some elements of concern, such as Cu and Mo, and elements typically found in seawater were detected. The results of this study allowed us to better understand the degradation of typical PPE items in the marine environment, ultimately resulting in the release of microplastics and chemical contaminants.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.
| | - Jörg Spitz
- Akademie fur Menschliche Medizin GmbH, Schlangenbad, Germany
| | - Mozhgan Keshtkar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Delaram Abedi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Abbasali Tavakolian
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
34
|
Ribeiro VV, De-la-Torre GE, Castro ÍB. COVID-19-related personal protective equipment (PPE) contamination in the highly urbanized southeast Brazilian coast. MARINE POLLUTION BULLETIN 2022; 177:113522. [PMID: 35299146 PMCID: PMC8907012 DOI: 10.1016/j.marpolbul.2022.113522] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 05/05/2023]
Abstract
This study aimed to report personal protective equipment (PPE) contamination in Santos beaches (Brazil) using standardized procedures for the first time while comparing two periods to understand the progression of PPE contamination. The occurrence of PPE items was ubiquitous in all sampled sites, although the densities were relatively low compared to those in other parts of the world. Unlike previous studies, reusable face masks were the most common type of PPE. PPE density in the studied areas was similar in both sampling seasons, probably because of the influence of tourism, urbanization, and local hydrodynamic aspects. PPE items can release microfibers into the aquatic environment and pose entanglement hazards to marine biota. A wider monitoring of PPE pollution, accompanied by surveys on PPE usage and behavior, as well as chemical characterization of the discarded PPE items, is needed to fully understand this unprecedented form of plastic pollution.
Collapse
Affiliation(s)
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | |
Collapse
|
35
|
Ribeiro VV, De-la-Torre GE, Castro ÍB. COVID-19-related personal protective equipment (PPE) contamination in the highly urbanized southeast Brazilian coast. MARINE POLLUTION BULLETIN 2022; 177:113522. [PMID: 35299146 DOI: 10.1016/2fj.marpolbul.2022.113522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 05/24/2023]
Abstract
This study aimed to report personal protective equipment (PPE) contamination in Santos beaches (Brazil) using standardized procedures for the first time while comparing two periods to understand the progression of PPE contamination. The occurrence of PPE items was ubiquitous in all sampled sites, although the densities were relatively low compared to those in other parts of the world. Unlike previous studies, reusable face masks were the most common type of PPE. PPE density in the studied areas was similar in both sampling seasons, probably because of the influence of tourism, urbanization, and local hydrodynamic aspects. PPE items can release microfibers into the aquatic environment and pose entanglement hazards to marine biota. A wider monitoring of PPE pollution, accompanied by surveys on PPE usage and behavior, as well as chemical characterization of the discarded PPE items, is needed to fully understand this unprecedented form of plastic pollution.
Collapse
Affiliation(s)
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | |
Collapse
|
36
|
Mvovo I, Magagula HB. Prevalence of Covid-19 personal protective equipment in aquatic systems and impact on associated fauna. ENVIRONMENT SYSTEMS & DECISIONS 2022; 42:328-337. [PMID: 35342685 PMCID: PMC8941298 DOI: 10.1007/s10669-022-09851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 11/18/2022]
Abstract
The use and undesignated disposal of COVID-19 related personal protective equipments (PPEs) has resulted in a spike in the global mismanagement of plastic waste. Moreover, the SARS-CoV-2 pandemic has not only affected the socio-economic state of the world but is contributing significantly to the already existing aquatic pollution dilemma. Consequently, PPE litter is an emerging pollutant in aquatic ecosystems that warrants significant attention. This review endeavoured to present a synopsis of the global mismanagement of PPE waste and highlight the devastating ramifications of the ensuing environment. The paper reveals that PPE litter is indeed negatively impacting environmental systems on varying levels around the globe. Furthermore, peak plastic loads are transported by Asian rivers and are deposited into the Pacific and Indian Oceans. Beaches and seabed are the major sinks of COVID-19 PPE litter making benthic organisms to be the most vulnerable. More studies need to be undertaken to monitor aquatic resources to get a detailed overview of COVID-19 PPE litter in the environment.
Collapse
Affiliation(s)
- Iviwe Mvovo
- Department of Geography and Environmental Science, Faculty of Science and Agriculture, University of Fort Hare, King Williams Town Road, Private Bag X1314, Alice, 5700 South Africa
| | - Hezekiel B. Magagula
- Department of Geography and Environmental Science, Faculty of Science and Agriculture, University of Fort Hare, King Williams Town Road, Private Bag X1314, Alice, 5700 South Africa
| |
Collapse
|
37
|
Pizarro-Ortega CI, Dioses-Salinas DC, Fernández Severini MD, Forero López AD, Rimondino GN, Benson NU, Dobaradaran S, De-la-Torre GE. Degradation of plastics associated with the COVID-19 pandemic. MARINE POLLUTION BULLETIN 2022; 176:113474. [PMID: 35231785 PMCID: PMC8866080 DOI: 10.1016/j.marpolbul.2022.113474] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
The ongoing COVID-19 pandemic has resulted in an unprecedented form of plastic pollution: personal protective equipment (PPE). Numerous studies have reported the occurrence of PPE in the marine environment. However, their degradation in the environment and consequences are poorly understood. Studies have reported that face masks, the most abundant type of PPE, are significant sources of microplastics due to their fibrous microstructure. The fibrous material (mostly consisting of polypropylene) exhibits physical changes in the environment, leading to its fracture and detachment of microfibers. Most studies have evaluated PPE degradation under controlled laboratory conditions. However, in situ degradation experiments, including the colonization of PPE, are largely lacking. Although ecotoxicological studies are largely lacking, the first attempts to understand the impact of MPs released from face masks showed various types of impacts, such as fertility and reproduction deficiencies in both aquatic and terrestrial organisms.
Collapse
Affiliation(s)
| | | | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Guido Noé Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria (X5000HUA), Córdoba, Argentina
| | - Nsikak U Benson
- Department of Chemistry, Covenant University, Km 10 Idiroko Road, Ota, Nigeria
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| |
Collapse
|