1
|
Ren J, Liu Y, Liu X, Zhao J, Zhang T. Diurnal temperature variation exacerbates the effects of phenanthrene on Trochus pyramis Born in a warmer ocean. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137068. [PMID: 39756319 DOI: 10.1016/j.jhazmat.2024.137068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Under global change scenarios, rising seawater temperature could affect the toxicity of chemical pollutants on marine organisms. Tropical species inhabiting coastal areas are especially vulnerable to diurnal temperature variation (DTV), yet the impacts of DTV on pollutant toxicity remains obscured. This study evaluated how a 4℃ DTV affects the toxicity of phenanthrene (PHE) on the physiological traits of Trochus pyramis, a key herbivorous gastropod in coral reef ecosystems, under both control (28°C) and elevated temperature (31°C) conditions. T. pyramis were exposed to PHE (1 and 10 μg/L) across different temperature scenarios for 14 days. Subsequently, PHE bioaccumulation, heat tolerance, antioxidant responses, and energy budgets of T. pyramis were assessed. The results showed that PHE had minimal effect on T. pyramis under DTV at 28°C, likely due to enhanced antioxidant responses and adaptive energy supply strategies induced by DTV. Conversely, DTV exacerbated the deleterious effect of PHE at 31°C, particularly under exposure to high-concentration PHE (10 μg/L), leading to reduced heat tolerance, suppressed antioxidant responses, and disturbed energy metabolism. These results underscore the necessity of incorporating DTV into PHE risk assessments for coral reef ecosystems in the context of global warming.
Collapse
Affiliation(s)
- Jingying Ren
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongliang Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China
| | - Xin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China.
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China.
| |
Collapse
|
2
|
Lv X, Deng Q, Chen L, Wang X, Han Y, Wu G, Liu Y, Sun H, Li X, He J, Liu X, Yang D, Zhao J. Ocean acidification aggravates the toxicity of deltamethrin in Haliotis discus hannai: Insights from immune response, histopathology and physiological responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107139. [PMID: 39515240 DOI: 10.1016/j.aquatox.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Ocean acidification (OA) and other environmental factors can collectively affect marine organisms. Deltamethrin (DM), a type II pyrethroid insecticide, has been widely detected in coastal and estuarine areas, while little attention has been given to the combined effects of DM and OA. In this study, Haliotis discus hannai was exposed to three pH levels (8.1, 7.7 and 7.4) and three DM nominal concentrations (0 μg/L, 0.6 μg/L and 6 μg/L) for 14 and 28 days. The results indicated that experimental acidification and/or DM exposure led to impaired immune function and pathological damage. Additionally, acidified conditions and DM exposure induced oxidative stress, and gills are more sensitive than digestive glands. With increasing pCO2 and DM nominal concentrations, superoxide dismutase (SOD) activity decreased, whereas catalase (CAT) and glutathione S-transferase (GST) activities increased in the gills. Moreover, the expression levels of Toll-like receptor (TLR) pathway-related genes were upregulated after exposure. Integrated biomarker response (IBR) analysis proved that acidified conditions and/or DM detrimentally affected the overall fitness of H. discus hannai, and co-exposure to experimental acidification and DM was the most stressful condition. This study emphasizes the necessity of incorporating OA in future pollutant environmental assessments to better elucidate the risks of environmental disturbance.
Collapse
Affiliation(s)
- Xiaojing Lv
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qinyou Deng
- Shandong Marine Resource and Environment Research Institute, Yantai, Shandong 264006, PR China
| | - Lizhu Chen
- Shandong Marine Resource and Environment Research Institute, Yantai, Shandong 264006, PR China
| | - Xin Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Guiqing Wu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yongliang Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Haiyue Sun
- Shandong Marine Resource and Environment Research Institute, Yantai, Shandong 264006, PR China
| | - Xuan Li
- Shandong Marine Resource and Environment Research Institute, Yantai, Shandong 264006, PR China
| | - Jinxia He
- Shandong Marine Resource and Environment Research Institute, Yantai, Shandong 264006, PR China
| | - Xiangquan Liu
- Shandong Marine Resource and Environment Research Institute, Yantai, Shandong 264006, PR China.
| | - Dinglong Yang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| |
Collapse
|
3
|
deVries MS, Ly N, Ebner C, Hallisey R. From Individual Calcifiers to Ecosystem Dynamics: Ocean Acidification Effects on Urchins and Abalone. Integr Comp Biol 2024; 64:290-305. [PMID: 38986515 DOI: 10.1093/icb/icae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
A central question in ecology is to what extent do trophic interactions govern the structure and function of communities? This question is becoming more pressing as trophic interactions shift with rapid climate change. Sea urchins and abalone are key invertebrates in the habitats where they reside. Sea urchins are critical members of exemplar trophic cascades in kelp forests due to their impact on kelp establishment and maintenance; yet their populations are controlled by predators, such as sea otters and sunflower sea stars. Abalone compete with urchins for macroalgal food resources and therefore can help regulate urchin populations in kelp forests. Given that both urchin tests and abalone shells used for predator defense are comprised of calcium carbonate, much research has been conducted on the impacts of ocean acidification (OA) on these calcified structures. A growing body of literature has shown that urchin tests are less calcified and break with less force under OA conditions. Less is known about abalone, but their shells also appear to respond negatively to OA. Using kelp forest communities as exemplar ecosystems, we discuss the morphological, biomechanical, and physiological responses to OA in urchins and abalone and consider how these individual level responses scale to trophic interactions and ultimately whole ecosystem processes. Although the impacts of OA on the calcified structures used for defense have been well studied, calcified mechanisms for food consumption, such as the Aristotle's lantern of urchins, are much less understood. Thus, examining both the feeding and defense sides of trophic interactions would greatly improve our understanding of OA responses across individual to ecosystem scales. More generally, measurements of morphological, biomechanical, and physiological responses to OA can be made in individuals to help predict higher level ecological responses, which would greatly contribute to broader predictions of whole ecosystem responses to OA.
Collapse
Affiliation(s)
- Maya S deVries
- Department of Biological Sciences, San José State University, San Jose, CA 95192, USA
| | - Nhi Ly
- Department of Biological Sciences, San José State University, San Jose, CA 95192, USA
| | - Chase Ebner
- Moss Landing Marine Laboratories, San José State University, Moss Landing, CA 95039, USA
| | - Ryan Hallisey
- Department of Biological Sciences, San José State University, San Jose, CA 95192, USA
| |
Collapse
|
4
|
Schertenleib KSH, Davey T, Taylor D, O'Connor NE. Key benthic species are affected by predicted warming in winter but show resistance to ocean acidification. Ecol Evol 2024; 14:e70308. [PMID: 39296734 PMCID: PMC11410397 DOI: 10.1002/ece3.70308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/10/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024] Open
Abstract
The effects of climate change on coastal biodiversity are a major concern because altered community compositions may change associated rates of ecosystem functioning and services. Whilst responses of single species or taxa have been studied extensively, it remains challenging to estimate responses to climate change across different levels of biological organisation. Studies that consider the effects of moderate realistic near-future levels of ocean warming and acidification are needed to identify and quantify the gradual responses of species to change. Also, studies including different levels of biological complexity may reveal opportunities for amelioration or facilitation under changing environmental conditions. To test experimentally for independent and combined effects of predicted near-future warming and acidification on key benthic species, we manipulated three levels of temperature (winter ambient, +0.8 and +2°C) and two levels of pco 2 (ambient at 450 ppm and elevated at 645 ppm) and quantified their effects on mussels and algae growing separately and together (to also test for inter-specific interactions). Warming increased mussel clearance and mortality rates simultaneously, which meant that total biomass peaked at +0.8°C. Surprisingly, however, no effects of elevated pco 2 were identified on mussels or algae. Moreover, when kept together, mussels and algae had mutually positive effects on each other's performance (i.e. mussel survival and condition index, mussel and algal biomass and proxies for algal productivity including relative maximum electron transport rate [rETRmax], saturating light intensity [I k] and maximum quantum yield [F v/F m]), independent of warming and acidification. Our results show that even moderate warming affected the functioning of key benthic species, and we identified a level of resistance to predicted ocean acidification. Importantly, we show that the presence of a second functional group enhanced the functioning of both groups (mussels and algae), independent of changing environmental conditions, which highlights the ecological and potential economic benefits of conserving biodiversity in marine ecosystems.
Collapse
Affiliation(s)
| | - Tallulah Davey
- Discipline of ZoologySchool of Natural Sciences, Trinity College DublinDublin 2Ireland
| | - David Taylor
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Nessa E. O'Connor
- Discipline of ZoologySchool of Natural Sciences, Trinity College DublinDublin 2Ireland
| |
Collapse
|
5
|
Cubillos VM, Salas-Yanquin LP, Mardones-Toledo DA, Ramírez-Kuschel EF, Paredes-Molina FJ, Büchner-Miranda JA, Chaparro OR. Location also matters: The oxidative response of the intertidal purple mussel Perumytilus purpuratus during tidal cycle. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106562. [PMID: 38870558 DOI: 10.1016/j.marenvres.2024.106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
For sessile intertidal organisms, periods of low tide impose both cellular and physiological challenges that can determine bathymetric distribution. To understand how intertidal location influences the cellular response of the bivalve Perumytilus purpuratus during the tidal cycle (immersion-emersion-immersion), specimens from the upper intertidal (UI) and lower intertidal (LI) of bathymetric distribution were sampled every 2 h over a 10-h period during a summer tidal cycle. Parallelly, organisms from the UI and LI were reciprocally transplanted and sampled throughout the same tidal cycle. Levels of oxidative damage (lipid peroxidation and protein carbonyls) as well as total antioxidant capacity and total carotenoids were evaluated as cellular responses to variations in environmental conditions throughout the tidal cycle. The results indicate that both the location in the intertidal zone (UI/LI), the level of aerial exposure, and the interaction of both factors are determinants of oxidative levels and total antioxidant capacity of P. purpuratus. Although oxidative damage levels are triggered during the low tide period (aerial exposure), it is the UI specimens that induce higher levels of lipid peroxidation compared to those from the LI, which is consistent with the elevated levels of total antioxidant capacity. On the other hand, organisms from the LI transplanted to the UI increase the levels of lipid peroxidation but not the levels of protein carbonyls, a situation that is also reflected in higher levels of antioxidant response and total carotenoids than those from the UI transplanted to the LI. The bathymetric distribution of P. purpuratus in the intertidal zone implies differentiated responses between organisms of the lower and upper limits, influenced by their life history. A high phenotypic plasticity allows this mussel to adjust its metabolism to respond to abrupt changes in the surrounding environmental conditions.
Collapse
Affiliation(s)
- V M Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - L P Salas-Yanquin
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - D A Mardones-Toledo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - E F Ramírez-Kuschel
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - F J Paredes-Molina
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - J A Büchner-Miranda
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - O R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Cui D, Zou W, Wu B, Jiao R, Zhang S, Zhao T, Zhan Y, Chang Y. Interactive effects of chronic ocean acidification and warming on the growth, survival, and physiological responses of adults of the temperate sea urchin Strongylocentrotusintermedius. CHEMOSPHERE 2024; 356:141907. [PMID: 38588896 DOI: 10.1016/j.chemosphere.2024.141907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
To investigate the interactive effects of chronic ocean acidification and warming (OAW) on the growth, survival, and physiological responses of sea urchins, adults of the temperate sea urchin Strongylocentrotus intermedius were incubated separately/jointly in acidic (ΔpHNBS = -0.5 units) and thermal (ΔT = +3.0 °C) seawater for 120 days under lab-controlled conditions based on the projected ocean pH and temperature for 2100 put forward by the Intergovernmental Panel on Climate Change (IPCC). Survival rate (SR), average food consumption rate (FCR), gut index (GuI), specific growth rate (SGR), digestive capability, energy production, and antioxidant capability were subsequently determined. The results showed that 1) the SR, FCR, GuI and SGR decreased sharply under OAW conditions. Significant interactive effects of OAW on SR and SGR were observed at 120 days post-incubation (dpi), and on FCR this occurred at 90 dpi. 2) OAW altered the activities of both digestive and antioxidant enzymes. There were significant interaction effects of OAW on the activities of amylase, trehalase, and superoxide dismutase. 3) The relative gene expression levels and activities of key enzymes involved in glycometabolism pathways (i.e., glycolysis and the tricarboxylic acid cycle) were significantly affected by OAW, resulting in an alteration of the total ATP content in the sea urchins. Interaction effects of OAW were observed in both relative gene expression and the activity of enzymes involved in glycolysis (hexokinase), the transformation of glycolysis end-products (lactate dehydrogenase), the tricarboxylic acid cycle (citrate synthetase), and ATP production (Na+/K+-ATPase). The data from this study will enrich our knowledge concerning the combined effects of global climate change on the survival, growth, and physiological responses of echinoderms.
Collapse
Affiliation(s)
- Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Wenjing Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Boqiong Wu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Renhe Jiao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Shuxin Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning, 116029, PR China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
7
|
Sun T, Peng S, Tu F, Xu P, Ye L, Zhao J, Dong Z. Physiological and transcriptomic responses of Aurelia coerulea polyps to acidified seawater conditions. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106441. [PMID: 38484650 DOI: 10.1016/j.marenvres.2024.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Scyphozoan jellyfish, known for their evolutionary position and ecological significance, are thought to exhibit relatively notable resilience to ocean acidification. However, knowledge regarding the molecular mechanisms underlying the scyphozoan jellyfish response to acidified seawater conditions is currently lacking. In this study, two independent experiments were conducted to determine the physiological and molecular responses of moon jellyfish (Aurelia coerulea) polyps to within- and trans-generational exposure to two reduced pH treatments (pH 7.8 and pH 7.6). The results revealed that the asexual reproduction of A. coerulea polyps significantly declined under acute exposure to pH 7.6 compared with that of polyps at ambient pH conditions. Transcriptomics revealed a notable upregulation of genes involved in immunity and cytoskeleton components. In contrast, genes associated with metabolism were downregulated in response to reduced pH treatments after 6 weeks of within-generational acidified conditions. However, reduced pH treatments had no significant influence on the asexual reproduction of A. coerulea polyps after exposure to acidified conditions over a total of five generations, suggesting that A. coerulea polyps may acclimate to low pH levels. Transcriptomics revealed distinct gene expression profiles between within- and trans-generational exposure groups to two reduced pH treatments. The offspring polyps of A. coerulea subjected to trans-generational acidified conditions exhibited both upregulated and downregulated expression of genes associated with metabolism. These physiological and transcriptomic characteristics of A. coerulea polyps in response to elevated CO2 levels suggest that polyps produced asexually under acidified conditions may be resilient to such conditions in the future.
Collapse
Affiliation(s)
- Tingting Sun
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Saijun Peng
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangzheng Tu
- Marine Science and Technology College, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| | - Pengzhen Xu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijing Ye
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| |
Collapse
|
8
|
Zhang T, Wang X, Zhang Q, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Zhao J. Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168941. [PMID: 38056652 DOI: 10.1016/j.scitotenv.2023.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Coastal areas are confronted with compounding threats arising from both climatic and non-climatic stressors. Antibiotic pollution and ocean acidification are two prevalently concurrent environmental stressors. Yet their interactive effects on marine biota have not been investigated adequately and the compound hazard remain obscure. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on A. irradians irradians were determined from multidimensional bio-responses, including energetic physiological traits as well as the molecular underpinning (metabolome and expressions of key genes). Results showed that multiple antibiotics predominantly enhanced the process of DNA repair and replication via disturbing the purine metabolism pathway. This alternation is perhaps to cope with the DNA damage induced by oxidative stress. Ocean acidification mainly disrupted energy metabolism and ammonia metabolism of the scallops, as evidenced by the increased ammonia excretion rate, the decreased O:N ratio, and perturbations in amino acid metabolism pathways. Moreover, the antagonistic effects of multiple antibiotics and ocean acidification caused alternations in the relative abundance of neurotransmitter and gene expression of neurotransmitter receptors, which may lead to neurological disorders in scallops. Overall, the revealed alternations in physiological traits, metabolites and gene expressions provide insightful information for the health status of bivalves in a natural environmental condition under the climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
9
|
Zhao X, Guo Y, Li J, Ma Z, Yu G, Qin C. Effects of Light Color on the Growth, Feeding, Digestion, and Antioxidant Enzymes of Tripneustes gratilla (Linnaeus, 1758). BIOLOGY 2024; 13:65. [PMID: 38392284 PMCID: PMC10886290 DOI: 10.3390/biology13020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
To study the effects of light color on sea urchin (Tripneustes gratilla), blue light (B, λ450nm), yellow light (Y, λ585-590nm), red light (R, λ640nm), green light (G, λ510nm), white light (W, λ400-780nm), and darkness (H) groups were established in a recirculating seawater aquaculture system. Six different LED light color treatment groups with a photoperiod of 12 L:12 D were tested for 30 days to investigate the effects of different light colors on the feeding, growth, and enzyme activities of T. gratilla (142.45 ± 4.36 g). We found that using different LED light colors caused significantly different impacts on the feeding, growth, and enzyme activity of T. gratilla. Notably, the sea urchins in group B exhibited better growth, with a weight gain rate of 39.26%, while those in group R demonstrated poorer growth, with a weight gain rate of only 26%. The feeding status differed significantly (p < 0.05) between groups B and R, with group B consuming the highest daily intake (6.03 ± 1.69 g) and group R consuming the lowest (4.54 ± 1.26 g). Throughout the three phases, there was no significant change in the viability of the α-amylase (p > 0.05). Conversely, the pepsin viability significantly increased (p < 0.05) in group B. The lipase viability consistently remained at the lowest level, with no notable differences between group W and group B. In group R, both the α-amylase and pepsin viabilities remained lower, whereas the lipase viability was noticeably greater in each phase than in group B (p < 0.05). Among the antioxidant enzymes, group R exhibited a trend of initial increase followed by decreases in catalase, superoxide dismutase, and glutathione peroxidase activities, particularly during the third stage (15-30 days), during which a significant decrease in antioxidant enzyme activity was observed (p < 0.05). Taken together, these findings suggest that blue light positively affects the growth, feeding, digestion, and antioxidant capacity of T. gratilla in comparison with those in other light environments, whereas red light had an inhibitory effect. Furthermore, T. gratilla is a benthic organism that lives on shallow sandy sea beds. Thus, as short wavelengths of blue and green light are more widely distributed on the seafloor, and long wavelengths of red light are more severely attenuated on the seafloor, shorter wavelengths of light promote the growth of bait organisms of sea urchins, which provide better habitats for T. gratilla.
Collapse
Affiliation(s)
- Xinye Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Jiayang Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chuanxin Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
10
|
Zhang T, Wang X, Zhang Q, Li K, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Yuan X, Zhao J. Intrinsic and extrinsic pathways of apoptosis induced by multiple antibiotics residues and ocean acidification in hemocytes of scallop Argopecten irradians irradians: An interactionist perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115806. [PMID: 38091672 DOI: 10.1016/j.ecoenv.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The increasing prevalence of antibiotics in seawater across global coastal areas, coupled with the ocean acidification induced by climate change, present a multifaceted challenge to marine ecosystems, particularly impacting the key physiological processes of marine organisms. Apoptosis is a critical adaptive response essential for maintaining cellular homeostasis and defending against environmental threats. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on apoptosis and the underlying mechanisms in hemocytes of A. irradians irradians were determined through flow cytometry analysis, comet assay, oxidative stress biomarkers analysis, and transcriptome analysis. Results showed that apoptosis could be triggered by either AM exposure or OA exposure, but through different pathways. Exposure to AM leads to mitochondrial dysfunction and oxidative damage, which in turn triggers apoptosis via a series of cellular events in both intrinsic and extrinsic pathways. Conversely, while OA exposure similarly induced apoptosis, its effects are comparatively subdued and are predominantly mediated through the intrinsic pathway. Additionally, the synergistic effects of AM and OA exposure induced pronounced mitochondrial dysfunction and oxidative damages in the hemocytes of A. irradians irradians. Despite the evident cellular distress and the potential initiation of apoptotic pathways, the actual execution of apoptosis appears to be restrained, which might be attributed to an energy deficit within the hemocytes. Our findings underscore the constrained tolerance capacity of A. irradians irradians when faced with multiple environmental stressors, and shed light on the ecotoxicity of antibiotic pollution in the ocean under prospective climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Ke Li
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiutang Yuan
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
11
|
Wang Y, Shen J, Li X, Lang H, Zhang L, Fang H, Yu Y. Higher temperature and daily fluctuations aggravate clothianidin toxicity towards Limnodrilus hoffmeisteri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166655. [PMID: 37647951 DOI: 10.1016/j.scitotenv.2023.166655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
In nature, aquatic organisms may suffer from chemical pollution, together with thermal stress resulted from global warming. However, limited information is available on the combined effects of pesticide with climate change on aquatic organisms. In this study, the acute toxicity of clothianidin to Limnodrilus hoffmeisteri as well as its effect on the induction of oxidative stress under both constant temperature and daily temperature fluctuation (DTF) regimes was investigated. Results showed that clothianidin exhibited the minimal toxicity to L. hoffmeisteri at 25 °C, which was magnified by both increased or decreased temperatures and 10 °C DTF. At different temperatures (15 °C, 25 °C and 35 °C), clothianidin exposure led to the elevated reactive oxygen species (ROS) levels and activated the antioxidant enzymes to resist against the oxidative stress. However, the antioxidant response induced by clothianidin was overwhelmed at high temperature as evidenced by decreased glutathione (GSH) content. Significant elevation of catalase (CAT) and peroxidase (POD) activities but depletion of GSH was also observed in worms treated with clothianidin under DTF after 24 h. The results indicated that high temperature and DTF could aggravate the clothianidin-induced oxidative stress. Moreover, the critical thermal maximum (CTmax) of the worms decreased with the increasing clothianidin concentrations, suggesting that exposure to clothianidin could reduce the heat tolerance of L. hoffmeisteri. Our work highlights the crucial importance to integrate temperature changes into risk assessment of pesticides under global warming.
Collapse
Affiliation(s)
- Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiatao Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Lang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Zhang K, Wu Z, Liu Z, Tang J, Cai W, An M, Zhou Z. Acute hypoxia induces reduction of algal symbiont density and suppression of energy metabolism in the scleractinian coral Pocillopora damicornis. MARINE POLLUTION BULLETIN 2023; 191:114897. [PMID: 37043929 DOI: 10.1016/j.marpolbul.2023.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
Loss of oxygen in the ocean is accelerating and threatening the coral reef ecosystem. In this study, the impacts of hypoxia on the scleractinian coral Pocillopora damicornis were explored. The algal symbiont density, chlorophyll a + c2 content, energy consumption of corals, as well as energy available and consumption of their symbionts, decreased significantly post hypoxia stress. Meanwhile, the malondialdehyde contents in corals and symbionts, together with the caspase-3 activation level in corals, increased significantly in response to hypoxia stress. Furthermore, it was revealed that activities such as coral cell division and calcification were inhibited under hypoxia. These results collectively suggest that acute hypoxia stress reduces symbiont density and chlorophyll a + c2 content in the coral P. damicornis by elevating intracellular oxidative pressure and apoptotic level, which further suppresses energy metabolism in the symbiotic association and negatively affects a series of activities such as coral cell division and calcification.
Collapse
Affiliation(s)
- Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China; Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
13
|
Oliveira H, Maulvault AL, Santos CP, Silva M, Bandarra NM, Valente LMP, Rosa R, Marques A, Anacleto P. Can marine heatwaves affect the fatty acid composition and energy budget of the tropical fish Zebrasoma scopas? ENVIRONMENTAL RESEARCH 2023; 224:115504. [PMID: 36796604 DOI: 10.1016/j.envres.2023.115504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Marine heatwaves (MHWs) are extreme weather events featuring abnormally high seawater temperature, and expected to increase in frequency, duration and severity over this century. The impacts of these phenomena on physiological performance of coral reef species require understanding. This study aimed to evaluate the effects of a simulated MHW (category IV; ΔT = +2 °C, 11 days) (after exposure and 10-day recovery period) on fatty acid (FA) composition (as a biochemical indicator) and energy budget (i.e., growth, G, excretion (faecal, F and nitrogenous losses, U), respiration, R and food consumption, C) of a juvenile tropical surgeonfish species (Zebrasoma scopas). Significant and different changes were found under MHW scenario for some of the most abundant FA and respective groups (i.e., an increase in the contents of 14:0, 18:1n-9, ΣMonounsaturated (ΣMUFA) and 18:2n-6; and a decrease in the levels of 16:0, ΣSaturated (ΣSFA), 18:1n-7, 22:5n-3 and ΣPolyunsaturated (ΣPUFA)). The contents of 16:0 and ΣSFA were also significantly lower after MHW exposure compared to control (CTRL). Additionally, lower feed efficiency (FE), relative growth rate (RGR) and specific growth rate in terms of wet weight (SGRw), as well as higher energy loss for respiration were observed under MHW exposure conditions in comparison with CTRL and MHW recovery period. The energy proportion channelled for faeces dominated the mode of energy allocation, followed by growth in both treatments (after exposure). After MHW recovery, this trend was reversed, and a higher percentage was spent for growth and a lower fraction for faeces than in the MHW exposure period. Overall, FA composition, growth rates and energy loss for respiration of Z. Scopas were the physiological parameters most influenced (mainly in a negative way) by an 11-day MHW event. The observed effects in this tropical species can be exacerbated with increasing intensity and frequency of these extreme events.
Collapse
Affiliation(s)
- Helena Oliveira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Ana L Maulvault
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO - Unit on Applied Molecular Biosciences, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2819-516 Caparica, Portugal.
| | - Catarina P Santos
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal.
| | - Marlene Silva
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal.
| | - Narcisa M Bandarra
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal.
| | - Luísa M P Valente
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Rui Rosa
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Patrícia Anacleto
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
14
|
Oliveira H, Maulvault AL, Castanho S, Repolho T, Valente LMP, Pousão-Ferreira P, Rosa R, Marques A, Anacleto P. Lack of detrimental effects of ocean acidification and warming on proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159491. [PMID: 36270380 DOI: 10.1016/j.scitotenv.2022.159491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Rising levels of atmospheric carbon dioxide (CO2) are driving ocean warming and acidification, which may negatively affect the nutritional quality and physiological performance of commercially important fish species. Thus, this study aimed to evaluate the effects of ocean acidification (OA; ΔpH = -0.3 units equivalent to ΔpCO2 ~ +600 μatm) and warming (OW; ΔT = +4 °C) (and combined, OAW) on the proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis). After an exposure period of 75 days, growth (G), metabolism (R) and excretion (faecal, F and nitrogenous losses, U) were assessed to calculate the energy intake (C). Biometric and viscera weight data were also registered to determine animal fitness. Overall, the proximate composition and gross energy were not significantly affected by acidification and warming (alone or in combination). Weight gain, maximum and standard metabolic rates (MMR and SMR, respectively), aerobic scope (AS) and C were significantly higher in fish subjected to OA, OW and OAW than in CTR conditions. Furthermore, the highest relative growth rates (RGR), specific growth rates in terms of wet weight (SGRw) and protein (SGRp), as well as feed efficiencies (FE) occurred in fish submitted to OW and OAW. On the other hand, fish exposed to CTR conditions had significantly higher feed conversion ratio (FCR) and ammonia excretion rate (AER) than those exposed to simulated stressors. Regarding energy distribution, the highest fraction was generally allocated to growth (48-63 %), followed by excretion through faeces (36-51 %), respiration (approximately 1 %) and ammonia excretion (0.1-0.2 %) in all treatments. Therefore, ocean warming and acidification can trigger physiological responses in juvenile Senegalese sole, particularly in their energy budget, which can affect the energy flow and allocation of its population. However, and in general, this species seems highly resilient to these predicted ocean climate change stressors.
Collapse
Affiliation(s)
- Helena Oliveira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Ana Luísa Maulvault
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO - Unit on Applied Molecular Biosciences, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2819-516 Caparica, Portugal.
| | - Sara Castanho
- IPMA, I.P, Portuguese Institute for the Sea and Atmosphere, I.P., Aquaculture Research Station of Olhão (EPPO), Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal.
| | - Tiago Repolho
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Luísa M P Valente
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Pedro Pousão-Ferreira
- IPMA, I.P, Portuguese Institute for the Sea and Atmosphere, I.P., Aquaculture Research Station of Olhão (EPPO), Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal.
| | - Rui Rosa
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Patrícia Anacleto
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
15
|
Zhang T, Wang X, Qu Y, Zhang X, Zhang Q, Yang D, Wang Q, Dong Z, Zhao J. Intestinal microbiota perturbations in the gastropod Trochus niloticus concurrently exposed to ocean acidification and environmentally relevant concentrations of sulfamethoxazole. CHEMOSPHERE 2023; 311:137115. [PMID: 36356817 DOI: 10.1016/j.chemosphere.2022.137115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Ocean acidification (OA) and antibiotic pollution pose severe threats to the fitness of keystone species in marine ecosystems. However, the combined effects of OA and antibiotic pollution on the intestinal microbiota of marine organisms are still not well known. In this study, we exposed the herbivorous gastropod Trochus niloticus, a keystone species to maintains the stability of coral reef ecosystems, to acidic seawater (pH 7.6) and/or sulfamethoxazole (SMX, 100 ng/L, 1000 ng/L) for 28 days and determined their impacts on (1) the accumulation of SMX in the intestine of T. niloticus; (2) the characteristics of the intestinal microbiota in T. niloticus; (3) the relative abundances of sulfonamide resistance genes (i.e., sul1 and sul2) and intI1 in the intestinal microbiota of T. niloticus. Our results show that OA exposure leads to dramatic microbiota dysbiosis in the intestine of T. niloticus, including changes in bacterial community diversity and structure, decreased abundances of dominant species, existences of characteristic taxa, and altered functional predictions. In addition, SMX exposure at environmentally relevant concentrations had little effect on the intestinal microbiota of T. niloticus, whether in isolation or in combination with OA. However, after exposure to the higher SMX concentration (1000 ng/L), the accumulation of SMX in the intestine of T. niloticus could induce an increase in the copies of sul2 in the intestinal microbiota. These results suggest that the intestinal health of T. niloticus might be affected by OA and SMX, which might lead to fitness loss of the keystone species in coral reef ecosystems.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi Qu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264117, PR China.
| |
Collapse
|