1
|
Serna-Galvis EA, Arboleda-Echavarría J, Echavarría-Isaza A, Torres-Palma RA. Removal and elimination of pharmaceuticals in water using zeolites in diverse adsorption processes and catalytic advanced oxidation technologies-a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63427-63457. [PMID: 39496891 PMCID: PMC11602855 DOI: 10.1007/s11356-024-35204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024]
Abstract
Water pollution by pharmaceuticals is a current worrying environmental problem. Adsorption and catalytic processes using zeolites have been employed in several studies to remove/degrade pharmaceuticals from water. The interest of researchers in these two strategies based on the utilization of zeolites (i.e., adsorption and advanced oxidation technologies, AOT) is continuously growing. Then, this work presents a literature review, considering the origin of the zeolites (natural vs. synthetic) and the modifications of zeolites (e.g., the addition of surfactants) for the adsorption of diverse pharmaceuticals. The role of zeolites in catalytic ozonation, Fenton-based systems, and activation of peroxymonosulfate and peroxydisulfate is detailed. Also, the primary transformations of pharmaceuticals induced by these AOTs were examined. Moreover, the gaps regarding biodegradability and toxicity of the transformation products coming from the degradation of pharmaceuticals by the zeolites-based processes were discussed. To overcome the scarcity of information regarding the biodegradability and toxicity of the primary transformation products observed in the revised works, an initial approach to these topics, using a predictive tool, was made. Finally, from the present review, it was evidenced the need for future works involving zeolites that provide results about the simultaneous removal/elimination of multiple pharmaceuticals in complex matrices (e.g., hospital wastewater or municipal wastewater), new information about biodegradability and toxicity plus the development of combination or coupling of processes with other AOTs (e.g., sonochemistry) or classical systems (e.g., biological process).
Collapse
Affiliation(s)
- Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Johana Arboleda-Echavarría
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
- Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Adriana Echavarría-Isaza
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
2
|
Wang A, Hou J, Xu Q, Wu J, Xing B. Green synthesis of zero valent iron using tannins to activate persulfate for sulfamethoxazole degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122418. [PMID: 37625770 DOI: 10.1016/j.envpol.2023.122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Majority zero-valent iron (ZVI) materials are prepared by reducing agents in liquid phase, resulting in the high environmental pollution and poor particle size distribution uniformity. Therefore, this study employed a green synthesis method to prepare ZVI. Tannins (TA) with phenolic hydroxyl groups that are characterized by strong reducing capacity were employed to synthesize ZVI (TA@ZVI). The dispersity and stability of ZVI was improved by TA, which inhibited the agglomeration of ZVI. Meanwhile, the specific surface area of TA@ZVI was higher than chemical prepared ZVI, increasing the reactive sites. The organic matter components enriched on TA could promote the adsorption of pollutants and complex with Fe(II/III) to enhance the reactivity of TA@ZVI. Also, the polyphenol structure in TA was oxidized to quinone, which facilitated electron transport. In order further test the performance of TA@ZVI, SMX was chosen as a target pollutant to study the oxidative degradation performance of TA@ZVI. SO4•- degraded about 16.4%-25.5% SMX and •OH degraded about 49.8%-63.9% SMX in the pH range of 4-6 while •OH played a dominant role in the neutral and alkaline conditions. Moreover, the presence of TA reduced Fe(III) to Fe(II) and promoted the release of Fe(II), providing a continuous source of •OH for the oxidative degradation of SMX. Besides, the conversion of Fe(II/III) was accelerated due to TA, which delayed the formation of passivation layer. Thus, TA enhanced the antioxidant capacity of ZVI. Generally, this study provided an environmental-friendly technology to synthesize and improve the reactivity of ZVI.
Collapse
Affiliation(s)
- Anqi Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qichen Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
3
|
Zhou CS, Cao GL, Wu XK, Liu BF, Qi QY, Ma WL. Removal of antibiotic resistant bacteria and genes by nanoscale zero-valent iron activated persulfate: Implication for the contribution of pH decrease. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131343. [PMID: 37027910 DOI: 10.1016/j.jhazmat.2023.131343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The mechanism of removing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) by persulfate was attributed to the generation of reactive oxygen species (ROS). However, the potential contribution of decreased pH in persulfate system to ARB and ARGs removal has rarely been reported. Here, the efficiency and mechanism of removing ARB and ARGs by nanoscale zero-valent iron activated persulfate (nZVI/PS) were investigated. Results showed that the ARB (2 × 108 CFU/mL) could be completely inactivated within 5 min, and the removal efficiencies of sul1 and intI1 were 98.95% and 99.64% by nZVI/20 mM PS, respectively. Investigation of mechanism revealed that hydroxyl radicals was the dominant ROS of nZVI/PS in removing ARB and ARGs. Importantly, the pH of nZVI/PS system was greatly decreased, even to 2.9 in nZVI/20 mM PS system. Impressively, when the pH of the bacterial suspension was adjusted to 2.9, the removal efficiency of ARB, sul1 and intI1 were 60.33%, 73.76% and 71.51% within 30 min, respectively. Further excitation-emission-matrix analysis confirmed that decreased pH contributed to ARB damage. The above results on the effect of pH indicated that the decreased pH of nZVI/PS system also made an important contribution for the removal of ARB and ARGs.
Collapse
Affiliation(s)
- Chun-Shuang Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiu-Kun Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Yue Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Xue C, Zhou L, Fang Z. Remediation of polybrominated diphenyl ethers contaminated soil in the e-waste disposal site by ball milling modified zero valent iron activated persulfate. CHEMOSPHERE 2023; 324:138376. [PMID: 36905994 DOI: 10.1016/j.chemosphere.2023.138376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Hydrophobic organic compounds (HOCs) in e-waste disposal sites are difficult to remove effectively. There is little reported about zero valent iron (ZVI) coupled with persulfate (PS) to achieve the removal of decabromodiphenyl ether (BDE209) from soil. In this work, we have prepared the flake submicron zero valent iron by ball milling with boric acid (B-mZVIbm) at a low cost. Sacrifice experiments results showed that 56.6% of BDE209 was removed in 72 h with PS/B-mZVIbm, which was 2.12 times than that of micron zero valent iron (mZVI). The morphology, crystal form, atomic valence, composition, and functional group of B-mZVIbm were determined by SEM, XRD, XPS, and FTIR, and the results indicated that the oxide layer on the surface of mZVI is replaced by borides. The results of EPR indicated that hydroxyl radical and sulfate radical played the dominant role in the degradation of BDE209. The degradation products of BDE209 were determined by gas chromatography-mass spectrometry (GC-MS), accordingly, the possible degradation pathway was further proposed. The research suggested that ball milling with mZVI and boric acid is a low-cost means of preparing highly active zero valent iron materials. And the mZVIbm has promising applications in improving the activation efficiency of PS and enhancing the removal of the contaminant.
Collapse
Affiliation(s)
- Chengjie Xue
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Long Zhou
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Cao S, Zhan G, Wei K, Zhou B, Zhang H, Gao T, Zhang L. Raman spectroscopic and microscopic monitoring of on-site and in-situ remediation dynamics in petroleum contaminated soil and groundwater. WATER RESEARCH 2023; 233:119777. [PMID: 36868118 DOI: 10.1016/j.watres.2023.119777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The mechanistic study of soil and groundwater remediation in petroleum contaminated lands significantly demands rapid qualitative and quantitative identification of petroleum substances. However, most traditional detection methods cannot provide the on-site or in-situ information of petroleum compositions and contents simultaneously even with multi-spot sampling and complex sample preparation. In this work, we developed a strategy for the on-site detection of petroleum compositions and in-situ monitoring of petroleum contents in soil and groundwater using dual-excitation Raman spectroscopy and microscopy. The detection time was 0.5 h for the Extraction-Raman spectroscopy method and one minute for the Fiber-Raman spectroscopy method. The limit of detection was 94 ppm for the soil samples and 0.46 ppm for the groundwater samples. Meanwhile, the petroleum changes at the soil-groundwater interface were successfully observed by Raman microscopy during the in-situ chemical oxidation remediation processes. The results revealed that hydrogen peroxide oxidation released petroleum from the interior to the surface of soil particles and then to groundwater during the remediation process, while persulfate oxidation only degraded petroleum on the soil surface and in groundwater. This Raman spectroscopic and microscopic method can shed light on the petroleum degradation mechanism in contaminated lands, and facilitate the selection of suitable soil and groundwater remediation plans.
Collapse
Affiliation(s)
- Shiyu Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guangming Zhan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Biao Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hao Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Chen Z, Cao W, Bai H, Zhang R, Liu Y, Li Y, Song J, Liu J, Ren G. Review on the degradation of chlorinated hydrocarbons by persulfate activated with zero-valent iron-based materials. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:761-782. [PMID: 36789716 DOI: 10.2166/wst.2023.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated hydrocarbons (CHCs) are often used in industrial processes, and they have been found in groundwater with increasing frequency in recent years. Several typical CHCs, including trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), carbon tetrachloride (CT), etc., have strong cytotoxicity and carcinogenicity, posing a serious threat to human health and ecological environment. Advanced persulfate (PS) oxidation technology based on nano zero-valent iron (nZVI) has become a research hotspot for CHCs degradation in recent years. However, nZVI is easily oxidized to form the surface passivation layer and prone to aggregation in practical application, which significantly reduces the activation efficiency of PS. In order to solve this problem, various nZVI modification solutions have been proposed. This review systematically summarizes four commonly used modification methods of nZVI, and the theoretical mechanisms of PS activated by primitive and modified nZVI. Besides, the influencing factors in the engineering application process are discussed. In addition, the controversial views on which of the two (SO4·- and ·OH) is dominant in the nZVI/PS system are summarized. Generally, SO4·- predominates in acidic conditions while ·OH prefers neutral and alkaline environments. Finally, challenges and prospects for practical application of CHCs removal by nZVI-based materials activating PS are also analyzed.
Collapse
Affiliation(s)
- Zhiguo Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Wenqing Cao
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - He Bai
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Rong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Yiyun Liu
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Yan Li
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Jingpeng Song
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Juncheng Liu
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Gengbo Ren
- School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
7
|
Hassanpour M, Cai G, Cooper T, Wang Q, O'Hara IM, Zhang Z. Triple action of FeCl 3-assisted hydrothermal treatment of digested sludge for deep dewatering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157727. [PMID: 35926629 DOI: 10.1016/j.scitotenv.2022.157727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
In this study, a FeCl3-assisted hydrothermal treatment (HTT) process under mild conditions (90 °C-130 °C) was developed for deep dewatering of anaerobically digested sludge. HTT of sludge at 90 °C-130 °C with 4%-6% Fe3+ ions loading based on total sludge solids followed by mechanical dewatering reduced sludge water content from 82% to 38%-53% and sludge weight by 62%-72%. The treatment increased the flowability of sludge through reduction of apparent viscosity and disintegration of colloidal forces between sludge particles. This study unveiled that FeCl3-assisted HTT process had three mechanisms for improving sludge dewaterability and flowability. The treatment hydrolysed sludge flocs in the presence of Lewis acid FeCl3 and high temperature (90-130 °C). Fe3+ ions also improved dewaterability through the formation of double electric layers and neutralisation of surface negative charges, leading to flocculation of sludge flocs. More importantly, the hydrolysed sludge components produced during HTT process acted as reducing agents and led to in-situ generation of iron oxyhydroxide nanoparticles through reduction-oxidation reactions, further enhancing flocculation/co-precipitation of sludge flocs. The treatment reduced EPS content and changed conformational structures of EPS proteins by breaking down hydrogen bond-maintaining α-helix which led to a loose EPS protein structure and enhanced hydrophobicity and flocculability. Furthermore, the FeCl3-assisted treatment promoted immobilisation of the majority of heavy metals in the sludge matrix through co-precipitation/complexation reactions with iron species and organic/inorganic matters. This indicates that the FeCl3-assisted treatment reduced direct toxicity/bioavailability of the majority of heavy metals and the treated sludge may be suitable for land application. Overall, this study provides new insights into mechanism of FeCl3-assisted HTT process for dewaterability of anaerobically digested sludge and immobilisation of heavy metals.
Collapse
Affiliation(s)
- Morteza Hassanpour
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Guiqin Cai
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Tal Cooper
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| |
Collapse
|