1
|
Long X, Lin F, Tang B, Miao F, Li Z, Shen Y, Yang H, Ma J. Acinetobacter indicus coharboring tet(X6) and bla NDM-1 isolated from slaughterhouse waste. J Glob Antimicrob Resist 2024:S2213-7165(24)00463-6. [PMID: 39701446 DOI: 10.1016/j.jgar.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Acinetobacter indicus is an important pathogen of nosocomial infection. The purpose of this study was to analyze the resistance and transmission of A. indicus strain AIBD14 isolated from slaughterhouse environment. METHODS A total of 96 environmental samples were collected from slaughterhouse. The antimicrobial susceptibility test was carried out by microbroth dilution method and E-test. Whole genome sequencing and bioinformatics analysis of the AIBD14 were performed, then S1-PFGE and southern blot verified the location of blaNDM-1 and tet(X6). RESULTS The AIBD14 is resistant to meropenem but susceptibility to tigecycline, and coharboring blaNDM-1 and tet(X6). The blaNDM-1 is located on the pAIBD14-NDM-1 that cannot be transferred by conjugation. Specifically, blaNDM-1 is located on the transposon Tn125, and blaNDM-1 can be transferred to other species with the help of transposon. The genetic background of blaNDM-1 is "ISAba125- blaNDM-1-bleMEL-dsbD-cutA-groES-groEL-insE-ISAba125". pAIBD14-NDM-1 is classified into the GR31 plasmid based on the homology of the repB. Meanwhile, there are two XerC/D-like binding sites on the plasmid, which can mediate the transfer of resistance genes. The tet(X6) gene is located on the chromosome of AIBD14, its downstream is accompanied by the neglected macrolide resistance gene estT, and there is a single copy of the insertion element ISCR2 around tet(X6) as the genetic background "ISAba4-IS3-hp-hp-tet(X6)-estT-guaA-ISCR2". CONCLUSIONS This is the first report of the coexistence of tet(X6) and blaNDM-1 in the A. indicus, and it has the risk of horizontal transfer across multiple species. So strict monitoring the multiple-resistant bacteria in the industrial chain is necessary based on the "One Heath".
Collapse
Affiliation(s)
- Xiaoqian Long
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, 313001, China
| | - Biao Tang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | | | - Zhiyu Li
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Yao Shen
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China; Xianghu Laboratory, Hangzhou, 311231, China.
| | - Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
2
|
Dai S, Han Z, Liu S, Wang Y, Zhang Y, Yang M. Bacterial hosts and horizontal transfer characteristics of clinically important tet(X)-variant genes in municipal wastewater treatment plants using epicPCR-directed cultivation strategy. WATER RESEARCH 2024; 268:122658. [PMID: 39486342 DOI: 10.1016/j.watres.2024.122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Mobile tet(X)-variant genes confer resistance to a wide range of tetracyclines, including the antibiotic of last-resort, tigecycline, raising significant concerns regarding their potential spread cross-environmental dissemination. However, the bacterial hosts and environmental spread of these genes remain poorly understood. Herein, a retrospective study unveiled the prevalence of tet(X)-variant genes (ranging from tet(X3) to tet(X6)) in activated sludge samples from five municipal wastewater treatment plants (WWTPs) from 2013 to 2021. Among these variants, tet(X4) exhibited the highest detection frequency (100 %) and abundance [(2.48 ± 3.07) × 107 copies/g dry weight] with an increasing trend. An epicPCR-directed cultivation strategy was proposed to facilitate the targeted isolation of tet(X4)-carrying bacterial hosts in activated sludge. This strategy involves the identification of bacterial host profiles using epicPCR and subsequent selective isolating target bacteria. Enterobacteriaceae emerged as the primary bacterial host for tet(X4), alongside previously unreported genera like Providencia, Advenella, and Moheibacter. Subsequent selective isolation of the most abundant Enterobacteriaceae based on the epicPCR-informed host spectrum yielded 39 tet(X4)-carrying Escherichia coli strains from the WWTP. Whole genome sequencing of tet(X4)-positive strains revealed that plasmid-mediated horizontal gene transfer is the primary mechanism driving tet(X4) dissemination. Plasmids including IncFIA(HI1)/IncHI1A/IncHI1B(R27) and IncX1, commonly reported in various clinical and animal settings, were identified as the predominant carriers of tet(X4). E. coli strains harbouring tet(X4) in the WWTP showed substantial genetic similarity to strains from hospital and animal sources, underscoring concerns about the potential risk of across diverse sectors. This study provided the first glimpse of the presence of mobile tet(X)-variants in WWTPs, and highlighted the promise of the epicPCR-directed cultivation strategy for exploring bacterial hosts of clinically important ARGs in different habitats from a One Health perspective.
Collapse
Affiliation(s)
- Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Fan XY, Jiang Y, Wu H, Liu J, Gu QY, Wang ZY, Sun L, Jiao X, Li Q, Wang J. Distribution and spread of tigecycline resistance gene tet(X4) in Escherichia coli from different sources. Front Cell Infect Microbiol 2024; 14:1399732. [PMID: 39006743 PMCID: PMC11239352 DOI: 10.3389/fcimb.2024.1399732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Tigecycline serves as a last-resort antimicrobial agent against severe infections caused by multidrug-resistant bacteria. Tet(X) and its numerous variants encoding flavin-dependent monooxygenase can confer resistance to tigecycline, with tet(X4) being the most prevalent variant. This study aims to investigate the prevalence and characterize tigecycline resistance gene tet(X) in E. coli isolates from various origins in Yangzhou, China, to provide insights into tet(X) dissemination in this region. In 2022, we tested the presence of tet(X) in 618 E. coli isolates collected from diverse sources, including patients, pig-related samples, chicken-related samples, and vegetables in Yangzhou, China. The antimicrobial susceptibility of tet(X)-positive E. coli isolates was conducted using the agar dilution method or the broth microdilution method. Whole genome sequencing was performed on tet(X)-positive strains using Illumina and Oxford Nanopore platforms. Four isolates from pig or pork samples carried tet(X4) and exhibited resistance to multiple antimicrobial agents, including tigecycline. They were classified as ST542, ST10, ST761, and ST48, respectively. The tet(X4) gene was located on IncFIA8-IncHI1/ST17 (n=2), IncFIA18-IncFIB(K)-IncX1 (n=1), and IncX1 (n=1) plasmids, respectively. These tet(X4)-carrying plasmids exhibited high similarity to other tet(X4)-bearing plasmids with the same incompatible types found in diverse sources in China. They shared related genetic environments of tet(X4) associated with ISCR2, as observed in the first identified tet(X4)-bearing plasmid p47EC. In conclusion, although a low prevalence (0.65%) of tet(X) in E. coli strains was observed in this study, the horizontal transfer of tet(X4) among E. coli isolates mediated by pandemic plasmids and the mobile element ISCR2 raises great concerns. Thus, heightened surveillance and immediate action are imperative to curb this clinically significant resistance gene and preserve the efficacy of tigecycline.
Collapse
Affiliation(s)
- Xin-Yan Fan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Yue Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Han Wu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jie Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Qing-Yun Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Shao L, Wu C, Li C, He R, Chen G, Sun D, Yang Y, Feng Y, Zhang G, Yan B, Dai M, Tian GB, Zhong LL. Genomic characterization revealing the high rate of tet(X4)-positive Escherichia coli in animals associated with successful genetic elements. Front Microbiol 2024; 15:1423352. [PMID: 38979542 PMCID: PMC11228144 DOI: 10.3389/fmicb.2024.1423352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction The rapid spread of plasmid-mediated tet(X4) conferring high tigecycline resistance poses a significant threat to public health. Escherichia coli as the most common pathogen which carries tet(X4) has been widely disseminated in China. Thus, comprehensive investigations are required to understand the mechanism of transmission of tet(X4)-positive E. coli. Methods In this study, a total of 775 nonduplicate samples were collected in Guangdong, China from 2019 to 2020. We screened for tet(X4)-positive E. coli by PCR amplification and species identification. Furthermore, we analyzed the phylogenetics and genetic context of tet(X4)-positive E. coli through whole-genome sequencing and long-reads sequencing. Results Overall, 146 (18.84%) tet(X4)-positive E. coli were isolated, comprising 2 isolates from humans and 144 isolates from pigs. The majority of tet(X4)-positive E. coli exhibited resistance to multiple antibiotics but all of them were susceptible to amikacin and colistin. Phylogenetic analysis showed that ST877, ST871, and ST195 emerged as the predominant sequence types in tet(X4)-positive E. coli. Further analysis revealed various genetic environments associated with the horizontal transfer of tet(X4). Notably, a 100-kbp large fragment insertion was discovered downstream of tet(X4), containing a replicon and a 40-kbp gene cluster for the bacterial type IV secretion system. Discussion The high colonization rate of tet(X4)-positive E. coli in animals suggests that colonization as a key factor in its dissemination to humans. Diverse genetic context may contribute to the transfer of tet(X4). Our findings underline the urgent need for controlling the spread of plasmid-mediated tigecycline resistance.
Collapse
Affiliation(s)
- Li Shao
- School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China
| | - Changbu Wu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chengjuan Li
- School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China
| | - Ruowen He
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guanping Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Dandan Sun
- School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China
| | - Yanxian Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yu Feng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guili Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Bin Yan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guo-Bao Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Lan-Lan Zhong
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
5
|
Yue C, Bai Y, Li T, Deng H, Lu L, Lin W, Cui X, Lv L, Gao G, Liu JH, Liu YY. Emergence of tet(X4)-positive Enterobacterales in retail eggs and the widespread of IncFIA(HI1)-HI1A-HI1B(R27) plasmids carrying tet(X4). Int J Food Microbiol 2024; 414:110574. [PMID: 38325259 DOI: 10.1016/j.ijfoodmicro.2024.110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/09/2024]
Abstract
The proliferation of antimicrobial-resistant microbes and resistance genes in various foods poses a serious hazard to public health. The plasmid-mediated tigecycline resistance gene tet(X4) has been detected in Enterobacterales from various niches but has not yet been reported in eggs. This study aimed to investigate the occurrence and characteristics of tigecycline-resistant strains from retail eggs. A total of 144 eggs were purchased from farmers' markets in Guangdong province, China, and eggshell (n = 144) and egg content (n = 96) samples were used to screen for tigecycline-resistant strains. Eight Escherichia coli strains (two ST195, one ST48, ST8165, ST752, ST93, ST189, and ST224) and one Klebsiella pneumoniae strain (ST252) recovered from eight (5.56 %, 8/144) egg samples (eggshells, n = 6; egg content, n = 2) were positive for tet(X4). Notably, the two E. coli ST195 strains were closely (15-54 SNPs) related to all the tet(X4)-positive E. coli ST195 from various origins (food animals, foods, migratory birds, human, and environment) deposited in GenBank. The E. coli ST224 showed a close phylogenetic relationship (9-12 SNPs) with two tet(X4)-positive E. coli strains from chicken feces and retail chicken in Guangdong province. The hybrid plasmid IncFIA(HI1)-HI1A-HI1B(R27) constitutes the predominant tet(X4) vector both herein (7/9, 77.78 %) and in the GenBank database (32/160, 20 %). The tet(X4)-positive IncFIA(HI1)-HI1A-HI1B(R27) plasmids, sharing highly similar structures, have been widely disseminated across China. However, the IncFIA(HI1)-HI1A-HI1B(R27) plasmids exhibit poor stability and low conjugation frequency. The contamination of tet(X4)-positive bacteria internally and externally in retail eggs poses a prospective food safety threat. More attention should be paid to the spread of the tet(X4) gene via epidemic clone E. coli ST195 and the plasmid IncFIA(HI1)-HI1A-HI1B(R27).
Collapse
Affiliation(s)
- Chao Yue
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Yuman Bai
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Tong Li
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Haotian Deng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Litao Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Wannan Lin
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Xiaoxiao Cui
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Guolong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
6
|
Zhang S, Wen J, Wang Y, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Decoding the enigma: unveiling the molecular transmission of avian-associated tet(X4)-positive E. coli in Sichuan Province, China. Poult Sci 2023; 102:103142. [PMID: 37879166 PMCID: PMC10618799 DOI: 10.1016/j.psj.2023.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Tigecycline is considered one of the "last resort antibiotics" for treating complex infections caused by multidrug-resistant (MDR) bacteria, especially for combating clinical resistant strains that produce carbapenemases. However, the tet(X4) gene, which carried by different plasmids can mediate high levels of bacterial resistance to tigecycline, was first reported in 2019. Here, we report the emergence of the plasmid-mediated tet(X4) in avian environment of Sichuan Province. A total of 21 tet(X4)-positive Escherichia coli (E. coli) strains were isolated and identified from avian samples in selected regions, with an isolation rate of 1.6% (21/1,286), and all of them were MDR strains. Multilocus Sequence Typing (MLST) method was used to classify the 21 tet(X4)-positive E. coli into the ST206, ST761, ST155, ST1638, ST542, and ST767 types, which also belong to the 3 phylogenetic subgroups A, B1, and C. Tet(X4) is located on mobile plasmids that can be efficiently and stably propagated. The results of fitness cost experiments showed that tet(X4)-positive plasmids may incur some fitness cost to host bacteria, but different tet(X4)-positive plasmids bring about differential fitness costs. Whole-genome sequencing further confirmed the tet(X4) gene can be located on IncX1-type plasmids and the core genetic structures are ISVsa3-rdmc-tet(X4) or rdmc-tet(X4)-ISVsa3, the former is a 7 copies tandem repeat structure. In this study, we isolated and identified tet(X4)-positive E. coli from the avian origin in Sichuan, analyzed the mobility of the tet(X4) by conjugational transfer and S1-PFGE, and evaluated the biological characteristics of the tet(X4)-positive plasmid using the results of conjugational frequency, plasmid stability, and fitness costs. Finally, combined with the third-generation whole-genome sequencing analysis, the molecular transmission characteristics of the tet(X4) were preliminarily clarified, providing a scientific basis for guiding veterinary clinical use in this area, as well as risk assessment and prevention of the transfer and spread of tigecycline resistant strains or genes.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Jinfeng Wen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang 621023, PR China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the PR China, Chengdu 611130, PR China.
| |
Collapse
|
7
|
Gao X, Lu L, Yue C, Bai Y, Liu JH, Lv L. A Salmonella genomic island 1 (SGI1) carries multiple copies of bla NDM-1 in Vibrio fluvialis of retail razor clam origin. J Glob Antimicrob Resist 2023; 35:190-192. [PMID: 37748579 DOI: 10.1016/j.jgar.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/04/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Affiliation(s)
- Xun Gao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Litao Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Chao Yue
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yuman Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Luchao Lv
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Sun L, Sun GZ, Jiang Y, Mei CY, Wang ZY, Wang HY, Kong GM, Jiao X, Wang J. Low prevalence of mobilized resistance genes blaNDM, mcr-1, and tet(X4) in Escherichia coli from a hospital in China. Front Microbiol 2023; 14:1181940. [PMID: 37275145 PMCID: PMC10237293 DOI: 10.3389/fmicb.2023.1181940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
The emergence and spread of carbapenemase genes, colistin resistance genes mcr-1, and tigecycline resistance gene tet(X) represent a significant threat to clinical therapy and public health. In this study, we investigated the presence of carbapenemase genes, mcr-1, and tet(X) in 298 Escherichia coli strains obtained from a teaching hospital in China. In total, eight (2.68%), six (2.01%), and one (0.34%) E. coli isolates carried blaNDM, mcr-1, and tet(X4), respectively. The blaNDM gene was located on IncX3 (n = 4), F2:A-:B- (n = 3), and F2:A1:B1 (n = 1) plasmids, with high similarity to multiple plasmids belonging to the same incompatibility type from Enterobacteriaceae. Six MCR-producing strains contained mcr-1-carrying IncI2 plasmids, organized similarly to other mcr-1-bearing IncI2 plasmids from animals in China. The blaCTX-M-55/64/132/199 gene located within a typical transposition unit (ISEcp1-blaCTX-M-orf477Δ) was inserted near dnaJ to generate 5-bp direct repeats in four mcr-1-positive plasmids. The tet(X) and another four resistance genes [aadA2, tet(A), floR, and Δlnu(F)] were co-located on an IncX1 plasmid, highly similar to other tet(X4)-carrying IncX1 plasmids from Escherichia and Klebsiella of animal or food origin, except that the conjugative transfer region of IncX1 plasmids was absent in our plasmid. Although a low prevalence of blaNDM, mcr-1, and tet(X) was observed in E. coli from patients in this study, their dissemination associated with some successful pandemic plasmids is of great concern. The continued surveillance of these crucial resistance genes in patients should be strengthened.
Collapse
Affiliation(s)
- Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Guo-Zhuang Sun
- Department of Clinical Laboratory, Xuyi People's Hospital, Huai'an, China
| | - Yue Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Cai-Yue Mei
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Han-Yun Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Gui-Mei Kong
- Medical School of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Dai S, He Q, Han Z, Shen W, Deng Y, Wang Y, Qiao W, Yang M, Zhang Y. Uncovering the diverse hosts of tigecycline resistance gene tet(X4) in anaerobic digestion systems treating swine manure by epicPCR. WATER RESEARCH X 2023; 19:100174. [PMID: 36915394 PMCID: PMC10006855 DOI: 10.1016/j.wroa.2023.100174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/01/2023]
Abstract
The tet(X4) gene is a clinically important tigecycline resistance gene and has shown high persistence in livestock-related environments. However, the bacterial hosts of tet(X4) remain unknown due to the lack of appropriate approaches. Herein, a culture-independent and high-throughput epicPCR (emulsion, paired isolation, and concatenation polymerase chain reaction) method was developed, optimized, and demonstrated for the identification of bacterial hosts carrying tet(X4) from environmental samples. Considering the high sequence similarity between tet(X4) and other tet(X)-variant genes, specific primers and amplification conditions were screened and optimized to identify tet(X4) accurately and link tet(X4) with the 16S rRNA gene, which were further validated using artificially constructed bacterial communities. The epicPCR targeting tet(X4) was applied for the identification of bacterial hosts carrying this resistance gene in anaerobic digestion systems treating swine manure. A total of 19 genera were identified as tet(X4) hosts, which were distributed in the phyla Proteobacteria, Bacteroidota, Firmicutes, and Caldatribacteriota. Sixteen genera and two phyla that were identified have not been previously reported as tet(X4) bacterial hosts. The results indicated that a far more diverse range of bacteria was involved in harboring tet(X4) than previously realized. Compared with the tet(X4) hosts determined by correlation-based network analysis and metagenomic binning, epicPCR revealed a high diversity of tet(X4) hosts even at the phylum level. The epicPCR method developed in this study could be effectively employed to reveal the presence of tet(X4) bacterial hosts from a holistic viewpoint.
Collapse
Affiliation(s)
- Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenli Shen
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
First detection of tet(X4)-positive Enterobacterales in retail vegetables and clonal spread of Escherichia coli ST195 producing Tet(X4) in animals, foods, and humans across China and Thailand. Int J Food Microbiol 2023; 391-393:110145. [PMID: 36841076 DOI: 10.1016/j.ijfoodmicro.2023.110145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
The mobile tigecycline-resistant gene tet(X4), which confers resistance to all tetracyclines, has been identified in bacterial isolates from various sources. However, there are no reports on the occurrence of tet(X4) in bacterial isolates of ready-to-eat fresh vegetables. In this study, 113 vegetable samples from farmers' markets were screened for tigecycline-resistant strains. Ten Escherichia coli (two ST195, two ST48, and one ST10, ST58, ST88, ST394, ST641, and ST101) and one Klebsiella pneumoniae (ST327) recovered from nine vegetable samples (7.96 %) were identified as carrying tet(X4). The core genome sequences of the two E. coli ST195 isolates showed a close relationship (14-41 single-nucleotide polymorphisms) with 31 tet(X4)-bearing E. coli ST195 isolates from humans, pigs, pork, and bird in China and Thailand, and the 33 E. coli ST195 isolates producing Tet(X4) shared similar resistance genes and plasmid replicons. Nanopore sequencing and conjugation experiments confirmed that the tet(X4) genes were located on the hybrid plasmids IncFIA-HI1A-HI1B (n = 6), IncX1 (n = 3), and IncFII2 (n = 1) in E. coli, and IncFII plasmid in K. pneumoniae. IncFIA-HI1A-HI1B and IncX1 plasmids shared highly similar structures with plasmids from various sources in the GenBank database. This is the first study to report the observation of tet(X4)-positive bacteria in retail vegetables. The epidemic clones and plasmids contribute to tet(X4) dissemination in vegetables. The clonal spread of Tet(X4)-producing E. coli ST195 across multiple niches and countries could pose a potential threat to public health.
Collapse
|
11
|
Wang J, Wan X, Meng H, Olsen RH, Chen X, Li L. Efflux Pumps and Different Genetic Contexts of tet(X4) Contribute to High Tigecycline Resistance in Escherichia fergusonii from Pigs. Int J Mol Sci 2023; 24:ijms24086923. [PMID: 37108087 PMCID: PMC10138661 DOI: 10.3390/ijms24086923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Tigecycline is a last-resort antibiotic for the treatment of infections caused by multidrug-resistant bacteria. The emergence of plasmid-mediated tigecycline resistance genes is posing a serious threat to food safety and human health and has attracted worldwide attention. In this study, we characterized six tigecycline-resistant Escherichia fergusonii strains from porcine nasal swab samples collected from 50 swine farms in China. All the E. fergusonii isolates were highly resistant to tigecycline with minimal inhibitory concentration (MIC) values of 16-32 mg/L, and all contained the tet(X4) gene. In addition, 13-19 multiple resistance genes were identified in these isolates, revealed by whole-genome sequencing analysis. The tet(X4) gene was identified as being located in two different genetic structures, hp-abh-tet(X4)-ISCR2 in five isolates and hp-abh-tet(X4)-ΔISCR2-ISEc57-IS26 in one isolate. The role of efflux pumps in tigecycline resistance was evaluated by using inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The MIC values of tigecycline showed a 2- to 4-fold reduction in the presence of CCCP, indicating the involvement of active efflux pumps in tigecycline resistance in E. fergusonii. The tet(X4) gene was found to be transferable to Escherichia coli J53 by conjugation and resulted in the acquisition of tigcycline resistances in the transconjugants. Whole-genome multilocus sequence typing (wgMLST) and phylogenetic analysis showed a close relationship of five isolates originating from different pig farms, suggesting the transmission of tet(X4)-positive E. fergusonii between farms. In conclusion, our findings suggest that E. fergusonii strains in pigs are reservoirs of a transferable tet(X4) gene and provide insights into the tigecycline resistance mechanism as well as the diversity and complexity of the genetic context of tet(X4) in E. fergusonii.
Collapse
Affiliation(s)
- Junlin Wang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Xiulin Wan
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2820 Frederiksberg, Denmark
| | - Xun Chen
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Characteristics of tet(X4)-Producing Escherichia coli in Chicken and Pig Farms in Hunan Province, China. Antibiotics (Basel) 2023; 12:antibiotics12010147. [PMID: 36671348 PMCID: PMC9854778 DOI: 10.3390/antibiotics12010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The plasmid-mediated tigecycline resistance gene tet(X4) confers a high level of resistance to tigecycline. The experiment aims to investigate the prevalence and characterization of tet(X4) in Escherichia coli isolates from chicken and pig farms in Hunan province, China. METHODS A total of six tet(X4) positive strains were identified in 257 E. coli derived from chicken samples in Xiangtan city (n = 2), pig samples in Xiangxiang city (n = 1), Chenzhou city (n = 2), and Zhuzhou city (n = 1). The presence of tet(X4) was directly detected by PCR assay, and then the broth dilution method determined the antimicrobial susceptibility profile of the tet(X4)-positive isolates. Genomic locations were identified by whole-genome sequencing (WGS) and bioinformatics. RESULTS Almost all tet(X4)-positive strains showed high resistance to multidrug, including tigecycline. Resistome analysis revealed many antibiotic resistance genes, including those with resistance to tetracyclines, β-lactams, phenicols, quinolones, lincosamides chloramphenicol, aminoglycosides and sulfamids. These tet(X4)-bearing strains exhibited six distract STs, such as ST10, 202, ST218, ST362, ST2077, ST7068. The plasmid replicon types carrying tet(X4) were the hybrid plasmid IncFIA(HI1)/IncHIA/IncHIB(R27) (5/6) and IncX1 (1/6). CONCLUSIONS The presence of similar genetic environments in E. coli from different cities suggests there may be horizontal transmission pathways promoting the broad spread of drug-resistant genes in Hunan Province, putting great pressure on multidrug resistance monitoring.
Collapse
|
13
|
Li Y, Li Y, Bu K, Wang M, Wang Z, Li R. Antimicrobial Resistance and Genomic Epidemiology of tet(X4)-Bearing Bacteria of Pork Origin in Jiangsu, China. Genes (Basel) 2022; 14:36. [PMID: 36672777 PMCID: PMC9858217 DOI: 10.3390/genes14010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The emergence of tigecycline-resistant bacteria in agri-food chains poses a public health concern. Recently, plasmid-mediated tet(X4) was found to be resistant to tigecycline. However, genome differences between tet(X4)-positive Escherichia coli of human and pork origins are still under-investigated. In this study, 53 pork samples were collected from markets in Jiangsu, China, and 23 tet(X4)-positive isolates were identified and shown to confer resistance to multiple antibiotics, including tigecycline. tet(X4)-positive isolates were mainly distributed in E. coli (n = 22), followed by Klebsiella pneumoniae (n = 1). More than half of the tet(X4) genes were able to be successfully transferred into E. coli C600. We downloaded all tet(X4)-positive E. coli isolates from humans and pork found in China from the NCBI database. A total of 42 known STs were identified, of which ST10 was the dominant ST. The number of ARGs and plasmid replicons carried by E. coli of human origin were not significantly different from those carried by E. coli of pork origin. However, the numbers of insertion sequences and virulence genes carried by E. coli of human origin were significantly higher than those carried by E. coli of pork origin. In addition to E. coli, we analyzed all 23 tet(X4)-positive K. pneumoniae strains currently reported. We found that these tet(X4)-positive K. pneumoniae were mainly distributed in China and had no dominant STs. This study systematically investigated the tet(X4)-positive isolates, emphasizing the importance of the continuous surveillance of tet(X4) in pork.
Collapse
Affiliation(s)
- Yuhan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kefan Bu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mianzhi Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Dai S, Liu D, Han Z, Wang Y, Lu X, Yang M, Zhang Y. Mobile tigecycline resistance gene tet(X4) persists with different animal manure composting treatments and fertilizer receiving soils. CHEMOSPHERE 2022; 307:135866. [PMID: 35952780 DOI: 10.1016/j.chemosphere.2022.135866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The emergence of plasmid-mediated tigecycline-resistant genes [tet(X3)to tet(X6)] in animals and humans has raised serious concerns over their possible cross-environmental dissemination. However, behavior of these emerging mobile tet(X)-variant genes in manure treatment processes, particularly for different composting treatments, has not yet been studied. Here, we explored the environmental behavior of mobile tet(X)-variant genes in two typical manure composting treatments and amended soils based on a large-scale molecular investigation across eight provinces in China. Results showed that tet(X4) was the predominant mobile tet(X)-variant gene in fresh manure, natural and thermophilic composting products with both the highest detection frequency (82.5% ± 14.7%), and absolute abundance of tet(X4)[4.26 ± 0.09) × 1010] copies/g dry weight, followed by tet(X3), tet(X6), and tet(X5). The occurrence of all mobile tet(X)-variant genes, particularly tet(X4), in receiving soil following composting fertilizer application indicated their transmission from manure to soil. Paired-sampling strategy revealed no significant reduction in mobile tet(X)-variant genes by natural composting, while thermophilic composting exhibited clear efficacy in removing tet(X)-variant genes. After thermophilic composting, tet(X4) exhibited the lowest reduction (94.1%) compared with other mobile tet(X)-variant genes (96.9%-99.9%), which may be attributable to its significant correlation with ISCR2 (P < 0.05) facilitating its transfer to various hosts including persisted thermotolerant bacteria. Thus, tet(X4) showed better persistence in livestock-related environments. Collectively, this study highlights the importance of controlling the environmental dissemination of clinically relevant mobile tet(X)-variant genes by establishing a sound process and operational strategy.
Collapse
Affiliation(s)
- Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaofei Lu
- Beijing Zhongnong Tuba Biotechnology Research Institute Co., Ltd., Beijing, 100190, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Zhang S, Wen J, Wang Y, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Dissemination and prevalence of plasmid-mediated high-level tigecycline resistance gene tet (X4). Front Microbiol 2022; 13:969769. [PMID: 36246244 PMCID: PMC9557194 DOI: 10.3389/fmicb.2022.969769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
With the large-scale use of antibiotics, antibiotic resistant bacteria (ARB) continue to rise, and antibiotic resistance genes (ARGs) are regarded as emerging environmental pollutants. The new tetracycline-class antibiotic, tigecycline is the last resort for treating multidrug-resistant (MDR) bacteria. Plasmid-mediated horizontal transfer enables the sharing of genetic information among different bacteria. The tigecycline resistance gene tet(X) threatens the efficacy of tigecycline, and the adjacent ISCR2 or IS26 are often detected upstream and downstream of the tet(X) gene, which may play a crucial driving role in the transmission of the tet(X) gene. Since the first discovery of the plasmid-mediated high-level tigecycline resistance gene tet(X4) in China in 2019, the tet(X) genes, especially tet(X4), have been reported within various reservoirs worldwide, such as ducks, geese, migratory birds, chickens, pigs, cattle, aquatic animals, agricultural field, meat, and humans. Further, our current researches also mentioned viruses as novel environmental reservoirs of antibiotic resistance, which will probably become a focus of studying the transmission of ARGs. Overall, this article mainly aims to discuss the current status of plasmid-mediated transmission of different tet(X) genes, in particular tet(X4), as environmental pollutants, which will risk to public health for the "One Health" concept.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jinfeng Wen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Chen C, Huang PY, Cui CY, He Q, Sun J, Liu YH, Huang JL. Classification and molecular characteristics of tet(X)-carrying plasmids in Acinetobacter species. Front Microbiol 2022; 13:974432. [PMID: 36081799 PMCID: PMC9445619 DOI: 10.3389/fmicb.2022.974432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid dissemination of plasmid-mediated tet(X) genes in Acinetobacter species has compromised the clinical effectiveness of tigecycline, one of the last-resort antibiotics. However, the classification strategy and homology group of tet(X)-positive Acinetobacter spp. plasmids remain largely unknown. In this study, we classified them by genome-based replicon typing, followed by analyses of structural characteristics, transferability and in vivo effect. A total of 34 plasmids distributed in at least nine Acinetobacter species were collected, including three tet(X3)-positive plasmids and one tet(X6)-positive plasmid from our genome sequencing results. Among them, there were 28 plasmids carrying Rep_3 superfamily replicase genes and classified into six homology groups, consisting of GR31 (82.1%), GR26 (3.6%), GR41 (3.6%), GR59 (3.6%), and novel groups GR60 (3.6%) and GR61 (3.6%). Our tet(X3)-positive plasmids pYH16040-1, pYH16056-1, and pYH12068-1 belonged to the dominant GR31 group, whereas the tet(X6)-positive plasmid pYH12068-2 was unclassified. Structurally, all tet(X)-positive GR31 plasmids shared similar plasmid replication (repB), stability (parA and parB) and accessory modules [tet(X) and sul2], and 97.6% of plasmid-mediated tet(X) genes in Acinetobacter species were adjacent to ISCR2. Conjugation and susceptibility testing revealed pYH16040-1, pYH16056-1, and pYH12068-2, carrying plasmid transfer modules, were able to mediate the mobilization of multiple antibiotic resistance. Under the treatment of tigecycline, the mortality rate of Galleria mellonella infected by pYH16040-1-mediated tet(X3)-positive Acinetobacter spp. isolate significantly increased when compared with its plasmid-cured strain (p < 0.0001). The spread of such plasmids is of great clinical concern, more effects are needed and will facilitate the future analysis of tet(X)-positive Acinetobacter spp. plasmids.
Collapse
Affiliation(s)
- Chong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ping-Yu Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Qian He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jin-Lin Huang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Wang J, Lu MJ, Wang ZY, Jiang Y, Wu H, Pan ZM, Jiao X. Tigecycline-resistant Escherichia coli ST761 carrying tet(X4) in a pig farm, China. Front Microbiol 2022; 13:967313. [PMID: 36016796 PMCID: PMC9396132 DOI: 10.3389/fmicb.2022.967313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the prevalence and characterization of tet(X4) in Escherichia coli isolates from a pig farm in Shanghai, China, and to elucidate tet(X4) dissemination mechanism in this swine farm. Forty-nine (80.33%) E. coli strains were isolated from 61 samples from a pig farm and were screened for the presence of tet(X). Among them, six (12.24%) strains were positive for tet(X4) and exhibited resistance to tigecycline (MIC ≥ 16 mg/L). They were further sequenced by Illumina Hiseq. Six tet(X4)-positive strains belonged to ST761 with identical resistance genes, resistance profiles, plasmid replicons, and cgMLST type except that additional ColE10 plasmid was present in isolate SH21PTE35. Isolate SH21PTE31, as a representative ST761 E. coli strain, was further sequenced using Nanopore MinION. The tet(X4) in SH21PTE31 was located on IncFIA18/IncFIB(K)/IncX1 hybrid plasmid pYUSHP31-1, highly similar to other tet(X4)-carrying IncFIA18/IncFIB(K)/IncX1 plasmids from ST761 E. coli and other E. coli lineages in China. These IncFIA18/IncFIB(K)/IncX1 plasmids shared closely related multidrug resistance regions, and could reorganize, acquire or lose resistance modules mediated by mobile elements such as ISCR2 and IS26. Phylogenetic analysis were performed including all tet(X4)-positive isolates obtained in this pig farm combined with 43 tet(X4)-positive E. coli from pigs, cow, pork, wastewater, and patients with the same ST from NCBI. The 50 tet(X4)-carrying E. coli ST761 isolates from different areas in China shared a close phylogenetic relationship (0-49 SNPs). In conclusion, clonal transmission of tet(X4)-positive E. coli ST761 has occurred in this swine farm. E. coli ST761 has the potential to become a high-risk clone for tet(X4) dissemination in China.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Meng-Jun Lu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Yue Jiang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Han Wu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhi-Ming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- *Correspondence: Xinan Jiao,
| |
Collapse
|
18
|
Zhai W, Tian Y, Shao D, Zhang M, Li J, Song H, Sun C, Wang Y, Liu D, Zhang Y. Fecal Carriage of Escherichia coli Harboring the tet(X4)-IncX1 Plasmid from a Tertiary Class-A Hospital in Beijing, China. Antibiotics (Basel) 2022; 11:antibiotics11081068. [PMID: 36009937 PMCID: PMC9405050 DOI: 10.3390/antibiotics11081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of the mobile tigecycline-resistance gene, tet(X4), poses a significant threat to public health. To investigate the prevalence and genetic characteristics of the tet(X4)-positive Escherichia coli in humans, 1101 human stool samples were collected from a tertiary class-A hospital in Beijing, China, in 2019. Eight E. coli isolates that were positive for tet(X4) were identified from clinical departments of oncology (n = 3), hepatology (n = 2), nephrology (n = 1), urology (n = 1), and general surgery (n = 1). They exhibited resistance to multiple antibiotics, including tigecycline, but remained susceptible to meropenem and polymyxin B. A phylogenetic analysis revealed that the clonal spread of four tet(X4)-positive E. coli from different periods of time or departments existed in this hospital, and three isolates were phylogenetically close to the tet(X4)-positive E. coli from animals and the environment. All tet(X4)-positive E. coli isolates contained the IncX1-plasmid replicon. Three isolates successfully transferred their tigecycline resistance to the recipient strain, C600, demonstrating that the plasmid-mediated horizontal gene transfer constitutes another critical mechanism for transmitting tet(X4). Notably, all tet(X4)-bearing plasmids identified in this study had a high similarity to several plasmids recovered from animal-derived strains. Our findings revealed the importance of both the clonal spread and horizontal gene transfer in the spread of tet(X4) within human clinics and between different sources.
Collapse
Affiliation(s)
- Weishuai Zhai
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yingxin Tian
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Dongyan Shao
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Muchen Zhang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiyun Li
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huangwei Song
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengtao Sun
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dejun Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (D.L.); (Y.Z.)
| | - Ying Zhang
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- Correspondence: (D.L.); (Y.Z.)
| |
Collapse
|