1
|
Manzer S, Thamm M, Hilsmann L, Krischke B, Steffan-Dewenter I, Scheiner R. The neonicotinoid acetamiprid reduces larval and adult survival in honeybees (Apis mellifera) and interacts with a fungicide mixture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124643. [PMID: 39097258 DOI: 10.1016/j.envpol.2024.124643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Plant protection products (PPPs), which are frequently used in agriculture, can be major stressors for honeybees. They have been found abundantly in the beehive, particularly in pollen. Few studies have analysed effects on honeybee larvae, and little is known about effects of insecticide-fungicide-mixtures, although this is a highly realistic exposure scenario. We asked whether the combination of a frequently used insecticide and fungicides would affect developing bees. Honeybee larvae (Apis mellifera carnica) were reared in vitro on larval diets containing different PPPs at two concentrations, derived from residues found in pollen. We used the neonicotinoid acetamiprid, the combined fungicides boscalid/dimoxystrobin and the mixture of all three substances. Mortality was assessed at larval, pupal, and adult stages, and the size and weight of newly emerged bees were measured. The insecticide treatment in higher concentrations significantly reduced larval and adult survival. Interestingly, survival was not affected by the high concentrated insecticide-fungicides-mixture. However, negative synergistic effects on adult survival were caused by the low concentrated insecticide-fungicides-mixture, which had no effect when applied alone. The lower concentrated combined fungicides led to significantly lighter adult bees, although the survival was unaffected. Our results suggest that environmental relevant concentrations can be harmful to honeybees. To fully understand the interaction of different PPPs, more combinations and concentrations should be studied in social and solitary bees with possibly different sensitivities.
Collapse
Affiliation(s)
- Sarah Manzer
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Markus Thamm
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lioba Hilsmann
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Beate Krischke
- Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ricarda Scheiner
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Tian Z, Qiao Y, Xie D, Puqian A, Zhang L, Cheng Y, Jiang X, Michaud JP. Trehalose metabolism mediates trade-offs between reproduction and survival in beet webworm, Loxostege sticticalis, under heat stress. PEST MANAGEMENT SCIENCE 2024. [PMID: 39435696 DOI: 10.1002/ps.8492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/10/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Temperature is an important determinant of developmental and reproductive rates in insects. Here, we investigated the physiological responses of adult beet webworm, Loxostege sticticalis L. (Lepidoptera: Crambidae), to three temperatures (16, 23 and 30 °C) focusing on trehalose metabolism. RESULTS Exposure of moths to 30 °C accelerated eclosion and ovarian development, but shortened the oviposition period and adult longevity, whereas exposure to 16 °C had opposite effects. Transcriptome analysis revealed that vitellogenin (VG) and vitellogenin receptor (VR) genes were up-regulated at 30 °C, as were numerous genes related to energy metabolism, including those involved in the insulin signaling pathway, the tricarboxylic acid (TCA) cycle, and glycolysis. Expression of the trehalose transporter gene TRET1 was also induced at high temperature, primarily in the ovaries, where trehalose content increased, accompanied by lipid degradation in the fat body. Treatment with the trehalase inhibitor validamycin A reduced female fecundity and longevity at 23 °C, but enhanced the expression of genes related to stress resistance and reproduction, mimicking the effect of high temperature. CONCLUSION Besides their practical utility for predicting the oviposition behavior and geographic distribution of L. sticticalis in the field, these results elucidate the various physiological roles of trehalose in L. sticticalis during exposure of moths to high temperature and may provide insights into the relationship between stress resistance and reproduction in insects more generally. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yijie Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dianjie Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - A Puqian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Station-Hays, Hays, KS, USA
| |
Collapse
|
3
|
Shi J, Wan N, Yang S, Yang Y, Han H. Which biofilm reactor is suitable for degradation of 2,4-dimethylphenol, focusing on bacteria, algae, or a combination of bacteria-algae? JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135492. [PMID: 39141938 DOI: 10.1016/j.jhazmat.2024.135492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Effectively treating phenolic substances is a crucial task in environmental protection. This study aims to determine whether bacterial-algae biofilm reactors offer superior treatment efficacy compared to traditional activated sludge and biofilm reactors. The average degradation ratios of 2,4-dimethylphenol (40, 70, 150, 300, and 230 mg/L) were found to be 98 %, 99 %, 92.1 %, 84.7 %, and 63.7 % respectively. The bacterial-algae biofilm demonstrates a higher tolerance to toxicity, assimilation ability, and efficacy recovery ability. The cell membrane of Chlorella in the bacteria-algae biofilm is not easily compromised, thus ensuring a stable pH environment. High concentrations of tightly bound extracellular polymers (TB-EPS) enhance the efficacy in treating toxic pollutants, promote the stable structure. Intact Chlorella, bacilli, and EPS were observed in bacterial-algal biofilm. The structural integrity of bacteria-algae consistently enhances its resistance to the inhibitory effects of high concentrations of phenolic compounds. Cloacibacterium, Comamonas, and Dyella were the main functional bacterial genera that facilitate the formation of bacterial-algal biofilms and the degradation of phenolic compounds. The dominant microalgal families include Aspergillaceae, Chlorellales, Chlorellaceae, and Scenedesmaceae have certain treatment effects on phenolic substances. Chlorellales and Chlorellaceae have the ability to convert NH4+-N. The Aspergillaceae is also capable of generating synergistic effects with Chlorellales, Chlorellaceae, and Scenedesmaceae, thereby establishing a stable bacterial-algal biofilm system.
Collapse
Affiliation(s)
- Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ning Wan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shuhui Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuanyuan Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Martínez-Medina A, Biere A, Pozo MJ. The imprint of microbe-induced plant resistance in plant-associated insects. TRENDS IN PLANT SCIENCE 2024; 29:1062-1065. [PMID: 38972784 DOI: 10.1016/j.tplants.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Beneficial microbes induce resistance in plants (MIR), imposing both lethal and sublethal effects on herbivorous insects. We argue that herbivores surviving MIR carry metabolic and immunological imprints of MIR with cascading effects across food webs. We propose that incorporating such cascading effects will strongly enhance the current MIR research framework.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Department of Plant-Microbe Interactions, Laboratory of Molecular Agroecology, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain.
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - María J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
5
|
Gunn JC, Christensen BM, Bueno EM, Cohen ZP, Kissonergis AS, Chen YH. Agricultural insect pests as models for studying stress-induced evolutionary processes. INSECT MOLECULAR BIOLOGY 2024; 33:432-443. [PMID: 38655882 DOI: 10.1111/imb.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Agricultural insect pests (AIPs) are widely successful in adapting to natural and anthropogenic stressors, repeatedly overcoming population bottlenecks and acquiring resistance to intensive management practices. Although they have been largely overlooked in evolutionary studies, AIPs are ideal systems for understanding rapid adaptation under novel environmental conditions. Researchers have identified several genomic mechanisms that likely contribute to adaptive stress responses, including positive selection on de novo mutations, polygenic selection on standing allelic variation and phenotypic plasticity (e.g., hormesis). However, new theory suggests that stress itself may induce epigenetic modifications, which may confer heritable physiological changes (i.e., stress-resistant phenotypes). In this perspective, we discuss how environmental stress from agricultural management generates the epigenetic and genetic modifications that are associated with rapid adaptation in AIPs. We summarise existing evidence for stress-induced evolutionary processes in the context of insecticide resistance. Ultimately, we propose that studying AIPs offers new opportunities and resources for advancing our knowledge of stress-induced evolution.
Collapse
Affiliation(s)
- Joe C Gunn
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| | - Blair M Christensen
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| | - Erika M Bueno
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| | - Zachary P Cohen
- Insect Control and Cotton Disease Research, USDA ARS, College Station, Texas, USA
| | | | - Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
6
|
Pamminger T, Basley K, Goulson D, Hughes WOH. Potential acetylcholine-based communication in honeybee haemocytes and its modulation by a neonicotinoid insecticide. PeerJ 2024; 12:e17978. [PMID: 39285925 PMCID: PMC11404474 DOI: 10.7717/peerj.17978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
There is growing concern that some managed and wild insect pollinator populations are in decline, potentially threatening biodiversity and sustainable food production on a global scale. In recent years, there has been increasing evidence that sub-lethal exposure to neurotoxic, neonicotinoid pesticides can negatively affect pollinator immunocompetence and could amplify the effects of diseases, likely contributing to pollinator declines. However, a direct pathway connecting neonicotinoids and immune functions remains elusive. In this study we show that haemocytes and non-neural tissues of the honeybee Apis mellifera express the building blocks of the nicotinic acetylcholine receptors that are the target of neonicotinoids. In addition, we demonstrate that the haemocytes, which form the cellular arm of the innate immune system, actively express choline acetyltransferase, a key enzyme necessary to synthesize acetylcholine. In a last step, we show that the expression of this key enzyme is affected by field-realistic doses of clothianidin, a widely used neonicotinoid. These results support a potential mechanistic framework to explain the effects of sub-lethal doses of neonicotinoids on the immune function of pollinators.
Collapse
Affiliation(s)
- Tobias Pamminger
- School of Life Sciences, University of Sussex, Brighton, UK
- Bayer AG, Monheim am Rhein, Germany
| | - Kate Basley
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, UK
| | | |
Collapse
|
7
|
Silva APN, Carvalho GA, Haddi K. The interplay between temperature and an insecticide mixture modulates the stimulatory response of sublethally exposed Myzus persicae. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:818-829. [PMID: 38990494 DOI: 10.1007/s10646-024-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Temperature can interact with chemical pesticides and modulate their toxicity. Sublethal exposure to pesticides is known to trigger hormetic responses in pests. However, the simultaneous effects of temperature and sublethal exposure to single or mixture-based insecticides on the insects' stimulatory responses are not frequently considered in toxicological studies. Here we investigated the combined effects of temperature on the lethal and sublethal responses of the green peach aphid Myzus persicae after exposure to commercial formulations of a neonicotinoid (thiamethoxam) and a pyrethroid (lambda-cyhalothrin) and their mixture. Firstly, the concentration-response curves of the insecticides were determined under four temperatures (15 °C, 20 °C, 25 °C, and 28 °C) by the leaf dipping method. Subsequently, the sublethal concentrations C0, CL1, CL5, CL10, CL15, CL20, and CL30 were selected to assess sublethal effects on aphids' longevity and reproduction under the same temperatures. The results showed that the mixture of thiamethoxam + lambda-cyhalothrin caused greater toxicity to aphids compared to the formulations with each active ingredient alone and that the toxicity was higher at elevated temperatures. Furthermore, the exposure to low concentrations of the mixture (thiamethoxam + lambda-cyhalothrin) and the separated insecticides induced stimulatory responses in the longevity and fecundity of exposed aphid females, but the occurrence of such hormetic responses depended on the insecticide type, its sublethal concentration, and the temperature as well as their interactions.
Collapse
Affiliation(s)
- Ana Paula Nascimento Silva
- Laboratory of Molecular Entomology and Ecotoxicology, Department of Entomology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Geraldo Andrade Carvalho
- Laboratory of Ecotoxicology and Integrated Pest Management, Department of Entomology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Khalid Haddi
- Laboratory of Molecular Entomology and Ecotoxicology, Department of Entomology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Liu S, Yang HL, Gao Y, Liu XY, Shi W, Liu DY, Yu JM, Li MY. Zeta class glutathione S-transferase is involved in phoxim tolerance and is potentially regulated by the transcription factor CncC in Agrotis ipsilon (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106106. [PMID: 39277410 DOI: 10.1016/j.pestbp.2024.106106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
The black cutworm, Agrotis ipsilon (Lepidoptera: Noctuidae), is an important agricultural pest. Phoxim is an organophosphate insecticide that has been widely used to control A. ipsilon. The extensive application of phoxim has resulted in a reduction in phoxim susceptibility in A. ipsilon. However, the molecular mechanisms underlying phoxim tolerance in A. ipsilon remain unclear. In this work, we report the involvement of AiGSTz1, a zeta class glutathione S-transferase, in phoxim tolerance in A. ipsilon. Exposure to a sublethal concentration (LC50) of phoxim dramatically upregulated the transcription level of the AiGSTz1 gene in A. ipsilon larvae, and this upregulation might be caused by phoxim-induced oxidative stress. The recombinant AiGSTz1 protein expressed in Escherichia coli was able to metabolize phoxim. Furthermore, AiGSTz1 displayed antioxidant activity to protect against oxidative stress. Knockdown of AiGSTz1 by RNA interference significantly increased the mortality rate of A. ipsilon larvae in response to phoxim. In addition, the transcription factor AiCncC can bind to the cap 'n' collar isoform C: muscle aponeurosis fibromatosis (CncC:Maf) binding site in the putative promoter of the AiGSTz1 gene. Silencing of AiCncC resulted in a dramatic downregulation of AiGSTz1. These results indicated that AiGSTz1 is involved in phoxim tolerance and is potentially regulated by AiCncC. These findings provide valuable insights into the defense mechanisms used by A. ipsilon against phoxim.
Collapse
Affiliation(s)
- Su Liu
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Hao-Lan Yang
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yu Gao
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xin-Yi Liu
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wen Shi
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Dong-Yang Liu
- Liangshan Branch of Sichuan Tobacco Corporation, Xichang 646600, China
| | - Jia-Min Yu
- Sichuan Tobacco Science Institute, Sichuan Branch of China National Tobacco Corporation, Chengdu 610041, China.
| | - Mao-Ye Li
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Liu Y, He L, Liu M, Wang Y, Li L, Gu L, Li J, Liu S, He Q. Different regulation strategies of anaerobic digestion by AC/CaO 2 and Fe 3O 4/CaO 2: Reactive oxygen species induction, methanogenic performance, and microbial response. BIORESOURCE TECHNOLOGY 2024; 406:130977. [PMID: 38897546 DOI: 10.1016/j.biortech.2024.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
This study examined the combination of activated carbon and magnetite with calcium peroxide in enhancing the anaerobic digestion (AD) performance of food waste (FW). The individual mechanisms of these two approaches were also clarified. The results indicated that AC/CaO2 achieved the highest specific methane yield of 434.4 mL/g VS, followed by Fe3O4/CaO2 (416.9 mL/g VS). Both were significantly higher than other groups (control, AC, Fe3O4, and CaO2 were 330.1, 341.4, 342.8, and 373.2 mL/g VS, respectively). Additionally, compared to Fe3O4/CaO2, AC/CaO2 further increased reactive oxygen species (ROS), thereby enhancing the hydrolytic acidification process. Simultaneously, the higher ROS levels of Fe3O4/CaO2 and AC/CaO2 promoted the formation of microbial aggregates and established a more robust enzymatic defense system and unique damage repair strategy. The research comparatively analyzed the synergistic mechanism of iron-based and carbon-based conductive materials with CaO2, providing new perspectives for optimizing the AD of FW.
Collapse
Affiliation(s)
- Yongli Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Linyan He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 174 Shapingba Road, 400045, PR China
| | - Yi Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| | - Jinze Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Shaowu Liu
- Chongqing Water Environment Group, 80 Huju Road, 400043, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| |
Collapse
|
10
|
Gul H, Güncan A, Ullah F, Desneux N, Liu X. Intergenerational Sublethal Effects of Flonicamid on Cotton Aphid, Aphis gossypii: An Age-Stage, Two-Sex Life Table Study. INSECTS 2024; 15:529. [PMID: 39057262 PMCID: PMC11277007 DOI: 10.3390/insects15070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Flonicamid is a novel systemic insecticide widely used against aphids. However, the intergenerational sublethal effects of flonicamid on cotton aphid, Aphis gossypii, have not been fully studied. This study aimed to evaluate the sublethal effects of flonicamid on the biological parameters of adult A. gossypii (F0) and its subsequent intergenerational effects on the offspring (F1 generation) through age-stage, two-sex life table analysis. The results of the bioassays indicate that flonicamid exhibits significant toxicity toward adult A. gossypii, as evidenced by an LC50 value of 0.372 mg L-1 after a 48-h exposure period. The longevity, fecundity, and reproductive days of adult cotton aphids (F0) were significantly decreased when treated with the sublethal concentrations of flonicamid. The pre-adult stage exhibited an increase, whereas the adult longevity, total longevity, and fecundity experienced a notable decrease in F1 aphids after the exposure of F0 aphids to sublethal concentrations of flonicamid. Furthermore, the key demographic parameters, including r, λ, R0, and RPd, showed a significant decrease, while the total pre-reproductive period (TPRP) experienced a significant increase in the F1 generation. Collectively, our findings indicate that sublethal concentrations of flonicamid impact the demographic parameters of A. gossypii, resulting in suppression of population growth. This study presents comprehensive information on the overall impact of flonicamid on A. gossypii, which could potentially aid in managing this major pest.
Collapse
Affiliation(s)
- Hina Gul
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Ali Güncan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, 52200 Ordu, Turkey;
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Nicolas Desneux
- Université Côte d’Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Xiaoxia Liu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
11
|
Ghani MU, Yang Z, Feng T, Chen J, Khosravi Z, Wu Q, Cui H. Comprehensive review on glucose 6 phosphate dehydrogenase: A critical immunometabolic and redox switch in insects. Int J Biol Macromol 2024; 273:132867. [PMID: 38838892 DOI: 10.1016/j.ijbiomac.2024.132867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Mounting an active immune response is energy intensive and demands the reallocation of nutrients to maintain the body's resistance and tolerance against infections. Central to this metabolic adaptation is Glucose-6-phosphate dehydrogenase (G6PDH), a housekeeping enzyme involve in pentose phosphate pathway (PPP). PPP play an essential role in generating ribose, which is critical for nicotinamide adenine dinucleotide phosphate (NADPH). It is vital for physiological and cellular processes such as generating nucleotides, fatty acids and reducing oxidative stress. The G6PDH is extremely conserved enzyme across species in PP shunt. The deficiency of enzymes leads to serious consequences on organism, particularly on adaptation and development. Acute deficiency can lead to impaired cell development, halted embryonic growth, reduce sensitivity to insulin, hypertension and increase inflammation. Historically, research focusing on G6PDH and PPP have primarily targeted diseases on mammalian. However, our review has investigated the unique functions of the G6PDH enzyme in insects and greatly improved mechanistic understanding of its operations. This review explore how G6PDH in insects plays a crucial role in managing the redox balance and immune related metabolism. This study aims to investigate the enzyme's role in different metabolic adaptations.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Zihan Yang
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tianxiang Feng
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qishu Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
12
|
Yang CL, Meng JY, Zhou JY, Zhang JS, Zhang CY. Integrated transcriptomic and proteomic analyses reveal the molecular mechanism underlying the thermotolerant response of Spodoptera frugiperda. Int J Biol Macromol 2024; 264:130578. [PMID: 38432264 DOI: 10.1016/j.ijbiomac.2024.130578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a highly destructive invasive pest with remarkable adaptability to extreme climatic conditions, posing a substantial global threat. Although the effects of temperature stress on the biological and ecological properties of S. frugiperda have been elucidated, the molecular mechanisms underlying its responses remain unclear. Herein, we combined transcriptomic and proteomic analyses to explore the key genes and proteins involved in thermotolerance regulation in S. frugiperda larvae at 42 °C. Overall, 1528 differentially expressed genes (DEGs) and 154 differentially expressed proteins (DEPs) were identified in S. frugiperda larvae under heat stress, including antioxidant enzymes, heat shock proteins (Hsps), cytochrome P450s, starch and sucrose metabolism genes, and insulin signaling pathway genes, indicating their involvement in heat tolerance regulation. Correlation analysis of DEGs and DEPs revealed that seven and eight had the same and opposite expression profiles, respectively. After nanocarrier-mediated RNA interference knockdown of SfHsp29, SfHsp20.4, SfCAT, and SfGST, the body weight and mortality of S. frugiperda larvae significantly decreased and increased under heat stress, respectively. This indicates that SfHsp29, SfHsp20.4, SfCAT, and SfGST play a crucial role in the thermotolerance of S. frugiperda larvae. These results provide insight into the mechanism of heat tolerance in S. frugiperda.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, China
| | - Jian-Yun Zhou
- Guiyang Tobacco Company Kaiyang Branch, Guiyang, Guizhou 550300, China
| | - Jin-Shan Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
13
|
Gul H, Haq IU, Ullah F, Khan S, Yaseen A, Tariq K, Güncan A, Desneux N, Liu X. Hormetic effects of thiamethoxam on Schizaphis graminum: demographics and feeding behavior. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:253-265. [PMID: 38468020 PMCID: PMC11009746 DOI: 10.1007/s10646-024-02743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
In agroecosystems, insects contend with chemical insecticides often encountered at sublethal concentrations. Insects' exposure to these mild stresses may induce hormetic effects, which has consequences for managing insect pests. In this study, we used an electrical penetration graph (EPG) technique to investigate the feeding behavior and an age-stage, two-sex life table approach to estimate the sublethal effects of thiamethoxam on greenbug, Schizaphis graminum. The LC5 and LC10 of thiamethoxam significantly decreased longevity and fecundity of directly exposed adult aphids (F0). However, the adult longevity, fecundity, and reproductive days (RPd)-indicating the number of days in which the females produce offspring - in the progeny generation (F1) exhibited significant increase when parental aphids (F0) were treated with LC5 of the active ingredient. Subsequently, key demographic parameters such as intrinsic rate of increase (r) and net reproductive rate (R0) significantly increased at LC5 treatment. EPG recordings showed that total durations of non-probing (Np), intercellular stylet pathway (C), and salivary secretion into the sieve element (E1) were significantly increased, while mean duration of probing (Pr) and total duration of phloem sap ingestion and concurrent salivation (E2) were decreased in F0 adults exposed to LC5 and LC10. Interestingly, in the F1 generation, total duration of Np was significantly decreased while total duration of E2 was increased in LC5 treatment. Taken together, our results showed that an LC5 of thiamethoxam induces intergenerational hormetic effects on the demographic parameters and feeding behavior of F1 individuals of S. graminum. These findings have important implications on chemical control against S. graminum and highlight the need for a deeper understanding of the ecological consequences of such exposures within pest management strategies across the agricultural landscapes.
Collapse
Affiliation(s)
- Hina Gul
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ihsan Ul Haq
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, Pakistan
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shanza Khan
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, Pakistan
| | - Aqsa Yaseen
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, Pakistan
| | - Kaleem Tariq
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ali Güncan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, 52200, Ordu, Turkey.
| | | | - Xiaoxia Liu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Yang HL, Yu JM, Cao F, Li WY, Li B, Lei X, Li SG, Liu S, Li MY. Unclassified glutathione-S-transferase AiGSTu1 confers chlorantraniliprole tolerance in Agrotis ipsilon. PEST MANAGEMENT SCIENCE 2024; 80:1107-1117. [PMID: 37862262 DOI: 10.1002/ps.7841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Chlorantraniliprole (CAP) is a diamide insecticide with high efficacy against many pest insects, including the black cutworm, Agrotis ipsilon. Agrotis ipsilon is a serious pest causing significant yield losses in crops. Glutathione-S-transferases (GSTs) belong to a family of metabolic enzymes that can detoxify a wide range of pesticides. However, little is known about the functions of GSTs in CAP tolerance in A. ipsilon. RESULTS A cDNA sequence (designated AiGSTu1) encoding an unclassified GST was identified from A. ipsilon. AiGSTu1 is highly expressed during the 3rd -instar larval and the pupal stages. Most of the mRNA transcripts were found in larval Malpighian tubules. Exposure to CAP strongly enhanced AiGSTu1 expression, GST activity, hydrogen peroxide (H2 O2 ) and malondialdehyde levels in larvae. H2 O2 treatment upregulated the transcription level of AiGSTu1, suggesting that CAP-induced oxidative stress may activate AiGSTu1 expression. The activity of recombinant AiGSTu1 was inhibited by CAP in a dose-dependent manner. Metabolism assay results demonstrated that AiGSTu1 is capable of depleting CAP. Overexpression of AiGSTu1 enhanced the tolerance of Escherichia coli cells to H2 O2 and the oxidative stress inducer, cumene hydroperoxide. Silencing of AiGSTu1 by RNA interference increased the susceptibility of A. ipsilon larvae to CAP. CONCLUSION The findings of this study provide valuable insights into the potential role of AiGSTu1 in CAP detoxification and will improve our understanding of CAP tolerance in A. ipsilon. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao-Lan Yang
- Key Laboratory of Agri-Products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jia-Min Yu
- Sichuan Branch of China National Tobacco Corporation, Chengdu, China
| | - Fu Cao
- Key Laboratory of Agri-Products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Wu-Ye Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Bin Li
- Sichuan Branch of China National Tobacco Corporation, Chengdu, China
| | - Xiao Lei
- Luzhou Branch of Sichuan Tobacco Corporation, Luzhou, China
| | - Shi-Guang Li
- Key Laboratory of Agri-Products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Liu
- Key Laboratory of Agri-Products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Mao-Ye Li
- Key Laboratory of Agri-Products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Yuan L, Li T, Huang Y, Zhang A, Yan S, Jiang D. Identification and potential application of key insecticidal metabolites in Tilia amurensis, a low-preference host of Hyphantria cunea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105796. [PMID: 38458667 DOI: 10.1016/j.pestbp.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 03/10/2024]
Abstract
Developing effective insecticidal strategies is an important means of reducing the spread and host plant damage by Hyphantria cunea. In this study, key metabolites with insecticidal activity against H. cunea were screened by targeted metabolomics in Tilia amurensis, a low-preference host plant. Subsequently, the potential of key metabolites that could be used as botanical pesticides was evaluated. The results showed that coumarin was the key insecticidal metabolite of T. amurensis and had a significant insecticidal effect and weight inhibition effect on H. cunea larvae. Coumarin treatment significantly decreased the larval nutrient content and the gene expression of rate-limiting enzymes in the glycolytic pathway and tricarboxylic acid cycle. A significantly enhanced detoxification enzyme activity (CarE and GST), antioxidant oxidase activity (SOD and CAT), non-enzymatic antioxidant levels (GSH), and total antioxidant capacity were observed in coumarin-treated larvae. Coumarin treatment resulted in a significant increase in the expression levels of detoxification enzyme genes (CarE1, CarE2, CarE3, GST2, and GST3) and antioxidant oxidase genes (SOD1, CAT1, and CAT2) in H. cunea larvae. Coumarin treatment significantly increased the levels of MDA and H2O2 in larvae but did not cause pathological changes in the ultrastructure of the larval midgut. Coumarin solution sprayed directly or as a microcapsule suspension formulation with coumarin as the active ingredient had significant insecticidal activity against the H. cunea larvae. Overall, coumarin, a key anti-insect metabolite identified from T. amurensis, can significantly inhibit the growth and survival of H. cunea larvae and has the potential to be developed as a botanical pesticide.
Collapse
Affiliation(s)
- Lisha Yuan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Tao Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yi Huang
- Heilongjiang Forestry Vocational Technical College, Mudanjiang 157011, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
16
|
Agathokleous E, Rillig MC, Peñuelas J, Yu Z. One hundred important questions facing plant science derived using a large language model. TRENDS IN PLANT SCIENCE 2024; 29:210-218. [PMID: 37394309 DOI: 10.1016/j.tplants.2023.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
Artificial intelligence (AI) is advancing rapidly and continually evolving in various fields. Recently, the release of ChatGPT has sparked significant public interest. In this study, we revisit the '100 Important Questions Facing Plant Science' by leveraging ChatGPT as a valuable tool for generating thought-provoking questions relevant to plant science. These questions primarily revolve around the utilization of plants in product development, understanding plant mechanisms, plant-environment interactions, and enhancing plant traits, with an emphasis on sustainable product development. While ChatGPT may not capture certain crucial aspects highlighted by scientists, it offers valuable insights into the questions generated by experts. Our analysis demonstrates that ChatGPT can be cautiously employed as a supportive tool to facilitate, streamline, and expedite specific tasks in plant science.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China.
| | - Matthias C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, D-14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain; CREAF, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Zhen Yu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China.
| |
Collapse
|
17
|
Margus A, Tikka S, Karvanen J, Lindström L. Transgenerational sublethal pyrethroid exposure gives rise to insecticide resistance in a pest insect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168114. [PMID: 37907109 DOI: 10.1016/j.scitotenv.2023.168114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
The evolution of insecticide resistance has been attributed to strong directional selection by lethal concentrations of insecticides, but there is growing evidence that sublethal doses may also modify resistance through the hormetic effects. Hormesis is a beneficial effect caused by exposure to low doses. However, the role of parental (transgenerational) effects on hormesis, and through that on insecticide resistance, is still unclear. We investigated the effects of several sublethal pyrethroid insecticide (Decis) doses on survival, body mass, and reproduction within four generations (F0, F1, F2, and F3) of the Colorado potato beetle (Leptinotarsa decemlineata). We found that insecticide exposure had mostly linear adverse within-generation effects: decreased larva-to-adult survival, adult body mass, and egg hatching. However, transgenerational exposure led to hormetic effects: increased larva-to-adult survival and pre-diapause adult body mass. Moreover, transgenerational effects were even more positive for offspring exposed to insecticides, leading to decreased larva-to-adult survival, increased body mass, and egg hatching. Our results show that despite mostly negative within-generation effects, transgenerational sublethal exposure to insecticide can cause unwanted positive hormetic effects in their offspring, making them to resist or tolerate the insecticides better, even though the underlying mechanisms are still unclear.
Collapse
Affiliation(s)
- Aigi Margus
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland.
| | - Santtu Tikka
- Department of Mathematics and Statistics, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| | - Juha Karvanen
- Department of Mathematics and Statistics, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| | - Leena Lindström
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| |
Collapse
|
18
|
Wu P, Huang Y, Zheng J, Zhang Y, Qiu L. Regulation of CncC in insecticide-induced expression of cytochrome P450 CYP9A14 and CYP6AE11 in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105707. [PMID: 38072560 DOI: 10.1016/j.pestbp.2023.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The expression of many detoxification genes can be regulated by CncC pathway and contributes to insecticide tolerance in insects. Our previous study has demonstrated that the transcripts of CncC and cytochrome P450s (CYP9A14, CYP6AE11) were significantly up-regulated after different insecticides treatment in Helicoverpa armigera. Further study indicated that H2O2, GSH, and MDA contents and antioxidant enzyme activities of H. armigera were enhanced after chlorantraniliprole, cyantraniliprole, indoxacarb, and spinosad exposure. Silencing CncC by RNA interference significantly down-regulated the expression levels of CYP9A14 and CYP6AE11, and increased the susceptibility of dsRNA-injected larvae to λ-cyhalothrin, chlorantraniliprole, and cyantraniliprole. On the contrary, applying CncC agonist curcumin on H. armigera induced the expression of CYP9A14 and CYP6AE11, and enhanced the tolerance of H. armigera to insecticides. Treatment of ROS scavenger N-acetylcysteine on H. armigera reduced the H2O2 content and antioxidant enzyme activities, suppressed the transcripts of CncC, CYP9A14, and CYP6AE11, and decreased the larval tolerance to insecticides. These results demonstrated that the induced-expression of CYP9A14 and CYP6AE11 related with insecticides tolerance in H. armigera was regulated by CncC, which may be activated by ROS generated by insecticides. This study will help to better understand the underlying regulation mechanisms of CncC pathway in H. armigera tolerance to insecticides.
Collapse
Affiliation(s)
- Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Agathokleous E, Blande JD, Masui N, Calabrese EJ, Zhang J, Sicard P, Guedes RNC, Benelli G. Sublethal chemical stimulation of arthropod parasitoids and parasites of agricultural and environmental importance. ENVIRONMENTAL RESEARCH 2023; 237:116876. [PMID: 37573021 DOI: 10.1016/j.envres.2023.116876] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
An increasing number of studies have reported stimulation of various organisms in the presence of environmental contaminants. This has created a need to critically evaluate sublethal stimulation and hormetic responses of arthropod parasitoids and parasites following exposure to pesticides and other contaminants. Examining this phenomenon with a focus on arthropods of agricultural and environmental importance serves as the framework for this literature review. This review shows that several pesticides, with diverse chemical structures and different modes of action, applied individually or in combination at sublethal doses, commonly stimulate an array of arthropod parasitoids and parasites. Exposure at sublethal doses can enhance responses related to physiology (e.g., respiration, total lipid content, and total protein content), behavior (e.g., locomotor activity, antennal drumming frequency, host location, and parasitization), and fitness (longevity, growth, fecundity, population net and gross reproduction). Concordantly, the parasitic potential (e.g., infestation efficacy, parasitization rate, and parasitoid/parasite emergence) can be increased, and as a result host activities inhibited. There is some evidence illustrating hormetic dose-responses, but the relevant literature commonly included a limited number and range of doses, precluding a robust differentiation between sub- and superNOAEL (no-observed-adverse-effect level) stimulation. These results reveal a potentially significant threat to ecological health, through stimulation of harmful parasitic organisms by environmental contaminants, and highlight the need to include sublethal stimulation and hormetic responses in relevant ecological pesticide risk assessments. Curiously, considering a more utilitarian view, hormesis may also assist in optimizing mass rearing of biological control agents for field use, a possibility that also remains neglected.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Noboru Masui
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 4228526, Japan
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | | | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
20
|
Agathokleous E, Blande JD, Calabrese EJ, Guedes RNC, Benelli G. Stimulation of insect vectors of pathogens by sublethal environmental contaminants: A hidden threat to human and environmental health? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122422. [PMID: 37604394 DOI: 10.1016/j.envpol.2023.122422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Sublethal stimulation and hormetic responses are increasingly identified and acknowledged in scientific research. However, the occurrence and characteristics of such responses in insect vectors of pathogens are little explored and poorly understood. Here, we collate significant evidence from the scientific literature showing that sublethal doses of environmental contaminants, such as pesticides, microplastics, and plasticizers, induce stimulation and hormetic responses in insect vectors of pathogens of agricultural and public health importance, including mosquitoes, other dipterans, psyllids, aphids, and planthoppers. Physiological, behavioral, and demographic traits can be enhanced by exposure to lower subtoxic contaminant doses while being inhibited by higher toxic doses. Energetic trade-offs can also occur, especially at sublethal doses higher than the no-observed-adverse-effect level (NOAEL). The relevant literature is limited and so are the number of doses commonly included in the studies, precluding firm conclusions and enhanced understanding. Nevertheless, these effects are significant and could undermine human and environmental health, and thus sustainability agendas, if ultimately the transmission of pathogens and disease spread and severity are increased. Further research is urgently needed to tackle these phenomena, especially under field conditions. The findings discussed here are relevant to chemical risk assessment and chemical safety evaluations, in which all possible effects from the lowest to higher doses should be considered.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA, 01003, USA
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
21
|
Margus A, Saifullah S, Kankare M, Lindström L. Fungicides modify pest insect fitness depending on their genotype and population. Sci Rep 2023; 13:17879. [PMID: 37857705 PMCID: PMC10587347 DOI: 10.1038/s41598-023-44838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Fungicides are the most sold pesticide group, with an 8% increase in sales in Europe within the last decade. While adverse short-term fungicide effects on non-target insect species have been reported, the long-term effects and their impact on fitness are unclear. As the effects may depend on both the fungicide and the genetic background of the species, we investigated the effects of the commonly used fungicide, fluazinam, on the Colorado potato beetle's life history traits, and whether the effects were dependent on a previously characterized insecticide resistance mutation (S291G in acetylcholinesterase-2 gene) in different populations. Our findings show that fungicide exposure can have both negative and positive, long-lasting effects on beetles, depending on the parental insecticide resistance status and population. In the Belchow population, individuals carrying resistance mutation had higher survival, but they produced offspring with lower egg-hatching rates. While, in the Vermont population, fungicide exposure increased the body mass and offspring quality in the beetles carrying resistance mutation but did not affect the beetles' survival. Our results suggest that commonly used fungicides can have both negative and positive effects on pest insects' life-history, however, their impact may differ depending on the population and parental genetic background.
Collapse
Affiliation(s)
- Aigi Margus
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Shahed Saifullah
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
22
|
Agathokleous E, Sonne C, Benelli G, Calabrese EJ, Guedes RNC. Low-dose chemical stimulation and pest resistance threaten global crop production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162989. [PMID: 36948307 DOI: 10.1016/j.scitotenv.2023.162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Pesticide resistance increases and threatens crop production sustainability. Chemical contamination contributes to the development of pest resistance to pesticides, in part by causing stimulatory effects on pests at low sub-toxic doses and facilitating the spread of resistance genes. This article discusses hormesis and low-dose biological stimulation and their relevance to crop pest resistance. It highlights that a holistic approach is needed to tackle pest resistance to pesticides and reduce imbalance in accessing food and improving food security in accordance with the UN's Sustainable Development Goals. Among others, the effects of sub-toxic doses of pesticides should be considered when assessing the impact of synthetic and natural pesticides, while the promotion of alternative agronomical practices is needed to decrease the use of agrochemicals. Potential alternative solutions include camo-cropping, exogenous application of phytochemicals that are pest-suppressing or -repelling and/or attractive to carnivorous arthropods and other pest natural enemies, and nano-technological innovations. Moreover, to facilitate tackling of pesticide resistance in poorer countries, less technology-demanding and low-cost practices are needed. These include mixed cropping systems, diversification of cultures, use of 'push-pull cropping', incorporation of flower strips into cultivations, modification of microenvironment, and application of beneficial microorganisms and insects. However, there are still numerous open questions, and more research is needed to address the ecological and environmental effects of many of these potential solutions, with special reference to trophic webs.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
23
|
Regalado L, Sario S, Mendes RJ, Valle J, Harvey PJ, Teixeira C, Gomes P, Andreu D, Santos C. Towards a Sustainable Management of the Spotted-Wing Drosophila: Disclosing the Effects of Two Spider Venom Peptides on Drosophila suzukii. INSECTS 2023; 14:533. [PMID: 37367349 DOI: 10.3390/insects14060533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The spotted-wing drosophila (Drosophila suzukii) is a polyphagous pest that causes severe damage and economic losses to soft-skinned fruit production. Current control methods are dominated by inefficient cultural practices and broad-spectrum insecticides that, in addition to having toxic effects on non-target organisms, are becoming less effective due to acquired resistance. The increasing awareness of the real impact of insecticides on health and the environment has promoted the exploration of new insecticidal compounds, addressing novel molecular targets. This study explores the efficacy of two orally delivered spider venom peptides (SVPs), J-atracotoxin-Hv1c (Hv1c) and µ-theraphotoxin-Hhn2b (TRTX), to manage D. suzukii, through survival assays and the evaluation of gene expression associated with detoxification pathways. Treatment with TRTX at 111.5 µM for 48 h enhanced fly longevity compared with the control group. Gene expression analysis suggests that detoxification and stress-related mechanisms, such as expression of P450 proteins and apoptotic stimuli signaling, are triggered in D. suzukii flies in response to these treatments. Our results highlight the potential interest of SVPs to control this pest, shedding light on how to ultimately develop improved target-specific formulations.
Collapse
Affiliation(s)
- Laura Regalado
- iB2, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - Sara Sario
- iB2, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - Rafael J Mendes
- iB2, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - Javier Valle
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08002 Barcelona, Spain
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cátia Teixeira
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08002 Barcelona, Spain
| | - Conceição Santos
- iB2, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Sciences, University of Porto, 4050-453 Porto, Portugal
| |
Collapse
|
24
|
Jameel M, Alam MF, Fatma H, Singh D, Khan MA, Qureshi MA, Javed S, Younus H, Jamal K, Siddique HR. Flubendiamide induced genetic and cellular damages directly influence the life cycle of the oriental leaf worm, Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105448. [PMID: 37248017 DOI: 10.1016/j.pestbp.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
Indiscriminate uses of insecticide greatly damage the environment as well as non-target organisms. Thus, multiple levels of bioassays can help better management of our environment. Flubendiamide is a phthalic acid diamide insecticide that ceases the function of insect muscle leading to paralysis and death. Here, we aimed to explore the effects of Flubendiamide on the life cycle of Spodoptera litura vis-a-vis the mode of action. Fourth instar larvae of the same age (120 ± 2 h) and size were fed with different concentrations (20-80 μg/mL) of Flubendiamide for 12-72 h. We performed a pharmacokinetics study, different biochemical assays, p450, Ecdysone receptor (EcR) and other genes expression analyses by Real-Time PCR and gross damages by Dye exclusion assay and histopathology. Our results demonstrate that the mean concentration of Flubendiamide after 48 h is 9.907 μg/mL and (i) altered the molting, metamorphosis, and reproduction at 80 μg/mL (24 h) (ii) increases all oxidative stress parameters (ROS/RNS, MDA, 8OHdG), decreases oxidative defense mechanisms (SOD, CAT, GST) at 80 μg/mL (48 h) and p450 in a time and concentration-dependent manner, (iii) activates CncC/Maf apoptotic pathways at 80 μg/mL concentration at 24 h while the expression declined from 48 h onwards, (iii) downregulates the EcR expression in a time and concentration-dependent manner, which might be responsible for disturbed molting, metamorphosis, and reproduction, and (iv) increase the expression of apoptotic genes (Caspase 1, -3, and - 5), in time and concentration-dependent manner causing gross morphological and histological damages. In conclusion, indiscriminate use of this insecticide can affect the ecosystem and have the capacity to cause multiple hazardous effects on experimental organisms. Thus, it warrants further investigations to improve and optimize the integrated pest management packages, including Flubendiamide for better management.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Md Fazle Alam
- Institute of Biomedical Science, Fudan University, Shanghai 200437, China; Department of Biomedical Sciences, College of Rockford, University of Illinois, Chicago, United States of America
| | - Homa Fatma
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Deepti Singh
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Mohd Aamir Qureshi
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Saleem Javed
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Khowaja Jamal
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| | - Hifzur R Siddique
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
25
|
Sun X, Anoopkumar AN, Aneesh EM, Madhavan A, Binod P, Kuddus M, Pandey A, Sindhu R, Awasthi MK. Hormesis-tempting stressors driven by evolutionary factors for mitigating negative impacts instigated over extended exposure to chemical elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121246. [PMID: 36764380 DOI: 10.1016/j.envpol.2023.121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The adaptive responses to moderate environmental challenges by the biological systems have usually been credited to hormesis. Since the hormetic biphasic dose-response illustrates a prominent pattern towards biological responsiveness, the studies concerning such aspects will get much more significance in risk assessment practices and toxicological evaluation research. From this point of view, the past few epochs have witnessed the extending recognition of the notion concerning hormesis. The extraction of its basic foundations of evolutionary perspectives-along with the probable underlying molecular and cellular mechanisms followed by the practical implications to enhance the quality of life. To get better and more effective output in this regard, the present article has evaluated the various observations of previous investigations. The intent of integrating the novel inferences concerning the hormesis-tempting stressors driven by predominant evolutionary factors for mitigating the adverse impacts that were prompted over frequent and continuous exposure to the various chemical elements. Such inferences can offer extensive insight into the implications concerning the risk assessment of hormesis.
Collapse
Affiliation(s)
- Xinwei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China
| | - A N Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Embalil Mathachan Aneesh
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Mohammed Kuddus
- Department of Biochemistry, University of Hail, Kingdom of Saudi Arabia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691 505, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China.
| |
Collapse
|
26
|
Frizzi F, Balzani P, Masoni A, Frasconi Wendt C, Marconi M, Rossi A, Santini G. Sub-lethal doses of imidacloprid alter food selection in the invasive garden ant Lasius neglectus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27501-27509. [PMID: 36385335 PMCID: PMC9995417 DOI: 10.1007/s11356-022-24100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Despite several restrictions to their use, neonicotinoid insecticides are still widely employed worldwide. Residual sub-lethal amounts of these chemicals can have detrimental effects on the behavior of non-target insects. Toxic effects on economically important species such as bees have been widely documented, but less is known about their toxic action on other social insects, such as ants. In this study, we assessed the effect of different sub-lethal doses of the neonicotinoid imidacloprid on the ability of colonies of the invasive ant Lasius neglectus to select the most profitable resource. We used Y-shaped mazes having an imidacloprid-polluted or an unpolluted sucrose solution on the two branches. Two sucrose (0.1 M, 0.5 M) and two imidacloprid (1 μg/ml, 10 μg/ml) concentrations were used. In parallel, we evaluated the marking activity of foragers who fed on the same solutions. We found that the 0.1 M sugar solution polluted with 1 μg/ml imidacloprid was significantly more frequently selected in binary choices experiments than the unpolluted resource. Moreover, the ingestion of the same combination of sugar and imidacloprid significantly increased the marking rate of foragers. The higher concentration of the pollutant had lower effects, probably because of the hormesis phenomenon. Results suggest that the lower sub-lethal dose of imidacloprid can lead ants to select again the polluted resource. This "active" selection of the pollutant may magnify the negative effects on the colonies. Due to their ecological role, any impairment of ant survival or behavior may have detrimental cascade effects on the whole ecosystem.
Collapse
Affiliation(s)
- Filippo Frizzi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto F.No., 50019, Florence, Italy.
| | - Paride Balzani
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto F.No., 50019, Florence, Italy
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší, 728/II, 38925, Vodňany, Czech Republic
| | - Alberto Masoni
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto F.No., 50019, Florence, Italy
| | - Clara Frasconi Wendt
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto F.No., 50019, Florence, Italy
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Matilde Marconi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto F.No., 50019, Florence, Italy
| | - Asia Rossi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto F.No., 50019, Florence, Italy
| | - Giacomo Santini
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto F.No., 50019, Florence, Italy
| |
Collapse
|
27
|
Graciani TS, Bandeira FO, Cardoso EJBN, Alves PRL. Influence of temperature and soil moisture on the toxic potential of clothianidin to collembolan Folsomia candida in a tropical field soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:82-92. [PMID: 36648631 DOI: 10.1007/s10646-023-02621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Climate change can alter the toxic effects of pesticides on soil invertebrates. However, the nature and magnitude of the influence of climatic factors on clothianidin impacts in tropical soils are still unknown. The influence of increasing atmospheric temperature and the reduction in soil moisture on the toxicity and risk of clothianidin (seed dressing formulation Inside FS®) were assessed through chronic toxicity tests with collembolans Folsomia candida in a tropical field soil (Entisol). The risk of clothianidin for collembolans was estimated using the Toxicity-Exposure Ratio (TER) approach. Organisms were exposed to increasing clothianidin concentrations at 20, 25 and 27 °C in combination with two soil moisture conditions (30 and 60% of the maximum water holding capacity-WHC). The effect of temperature and soil moisture content on clothianidin toxicity was verified through the number of F. candida juveniles generated after 28 days of exposure to the spiked soil. The toxicities estimated at 25 °C (EC50_30%WHC = 0.014 mg kg-1; EC50_60%WHC = 0.010 mg kg-1) and 27 °C (EC50_30%WHC = 0.006 mg kg-1; EC50_60%WHC = 0.007 mg kg-1) were 2.9-3.0-fold (25 °C) and 4.3-6.7-fold (27 °C) higher than those found at 20 °C (EC50_30%WHC = 0.040 mg kg-1; EC50_60%WHC = 0.030 mg kg-1), indicating that clothianidin toxicity increases with temperature. No clear influence of soil moisture content on clothianidin toxicity could be observed once the EC50 values estimated at 30% and 60% WHC, within the same temperature, did not significantly differ. A significant risk was detected in all temperatures and soil moisture scenarios studied, and the TER values indicate that the risk can increase with increasing temperatures. Our results revealed that temperature could overlap with soil moisture in regulating clothianidin toxicity and reinforce the importance of including climatic factors in the prospective risk assessment of pesticides.
Collapse
Affiliation(s)
| | - Felipe Ogliari Bandeira
- Department of Soil Science, Santa Catarina State University, Av. Luiz de Camões, 2090, 88520-000, Lages, SC, Brazil
| | | | - Paulo Roger Lopes Alves
- Federal University of Fronteira Sul, Av. Fernando Machado 108 E, 89802112, Chapecó, SC, Brazil.
| |
Collapse
|
28
|
Bueno EM, McIlhenny CL, Chen YH. Cross-protection interactions in insect pests: Implications for pest management in a changing climate. PEST MANAGEMENT SCIENCE 2023; 79:9-20. [PMID: 36127854 PMCID: PMC10092685 DOI: 10.1002/ps.7191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 05/20/2023]
Abstract
Agricultural insect pests display an exceptional ability to adapt quickly to natural and anthropogenic stressors. Emerging evidence suggests that frequent and varied sources of stress play an important role in driving protective physiological responses; therefore, intensively managed agroecosystems combined with climatic shifts might be an ideal crucible for stress adaptation. Cross-protection, where responses to one stressor offers protection against another type of stressor, has been well documented in many insect species, yet the molecular and epigenetic underpinnings that drive overlapping protective responses in insect pests remain unclear. In this perspective, we discuss cross-protection mechanisms and provide an argument for its potential role in increasing tolerance to a wide range of natural and anthropogenic stressors in agricultural insect pests. By drawing from existing literature on single and multiple stressor studies, we outline the processes that facilitate cross-protective interactions, including epigenetic modifications, which are understudied in insect stress responses. Finally, we discuss the implications of cross-protection for insect pest management, focusing on the consequences of cross-protection between insecticides and elevated temperatures associated with climate change. Given the multiple ways that insect pests are intensively managed in agroecosystems, we suggest that examining the role of multiple stressors can be important in understanding the wide adaptability of agricultural insect pests. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Erika M. Bueno
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Casey L. McIlhenny
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Yolanda H. Chen
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVTUSA
| |
Collapse
|
29
|
de Freitas STF, Rodrigues ARDS, Ataídes ACC, de Oliveira Menino GC, de Faria GS, Vitorino LC, Silva FG, Dyszy FH. Inhibitory effects of Serjania erecta on the development of Chrysodeixis includens. Sci Rep 2022; 12:14702. [PMID: 36038763 PMCID: PMC9424230 DOI: 10.1038/s41598-022-19126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The soybean looper, Chrysodeixis includens, is a primary soybean pest that reduces crop productivity. This work examined control of C. includens populations with methanolic extract of Serjania erecta, a native Cerrado plant, while minimizing risks to pollinators, natural enemies and the environment. Serjania erecta specimens were collected, identified, and subjected to methanol extraction. Bioassays were performed using newly hatched and second-instar caterpillars and different extract concentrations on the diet surface to obtain IC50 values. Two replicates, containing 10 caterpillars, were established in triplicate. The IC50 values were 4.15 and 6.24 mg of extract mL−1 for first-instar and second-instar caterpillars, respectively. These growth inhibition results informed the extract concentrations assessed in subsequent development inhibition assays, in which the pupal weight was higher under the control than under the treatments. Extract treatments increased the duration of the larval, pupal and total development. The potential of different concentrations of S. erecta extract to inhibit the enzymes carboxylesterases was also evaluated. Carboxylesterases activity decreased by 41.96 and 43.43% at 7.8 and 15.6 μg mL−1 extract, respectively. At 31.3 μg mL−1 extract, enzymatic activity was not detected. Overall, S. erecta leaf methanolic extract showed inhibitory potential against carboxylesterases.
Collapse
Affiliation(s)
- Samylla Tassia Ferreira de Freitas
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Agna Rita Dos Santos Rodrigues
- Instituto Federal de Sergipe (Campus Itabaiana), Avenida Padre Airton Gonçalves Lima, 1140 São Cristóvão, Itabaiana, 49500-543, Brazil
| | - Ana Cláudia Cardoso Ataídes
- Programa de Pós-Graduação em Agroquímica, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Gisele Cristina de Oliveira Menino
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Giselle Santos de Faria
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Luciana Cristina Vitorino
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil. .,Instituto Federal Goiano - Campus Rio Verde, Rodovia Sul Goiana, Zona Rural, s/n, Rio Verde, GO, 75901-970, Brasil.
| | - Fabiano Guimarães Silva
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Fábio Henrique Dyszy
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| |
Collapse
|
30
|
Agathokleous E, Barceló D, Aschner M, Azevedo RA, Bhattacharya P, Costantini D, Cutler GC, De Marco A, Docea AO, Dórea JG, Duke SO, Efferth T, Fatta-Kassinos D, Fotopoulos V, Ginebreda A, Guedes RNC, Hayes AW, Iavicoli I, Kalantzi OI, Koike T, Kouretas D, Kumar M, Manautou JE, Moore MN, Paoletti E, Peñuelas J, Picó Y, Reiter RJ, Rezaee R, Rinklebe J, Rocha-Santos T, Sicard P, Sonne C, Teaf C, Tsatsakis A, Vardavas AI, Wang W, Zeng EY, Calabrese EJ. Rethinking Subthreshold Effects in Regulatory Chemical Risk Assessments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11095-11099. [PMID: 35878124 DOI: 10.1021/acs.est.2c02896] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu China
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu China
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC; Barcelona 08034, Spain
- Catalan Institute for Water Research, ICRA-CERCA; Girona 17003, Spain
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine; Bronx, New York 10461, United States
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP); São Paulo CEP 13418-900, Brazil
| | - Prosun Bhattacharya
- KTH-international Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology; Stockholm SE-100 44, Sweden
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), UMR 7221 Muséum National d'Histoire Naturelle; CNRS, 7 Rue Cuvier, 75005 Paris, France
| | - G Christopher Cutler
- Department of Plant, Food, and Environmental Sciences, Agricultural Campus, Dalhousie University; Truro, Nova Scotia B2N 5E3, Canada
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova; Craiova 200349, Romania
| | - José G Dórea
- Faculdade de Ciências da Saúde, Universidade de Brasília; Brasília 70919-970, Brazil
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi; Mississippi 38677, United States
| | - Thomas Efferth
- Johannes Gutenberg University, Institute of Pharmaceutical and Biomedical Sciences, Department of Pharmaceutical Biology; Mainz 55128, Germany
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus; P.O. Box 20537, Nicosia 1678, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology; Lemesos 3603, Cyprus
| | - Antonio Ginebreda
- Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa;Viçosa, Minas Gerais 36570-900, Brazil
| | - A Wallace Hayes
- Center for Environmental/Occupational Risk Analysis & Management, University of South Florida, College of Public Health; Tampa, Florida 33612, United States
- Michigan State University; East Lansing, Michigan 48824, United States
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II; Naples 80131, Italy
| | | | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University; Sapporo, Hokkaido 060-8589, Japan
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, Larisa 41500, Greece
| | - Manish Kumar
- School of Engineering, University of Petroleum and Energy Studies; Dehradun 248007, India
| | - José E Manautou
- Pharmaceutical Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael N Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital; Truro TR1 3HD, U.K
- Plymouth Marine Laboratory; Plymouth, Devon PL1 3DH, U.K
- School of Biological & Marine Sciences, University of Plymouth; Plymouth PL 4 8AA, U.K
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems, National Research Council; Sesto Fiorentino 50019, Italy
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB; Bellaterra, Catalonia 08193, Spain
- CREAF; Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV; Valencia 46113, Spain
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio; San Antonio, Texas 78229, United States
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences,Mashhad 91779-43335, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 91779-43335, Iran
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management; Wuppertal 42285, Germany
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro; Aveiro 3810-193, Portugal
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, Biot 06410, France
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC); Roskilde DK-4000, Denmark
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University; Zhengzhou 450002, China
| | - Christopher Teaf
- Institute of Science & Public Affairs, Florida State University; Tallahassee, Florida 32306, United States
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete; Heraklion 71003, Greece
| | - Alexander I Vardavas
- Laboratory of Toxicology, Medical School, University of Crete; Heraklion 71003, Greece
| | - Wenjie Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University; Harbin 150040, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Science; Changchun 130102, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University; Guangzhou 511443, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts; Amherst, Massachusetts 01003, United States
| |
Collapse
|
31
|
Liu X, Lu Q, Du M, Xu Q, Wang D. Hormesis-Like Effects of Tetrabromobisphenol A on Anaerobic Digestion: Responses of Metabolic Activity and Microbial Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11277-11287. [PMID: 35905436 DOI: 10.1021/acs.est.2c00062] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA) has extensive applications in various fields; its release into ecosystems and the potential toxic effects on organisms are becoming major concerns. Here, we investigated the effects of TBBPA on anaerobic digestion, whose process is closely related to the carbon cycles under anaerobic conditions. The results revealed that TBBPA exhibited dose-dependent hormesis-like effects on methane production from glucose, i.e., the presence of 0.1 mg/L TBBPA increased the methane production rate by 8.79%, but 1.0-4.0 mg/L TBBPA caused 3.45-28.98% of decrement. We found that TBBPA was bound by the tyrosine-like proteins of the extracellular polymeric substances of anaerobes and induced the increase of reactive oxygen species, whose slight accumulation stimulated the metabolism activities but high accumulation increased the apoptosis of anaerobes. Owing to the differences between individual anaerobes in tolerance, TBBPA at 0.1 mg/L stimulated the acidogenesis and hydrogenotrophic methanogenesis, whereas higher levels (i.e., 1.0-4.0 mg/L) severely restrained all of the processes of acidogenesis, acetogenesis, and methanogenesis. Along with the accumulation of bisphenol A (BPA) produced from TBBPA by Longilinea sp. and Pseudomonas sp., the methanogenic pathway was partly shifted from acetate-dependent to hydrogen-dependent direction, and the activities of carbon monoxide dehydrogenase and acetyl-CoA decarbonylase/synthase were inhibited, while acetate kinase and F420 were hormetically affected. These findings elucidated the mechanism of anaerobic syntrophic consortium responses to TBBPA, supplementing the potential environmental risks of brominated flame retardants.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
32
|
Stahlschmidt ZR, Whitlock J, Vo C, Evalen P, D B. Pesticides in a warmer world: Effects of glyphosate and warming across insect life stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119508. [PMID: 35605834 DOI: 10.1016/j.envpol.2022.119508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate (GLY) is a broad-spectrum herbicide that is the most commonly applied pesticide in terrestrial ecosystems in the U.S. and, potentially, worldwide. However, the combined effects of warming associated with climate change and exposure to GLY and GLY-based formulations (GBFs) on terrestrial animals are poorly understood. Animals progress through several life stages (e.g., embryonic, larval, and juvenile stages) that may exhibit different sensitivities to stressors. Therefore, we factorially manipulated temperature and GLY/GBF exposure in the variable field cricket (Gryllus lineaticeps) during two life stages-nymphal development and adulthood-and examined key animal traits, such as developmental rate, body size, food consumption, reproductive investment, and lifespan. A thermal environment simulating future climate warming obligated several costs to fitness-related traits. For example, warming experienced during nymphal development reduced survival, adult body mass and size, and investment into flight capacity and reproduction. Warming experienced by adults reduced lifespan and growth rate. Alternatively, the effects of GBF exposure were more subtle, often context-dependent (e.g., effects were only detected in one sex or temperature regime), and were stronger during adult exposure relative to exposure during development. There was evidence of additive costs of warming and GBF exposure to rates of feeding and growth in adults. Yet, the negative effect of GBF exposure to adult lifespan did not occur in warming conditions, suggesting that ongoing climate change may obscure some of the costs of GBFs to non-target organisms. The effects of GLY alone (i.e., in the absence of proprietary surfactants found in commercial formulations) were non-existent. Animals will be increasingly exposed to warming and GBFs, and our results indicate that GBF exposure and warming can entail additive costs for an animal taxon (insects) that plays critical roles in terrestrial ecosystems.
Collapse
Affiliation(s)
| | - J Whitlock
- University of the Pacific, Stockton, CA, 95211, USA
| | - C Vo
- University of the Pacific, Stockton, CA, 95211, USA
| | - P Evalen
- University of the Pacific, Stockton, CA, 95211, USA
| | - Bui D
- University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
33
|
Deans C, Hutchison WD. Hormetic and transgenerational effects in spotted-wing Drosophila (Diptera: Drosophilidae) in response to three commonly-used insecticides. PLoS One 2022; 17:e0271417. [PMID: 35862486 PMCID: PMC9302851 DOI: 10.1371/journal.pone.0271417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Although insecticide formulations and spray rates are optimized to achieve lethal exposure, there are many factors in agricultural settings that can reduce the effective exposure of insect pests. These include weather patterns, timing of application, chemical degradation/volatilization, plant structural complexity, and resistant populations. While sub-lethal exposure to insecticides can still have negative impacts on pest populations, they can also lead to stimulatory, or hormetic, responses that can increase the fitness of surviving insects. Sub-lethal concentrations may also produce increased tolerance in the offspring of surviving adults through transgenerational effects. Sub-lethal effects are pertinent for the invasive fruit pest, spotted-wing Drosophila, Drosophila suzukii (Matsumura), because its small size, diurnal movement patterns, and utilization of hosts with complex plant structures, such as caneberries and blueberries, make effective insecticide applications tenuous. In this study, we measured spotted-wing Drosophila survivorship, reproductive performance, and offspring tolerance in flies exposed to sub-lethal concentrations of three commonly-used insecticides (zeta-cypermethrin, spinetoram, and pyrethrin). We found some evidence for hormesis, with survival effects being sex- and concentration-dependent for all insecticides. Males were far more susceptible to insecticides than females, which in some cases exhibited higher eclosion success and reproductive rates when exposed to sub-lethal doses. We did not observe significant transgenerational effects at sub-lethal concentrations, despite trends of increased offspring viability for zeta-cypermethrin and spinetoram. More research, however, is needed to fully understand the role that sub-lethal effects may play in pest population dynamics, insecticide efficacy, and the development of genetic resistance.
Collapse
Affiliation(s)
- Carrie Deans
- Department of Entomology, University of Minnesota, St. Paul, MN, United States of America
| | - William D. Hutchison
- Department of Entomology, University of Minnesota, St. Paul, MN, United States of America
| |
Collapse
|
34
|
Cutler GC, Amichot M, Benelli G, Guedes RNC, Qu Y, Rix RR, Ullah F, Desneux N. Hormesis and insects: Effects and interactions in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153899. [PMID: 35181361 DOI: 10.1016/j.scitotenv.2022.153899] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Insects in agroecosystems contend with many stressors - e.g., chemicals, heat, nutrient deprivation - that are often encountered at low levels. Exposure to mild stress is now well known to induce hormetic (stimulatory) effects in insects, with implications for insect management, and ecological structure and function in agroecosystems. In this review, we examine the major ecological niches insects occupy or guilds to which they belong in agroecosystems and how hormesis can manifest within and across these groups. The mechanistic underpinnings of hormesis in insects are starting to become established, explaining the many phenotypic hormetic responses observed in insect reproduction, development, and behavior. Whereas potential effects on insect populations are well supported in laboratory experiments, field-based hypothesis-driven research on hormesis is greatly lacking. Furthermore, because most ecological paradigms are founded within the context of communities, entomological agroecologists interested in hormesis need to 'level up' and test hypotheses that explore effects on species interactions, and community structure and functioning. Embedded in this charge is to continue experimentation on herbivorous pest species while shifting more focus towards insect natural enemies, pollinators, and detritivores - guilds that play crucial roles in highly functioning agroecosystems that have been understudied in hormesis research. Important areas for future insect agroecology research on hormesis are discussed.
Collapse
Affiliation(s)
- G Christopher Cutler
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - Marcel Amichot
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Yanyan Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Rachel R Rix
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| |
Collapse
|