1
|
Hou J, Li J, Liu D, Yu H, Gao H, Wu F. Advancing fluorescence tracing with 3D-2D spectral conversion: A mixed culture on microbial degradation mechanisms of DOM from a large-scale watershed. ENVIRONMENTAL RESEARCH 2024; 262:119877. [PMID: 39216741 DOI: 10.1016/j.envres.2024.119877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Fluorescence tracing, known for its precision, rapid application, and cost-effectiveness, faces challenges due to the microbial degradation of dissolved organic matter (DOM) in aquatic environments, altering its original spectral fingerprint. This study conducted a 15-day microcosm experiment to examine the effects of biodegradation on the spectral properties of DOM from various sources: livestock excrement (EXC), urban sewage (URB), industrial wastewater (IND), and riparian topsoil (tDOM). Our findings show that while the spectral structures of DOM from different sources change during 15 days of microbial degradation, these changes do not overlap or interfere with each other. However, distinguishing between tDOM and URB in the presence of both IND and EXC is only possible at high resolution. Spectral index calculations revealed significant fluctuations and interference in FI and BIX indices among samples from different sources due to microbial degradation. In contrast, the HIX index exhibited independent fluctuations and remained a reliable spectral index for tracing. LEfSe (Linear discriminant analysis Effect Size) identified characteristic bio-indicators (CBI) for each DOM source. The CBI for tDOM and URB differed significantly; tDOM showed a marked CBI only within the first four days of microbial degradation, with a sharp decline in abundance thereafter, while URB's CBI remained abundant for 12 days. Similarly, IND's CBI maintained high relative abundance for the first 12 days. EXC's CBI was unique, showing a distinct and stable community only after six days of degradation, likely due to its high bioavailability and initial rapid microbial utilization. This study addresses the temporal variability in spectral tracing techniques caused by pollutant biodegradation. We developed a combined spectral-biological tracing technique using the "three-dimensional to two-dimensional" method along with bio-indicators, enhancing the accuracy and timeliness of spectral tracing.
Collapse
Affiliation(s)
- Junwen Hou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiancheng Li
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongping Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huibin Yu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hongjie Gao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Fengchang Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Zhang X, Xue X, Hu J. Combined ozonation-biological activated carbon process for antibiotic resistance control in treated effluent from wastewater treatment plant. WATER RESEARCH 2024; 268:122610. [PMID: 39426045 DOI: 10.1016/j.watres.2024.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Biological activated carbon (BAC) treatment plays a crucial role in wastewater treatment plants due to its economic and effective promotion of organic matter degradation or mineralization. However, whether the changes in antibiotic resistance (AR) resulting from BAC or O3-BAC treatment are related to environmental factors remains unclear, as previous studies have primarily focused on isolated aspects, or have combined these aspects without systematically comparing the BAC and O3-BAC treatment processes or analyzing their interrelationships. In this study, to gain a clearer understanding of the factors related to AR during the BAC treatment, the treatment process of BAC and O3-BAC were comprehensively compared, including antibiotics removal, wastewater matrix changes, antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and bacterial community characteristics. The roles of O3 pretreatment and the bed depth of BAC were also clarified. ARGs were found to be not as sensitive to ozone as ARB. In addition, further strengthening of control measures should be needed for trimethoprim and tetracycline, due to their low removal efficiencies by ozone pretreatment, and their close relationship with the increased AR. Besides, 2 mg/L ozonation pretreatment could significantly influence the microbial community composition of wastewater and biofilm samples, while 1 mg/L ozonation could not. Finally, the correlation of environmental factors, bacterial communities, and ARGs revealed that to reduce the AR risks of O3-BAC treatment, antibiotics in wastewater should be strictly controlled, since they were positively correlated with the accumulation of ARGs and Pseudomonadota, Actinomycetota, and Bacteroidota, which were responsible for carrying and disseminating ARGs. The results showed that higher dose ozonation pre-treatment and longer bed depth of BAC process could help control the AR of BAC.
Collapse
Affiliation(s)
- Xinyang Zhang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Xi Xue
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
3
|
Hu Y, Feng Y, Yao L, Wu C, Chen M, Zhang H, Li Q. Destabilization mechanisms of Semi-aerobic aged refuse biofilters under harsh treatment conditions: Evidence from fluorescence and microbial characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174436. [PMID: 38964403 DOI: 10.1016/j.scitotenv.2024.174436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Semi-aerobic aged refuse biofilters (SAARB) are commonly-used biotechnologies for treating landfill leachate. In actual operation, SAARB often faces harsh conditions characterized by high concentrations of chemical oxygen demand (COD) and Cl-, as well as a low carbon-to-nitrogen ratio (C/N), which can disrupt the microbial community within SAARB, leading to operational instability. Maintaining the stable operation of SAARB is crucial for the efficient treatment of landfill leachate. However, the destabilization mechanism of SAARB under harsh conditions remains unclear. To address this, the study simulated the operation of SAARB under three harsh conditions, namely, high COD loading (H-COD), high chloride ion (Cl-) concentration environment (H-Cl-), and low C/N ratio environment (L-C/N). The aim is to reveal the destabilization mechanism of SAARB under harsh conditions by analyzing the fluorescence characteristics of effluent DOM and the microbial community in aged refuse. The results indicate that three harsh conditions have different effects on SAARB. H-COD leads to the accumulation of proteins; H-Cl- impedes the reduction of nitrite nitrogen; L-C/N inhibits the degradation of humic substances. These outcomes are attributed to the specific effects of different factors on the microbial communities in different zones of SAARB. H-COD and L-C/N mainly affect the degradation of organic matter in aerobic zone, while H-Cl- primarily impedes the denitrification process in the anaerobic zone. The abnormal enrichment of Corynebacterium, Castellaniella, and Sporosarcina can indicate the instability of SAARB under three harsh conditions, respectively. To maintain the steady operation of SAARB, targeted acclimation of the microbial community in SAARB should be carried out to cope with potentially harsh operating conditions. Besides, timely mitigation of loads should be implemented when instability characteristics emerge, and carbon sources and electron donors should be provided to restore treatment performance effectively.
Collapse
Affiliation(s)
- Yuansi Hu
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yuanyuan Feng
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Li Yao
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chuanwei Wu
- Three Gorges Group Sichuan Energy Investment Co., Ltd., Chengdu 610000, China
| | - Mengli Chen
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Han Zhang
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Qibin Li
- School of Environmental Science an Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
4
|
Ge J, Qi Y, Xu S, Yao W, Hou J, Yue FJ, Volmer DA, Fu P, Li SL. Elucidating the Composition and Transformation of Dissolved Organic Matter at the Sediment-Water Interface Using High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2358-2365. [PMID: 39288004 DOI: 10.1021/jasms.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The exchange and transformation of dissolved organic matter (DOM) at the sediment-water interface are crucial factors in regulating watershed biogeochemistry, with the molecular composition of DOM serving as a pivotal determinant in elucidating this process. High-resolution mass spectrometry (HRMS) is an effective tool for resolving the composition of DOM. By analyzing the compositional characteristics of DOM at the sediment-water interface under three different salinities at the same latitude region in northern China, the findings indicate certain variations in component characteristics of DOM between low-salinity inland waters and high-salinity seawaters, with the former exhibiting greater molecular diversity and higher molecular weights, whereas the latter displayed a higher saturation and bioavailability. Notably, the presence of more CHOS substances in the low-salinity inland waters underscores the transformation of the DOM influenced by terrestrial inputs and anthropogenic activities. Conversely, the presence of more CHO and CHNO substances in high-salinity seawater underscores the microbial effects. The chemical transformation process from overlying water to pore water to sediments was characterized by methylation, hydrogenation, decarboxylation, and reduction, as determined by calculating the relations between the H/C and O/C ratios of different compound types. These findings indicate that HRMS can yield more refined results in revealing the process of DOM at the sediment-water interface under different environments, which provides a more reliable basis for a deeper understanding of the source-sink mechanism of sediment organic matter.
Collapse
Affiliation(s)
- Jinfeng Ge
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| | - Sen Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wenrui Yao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jingyi Hou
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, China
| |
Collapse
|
5
|
Zhu F, Cakmak EK, D'Amico F, Candela M, Turroni S, Cetecioglu Z. Phosphorus mining from marine sediments adopting different carbon/nitrogen strategies driven by anaerobic reactors: The exploration of potential mechanism and microbial activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169902. [PMID: 38185149 DOI: 10.1016/j.scitotenv.2024.169902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
To investigate the possibility of phosphorus (P) recovery from marine sediment and explore the role of the carbon: nitrogen ratio in affecting the internal P release under anaerobic conditions, we experimented with the external addition of carbon (acetic acid and glucose) and ammonia nitrogen (NH4-N) to expose P release mechanisms. The 24-day anaerobic incubations were conducted with four different carbon: nitrogen dosing groups including no NH4-N addition and COD/N ratios of 100, 50, and 10. The P release showed that extra NH4-N loading significantly suppressed the decomposition of P (p < 0.05) from the marine sediment, the maximum P release was 4.07 mg/L and 7.14 mg/L in acetic acid- and glucose-fed systems, respectively, without extra NH4-N addition. Additionally, the results exhibited that the imbalance of carbon: nitrogen not only failed to induce the production of organic P mineralization enzyme (alkaline phosphatase) in the sediment but also suppressed its activity under anaerobic conditions. The highest enzyme activity was observed in the group without additional NH4-N dosage, with rates of 1046.4 mg/(kg∙h) in the acetic acid- and 967.8 mg/(kg∙h) in the glucose-fed system, respectively. Microbial data analysis indicated that a decrease in the abundance of P release-regulating bacteria, including polyphosphate-accumulating organisms (Rhodobacteraceae) and sulfate-reducing bacteria (Desulfosarcinaceae), was observed in the high NH4-N addition groups. The observed reduction in enzyme activity and suppression of microbial activity mentioned above could potentially account for the inhibited P decomposition in the presence of high NH4-N addition under anaerobic conditions. The produced P-enriched solution from the bioreactors may offer a promising source for future recovery endeavors.
Collapse
Affiliation(s)
- Fengyi Zhu
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-11421 Stockholm, Sweden
| | - Ece Kendir Cakmak
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-11421 Stockholm, Sweden
| | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-11421 Stockholm, Sweden.
| |
Collapse
|
6
|
Ni Z, Wu Y, Ma Y, Li Y, Li D, Lin W, Wang S, Zhou C. Spatial gradients and molecular transformations of DOM, DON and DOS in human-impacted estuarine sediments. ENVIRONMENT INTERNATIONAL 2024; 185:108518. [PMID: 38430584 DOI: 10.1016/j.envint.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/11/2024] [Accepted: 02/18/2024] [Indexed: 03/04/2024]
Abstract
Dissolved organic matter (DOM) constitutes the most active fraction in global carbon pools, with estuarine sediments serving as significant repositories, where DOM is susceptible to dynamic transformations. Anthropogenic nitrogen (N) and sulfur (S) inputs further complicate DOM by creating N-bearing DOM (DON) and S-bearing DOM (DOS). This study delves into the spatial gradients and transformation mechanisms of DOM, DON, and DOS in Pearl River Estuary (PRE) sediments, China, using combined techniques of UV-visible spectroscopy, Excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and microbial high-throughput sequencing. Results uncovered a distinct spatial gradient in DOM concentration, aromaticity (SUVA254), hydrophobicity (SUVA260), the content of substituent groups including carboxyl, carbonyl, hydroxyl and ester groups (A253/A203) of chromophoric DOM (CDOM), and the abundances of tyrosine/tryptophan-like protein and humic-like substances in fluorophoric DOM (FDOM). These all decreased from upper to lower PRE, accompanied by a decrease in O3S and O5S components, indicating seaward reduction in the contribution of terrestrial OM, especially anthropogenic inputs. Additionally, sediments exhibited a reduction in molecular diversity (number of formulas) of DOM, DON, and DOS from upper to lower PRE, with molecules tending towards a lower nominal oxidation state of carbon (NOSC) and higher bio-reactivity (MLBL), molecular weight (m/z) and saturation (H/C). While molecular composition of DOM remained similar in PRE sediments, the relative abundance of lignin-like substances decreased, with a concurrent increase in protein-like and lipid-like substances in DON and DOS from upper to lower PRE. Mechanistic analysis identified the joint influence of terrestrial OM, anthropogenic N/S inputs, and microbial processes in shaping the spatial gradients of DOM, DON, and DOS in PRE estuarine sediments. This study contributes valuable insights into the intricate spatial gradients and transformations of DOM, DON, and DOS within human-impacted estuarine sediments.
Collapse
Affiliation(s)
- Zhaokui Ni
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming 650034, China
| | - Yue Wu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Ma
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yu Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Dan Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chunyang Zhou
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
7
|
Yu M, Gan Z, Zhang W, Yang C, Zhang Y, Tang A, Dong X, Yang H. Differential Adsorption of Dissolved Organic Matter and Phosphorus on Clay Mineral in Water-Sediment System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2078-2088. [PMID: 38235676 DOI: 10.1021/acs.est.3c09359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Lake sediments connection to the biogeochemical cycling of phosphorus (P) and carbon (C) influences streamwater quality. However, it is unclear whether and how the type of sediment controls P and C cycling in water. Here, the adsorption behavior of montmorillonite (Mt) with different interlayer cations (Na+, Ca2+, or Fe3+) on dissolved organic matter (DOM) and P was investigated to understand the role of Mt in regulating the organic carbon-to-phosphate (OC/P) ratio within freshwater systems. The adsorption capacity of Fe-Mt for P was 3.2-fold higher than that of Ca-Mt, while it was 1/3 lower for DOM. This dissimilarity in adsorption led to an increased OC/P in Fe-Mt-dominated water and a decreased OC/P in Ca-Mt-dominated water. Moreover, an in situ atomic force microscope and high-resolution mass spectrometry revealed molecular fractionation mechanisms and adsorptive processes. It was observed that DOM inhibited the nucleation and crystallization processes of P on the Mt surface, and P affected the binding energy of DOM on Mt through competitive adsorption, thereby governing the interfacial P/DOM dynamics on Mt substrates at a molecular level. These findings have important implications for water quality management, by highlighting the role of clay minerals as nutrient sinks and providing new strategies for controlling P and C dynamics in freshwater systems.
Collapse
Affiliation(s)
- Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Zongle Gan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Caihong Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Ying Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiongbo Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Zhang G, Lou M, Xu J, Li Y, Zhou J, Guo H, Qu G, Wang T, Jia H, Zhu L. Molecular insights into microbial transformation of bioaerosol-derived dissolved organic matter discharged from wastewater treatment plant. ENVIRONMENT INTERNATIONAL 2024; 183:108404. [PMID: 38154320 DOI: 10.1016/j.envint.2023.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Wastewater treatment plants (WWTP) are important sources of aerosol-derived dissolved organic matter (ADOM) which may threaten human health via the respiratory system. In this study, aerosols were sampled from a typical WWTP to explore the chemical molecular diversity, molecular ecological network, and potential toxicities of the ADOM in the aerosols. The high fluorescence index (>1.9) and biological index (0.66-1.17) indicated the strong autogenous microbial source characteristics of the ADOM in the WWTP. DOM and microbes in the wastewater were aerosolized due to strong agitation and bubbling in the treatment processes, and contributed to 74 % and 75 %, respectively, of the ADOM and microbes in the aerosols. The ADOM was mainly composed of CHO and CHOS accounting for 35 % and 29 % of the total number of molecules, respectively, with lignin-like (69 %) as the major constituent. 49 % of the ADOM transformations were thermodynamically limited, and intragroup transformations were easier than intergroup transformations. Bacteria in the aerosols involved in ADOM transformations exhibited both cooperative and divergent behaviors and tended to transform carbohydrate-like and amino sugar/protein-like into recalcitrant lignin-like. The microbial compositions were affected by atmosphere temperature and humidity indirectly by modulating the properties of ADOM. Tannin-like, lignin-like, and unsaturated hydrocarbon-like molecules in the ADOM were primary toxicity contributors, facilitating the expression of inflammatory factors IL-β (2.2-5.4 folds), TNF-α (3.5-7.0 folds), and IL-6 (3.5-11.2 folds), respectively.
Collapse
Affiliation(s)
- Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Mingxuan Lou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jiamin Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300385, China.
| |
Collapse
|
9
|
Cao Y, Zhu J, Gao Z, Li S, Zhu Q, Wang H, Huang Q. Spatial dynamics and risk assessment of phosphorus in the river sediment continuum (Qinhuai River basin, China). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2198-2213. [PMID: 38055174 DOI: 10.1007/s11356-023-31241-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
This study investigated the concentration and fractionation of phosphorus (P) using sequential P extraction and their influencing factors by introducing the PLS-SEM model (partial least squares structural equation model) along this continuum from the Qinhuai River. The results showed that the average concentrations of inorganic P (IP) occurred in the following order: urban sediment (1499.1 mg/kg) > suburban sediment (846.1-911.9 mg/kg) > rural sediment (661.1 mg/kg) > natural sediment (179.9 mg/kg), and makes up to 53.9-87.1% of total P (TP). The same as the pattern of IP, OP nearly increased dramatically with increasing the urbanization gradient. This spatial heterogenicity of P along a river was attributed mainly to land use patterns and environmental factors (relative contribution affecting the P fractions: sediment nutrients > metals > grain size). In addition, the highest values of TP (2876.5 mg/kg), BAP (biologically active P, avg, 675.7 mg/kg), and PPI (P pollution index, ≥ 2.0) were found in urban sediments among four regions, indicating a higher environmental risk of P release, which may increase the risk of eutrophication in overlying water bodies. Collectively, this work improves the understanding of the spatial dynamics of P in the natural-rural-urban river sediment continuum, highlights the need to control P pollution in urban sediments, and provides a scientific basis for the future usage and disposal of P in sediments.
Collapse
Affiliation(s)
- Yanyan Cao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianzhong Zhu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Zhimin Gao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Sanjun Li
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiuzi Zhu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hailong Wang
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qi Huang
- College of Life Science, Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
10
|
Wei Z, Li N, Zhang X, Zheng L, Mo S, Korshin G, Li Q, Yan M. Characterizing photochemical production carboxyl content of dissolved organic matters using absorbance spectroscopy combined with FT-ICR MS. CHEMOSPHERE 2023; 344:140352. [PMID: 37806326 DOI: 10.1016/j.chemosphere.2023.140352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/27/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Irradiation can significantly impact the structure, reactivity and environmental behavior of dissolved organic matter (DOM). The extent of these processes remains to be ascertained in more detail but the heterogeneity and site-specificity of DOM, and the lack of methods to characterize DOM at its environmentally-relevant concentrations make it a challenge. In this study, the differences of DOM response to photodegradation in four typical origins (i.e., surface water, sediment and intracellular and extracellular algal DOM) were tracked on the molecular-level using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). Changes of the carboxyl and phenolic DOM moieties induced by irradiation were quantified by spectroscopic titrations, and the mechanism of functional groups affecting the changes of specific molecular composition was qualitatively proposed. The results demonstrated that intracellular algal organic matter (I-DOM) was most susceptible to photodegradation (ca. 63% DOM loss), then came extracellular algal organic matter (E-DOM) and surface water DOM (W-DOM) (ca. 15% DOM loss). Sediment DOM (S-DOM) was most resistant to irradiation, with a very small level of its mineralization. Lipids, lignin-like compounds and tannin-like compounds in I-DOM and E-DOM were relatively photo-labile. The photodegradation of lipids was related to the decarboxylation of carboxyl functional groups, while the photodegradation of tannin-like compounds was related to the rupture of phenolic functional groups. In comparison, the molecular composition of W-DOM and S-DOM was less affected by irradiation, which was also reflected in the fact that the carboxyl and phenolic functional groups were highly photo-resistant. This study showed that the photoactivity of DOM in surface water was closely related to the abundance of algae, so controlling the excessive reproduction of algae may have a positive effect on stability of quality and quantity of organic matter in surface water.
Collapse
Affiliation(s)
- Zizhuo Wei
- College of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, Liaoning, China; Qinhuangdao key Laboratory of Water-saving Pollution Control and Ecological Restoration, College of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, Hebei, China
| | - Na Li
- College of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, Liaoning, China; Qinhuangdao key Laboratory of Water-saving Pollution Control and Ecological Restoration, College of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, Hebei, China
| | - Xinyi Zhang
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102208, China
| | - Lei Zheng
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102208, China
| | - Shansheng Mo
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Gregory Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195-2700, United States
| | - Qingwei Li
- College of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, Liaoning, China; Qinhuangdao key Laboratory of Water-saving Pollution Control and Ecological Restoration, College of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, Hebei, China
| | - Mingquan Yan
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
11
|
Yu Y, Yu Z, Jiang J, Wu L, Feng H. Assessing the impacts of fine sediment removal on endogenous pollution release and microbial community structure in the shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165410. [PMID: 37423283 DOI: 10.1016/j.scitotenv.2023.165410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Resuspension is a crucial process for releasing endogenous pollution from shallow lakes into the overlying water. Fine particle sediment, which has a higher contamination risk and longer residence time, is the primary target for controlling endogenous pollution. To this end, a study coupling aqueous biogeochemistry, electrochemistry, and DNA sequencing was conducted to investigate the remediation effect and microbial mechanism of sediment elution in shallow eutrophic water. The results indicated that sediment elution can effectively remove some fine particles in situ. Furthermore, sediment elution can inhibit the release of ammonium nitrogen and total dissolved phosphorous into the overlying water from sediment resuspension in the early stage, resulting in reductions of 41.44 %-50.45 % and 67.81 %-72.41 %, respectively. Additionally, sediment elution greatly decreased the concentration of nitrogen and phosphorus pollutants in pore water. The microbial community structure was also substantially altered, with an increase in the relative abundance of aerobic and facultative aerobic microorganisms. Redundancy analysis, PICRUSt function prediction, and the correlation analysis revealed that loss on ignition was the primary factor responsible for driving changes in microbial community structure and function in sediment. Overall, the findings provide novel insights into treating endogenous pollution in shallow eutrophication water.
Collapse
Affiliation(s)
- Ying Yu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Nutrient Cycling Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Zengliang Yu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jingang Jiang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lifang Wu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Huiyun Feng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
12
|
Hu C, Xu H, Shi S, Lan J, Zhou K, Zhang J, Song Y, Wang J, Fu P. Sedimentary organic matter molecular composition reveals the eutrophication of the past 500 years in Lake Daihai, Inner Mongolia. ENVIRONMENTAL RESEARCH 2023; 227:115753. [PMID: 36965811 DOI: 10.1016/j.envres.2023.115753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Lake eutrophication seriously threatens water quality and human health. Under continuous global warming and intensified human activity, increasing attention is being paid to how lake trophic status responds to climate change and anthropogenic impacts. Based on the sedimentary organic matter (SOM) molecular composition determined by the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) technology, and combined with the SOM stable nitrogen isotopes (δ15Norg), we studied how lake trophic status and ecology respond to both climatic changes and anthropogenic impacts of the past 500 yrs at Lake Daihai, Inner Mongolia. The results show that the relative abundance of lipids, proteins, and carbohydrates in lake sediments kept relatively low before AD ∼1850, and increased gradually thereafter, especially after AD ∼1950, suggesting that the lake trophic status was low before AD ∼1850, but obviously increased during the past one more century. On the other hand, the relative abundance of allochthonous condensed aromatics and vascular plant-derived polyphenols compounds gradually decreased after AD ∼1850, which is most likely due to the intensified land-use changes in the catchment. Our results show that the SOM molecular composition is more sensitive to trace the land-use changes than the δ15Norg ratios, suggesting a potential use of this technique to trace even earlier human land uses (e.g., during the prehistorical times) in a catchment. The results of this study suggest that intensified land-use change, increased discharges of human sewage and industrial wastewater, cropland runoff, and concentrated effects caused by lake level drops may have combinedly increased nutrient concentration and accelerated lake eutrophication at Lake Daihai. Therefore, proper policy is necessary to slow down anthropogenic impacts and limit further eutrophication for lakes like Lake Daihai.
Collapse
Affiliation(s)
- Chukun Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China
| | - Hai Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China.
| | - Siwei Shi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China
| | - Jianghu Lan
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, PR China
| | - Kang'en Zhou
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China
| | - Jin Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, PR China
| | - Yunping Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China
| | - Jing Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
13
|
Wang Z, Lv M, Huang CL, Zhang DD, Han R, Li G, Chen LX. Optical properties of sedimentary dissolved organic matter in intertidal zones along the coast of China: Influence of anthropogenic activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161159. [PMID: 36572289 DOI: 10.1016/j.scitotenv.2022.161159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The intertidal zone, due to its location in the transition zone of terrestrial and marine ecosystems, is seriously disturbed by anthropogenic activities such as fuel combustion and industrial production, causing significant increase in dissolved organic matter (DOM). However, the distribution and properties of DOM in intertidal sediments at the large scale and their correlations with local socio-economic indicators remain unclear. In this study, we collected sediment samples from 13 intertidal zones across 11 coastal provinces in China and analyzed optical properties and compositions of sedimentary DOM. The results showed that the physico-chemical properties of sediment, such as pH and texture, affected the content of organic matter, thereby influencing the concentration of sedimentary DOM indirectly. The contents of fulvic acid- and protein-like components were relatively higher than humic acid-like component at all sampling sites. Moreover, urbanization could lead to the release of aromatic and humified organic matters into intertidal zones. Unlike coal, oil consumption exhibited positive correlation with SUVA254, indicating that the combustion of oil released more aromatic compounds. These findings revealed the impact of anthropogenic activities on sedimentary DOM and provided theoretical basis for predicting and regulating intertidal carbon sink.
Collapse
Affiliation(s)
- Zhe Wang
- CAS Engineering Laboratory for Recycling Technology of Municipal Solid Waste, CAS Key Lab of Urban Environment and Health, Ningbo Urban Environmental Observatory and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Lab of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chu-Long Huang
- Department of Resources and Environmental Sciences, Quanzhou Normal University, Quanzhou 362000, China
| | - Dong-Dong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Ruixia Han
- CAS Engineering Laboratory for Recycling Technology of Municipal Solid Waste, CAS Key Lab of Urban Environment and Health, Ningbo Urban Environmental Observatory and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Lab of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Gang Li
- CAS Engineering Laboratory for Recycling Technology of Municipal Solid Waste, CAS Key Lab of Urban Environment and Health, Ningbo Urban Environmental Observatory and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Lab of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Ling-Xin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
14
|
Sururi MR, Dirgawati M, Notodarmojo S, Roosmini D, Putra PS, Rahman AD, Wiguna CC. Chromophoric dissolved organic compounds in urban watershed and conventional water treatment process: evidence from fluorescence spectroscopy and PARAFAC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37248-37262. [PMID: 36571688 DOI: 10.1007/s11356-022-24787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to investigate the origin, quantity, and composition of chromophoric dissolved organic matter (CDOM) from two urbanized watersheds (Cikapundung and Cimahi River), examine how CDOM compounds and absorbances change along the process of two different conventional WTPs (WTP Dago and Cimahi) using PARAFAC, and identify absorbance as potential surrogate parameters for CDOM compounds. Samples were collected from intake, secondary treatment, and filter outlets. PARAFAC was conducted based on two data scenarios: (1) from rainy and dry seasons in Cikapundung river and WTP Dago and (2) from the two rivers and two WTPs during rainy season. Tryptophan-like (C1A) and humic-like (C2A) compounds were identified based on scenario-1 analysis. For scenario-2, humic-like (C1B), peak-M (C2B), and tryptophan-like (C3B) were the main compounds. CDOM compound quantity is consistent with the fluorescence index (FI) and biological index (BIX) which confirmed sewage and animal manure pollution in both watersheds. The best overall removal of CDOM compound occurred in WTP Dago in rainy season. The high concentration of tryptophan-like in Cikapundung River in dry season and in Cimahi River in rainy season has worsen the WTP capability to reduce CDOM. Scenario-1 has shown that in WTP Dago, the potential surrogate parameter for C1A was A240 in rainy season (r = 0.60; p < 0.01) and A410 in dry season (r = - 0.43, p < 0.05). Based on scenario-2, for the WTP Dago in rainy season, C1B strongly correlated with A254 (r = 0.86; p < 0.01), C2B has the strongest correlation with A298 (r = 0.93; p < 0.01), and C3B correlated well with A240 (r = 0.59; p < 0.01). In WTP Cimahi, during rainy season, all compounds correlated well with all measured absorbances, with the strongest correlation with A298.
Collapse
Affiliation(s)
- Mohamad Rangga Sururi
- Environmental Engineering Department, Institut Teknologi Nasional Bandung, Jl. PHH Mustafa No. 23, Bandung, Indonesia, 40124
| | - Mila Dirgawati
- Environmental Engineering Department, Institut Teknologi Nasional Bandung, Jl. PHH Mustafa No. 23, Bandung, Indonesia, 40124.
| | - Suprihanto Notodarmojo
- Environmental Engineering Department, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Indonesia, 40132
| | - Dwina Roosmini
- Environmental Engineering Department, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Indonesia, 40132
| | - Prama Setia Putra
- Mathematics Department, Institut Teknologi Bandung, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Indonesia, 40132
| | - Adam Dzaky Rahman
- Environmental Engineering Department, Institut Teknologi Nasional Bandung, Jl. PHH Mustafa No. 23, Bandung, Indonesia, 40124
| | - Chairul Candra Wiguna
- Environmental Engineering Department, Institut Teknologi Nasional Bandung, Jl. PHH Mustafa No. 23, Bandung, Indonesia, 40124
| |
Collapse
|
15
|
Wan L, Cao L, Song C, Cao X, Zhou Y. Regulation of the Nutrient Cycle Pathway and the Microbial Loop Structure by Different Types of Dissolved Organic Matter Decomposition in Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:297-309. [PMID: 36576880 DOI: 10.1021/acs.est.2c06912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To explore the effect of different types of dissolved organic matter (DOM) decomposition on nutrient cycling pathways and the microbial loop, four lakes with different DOM sources were investigated monthly. In Lake Tangxun, Dolichospermum decay released highly labile dissolved organic nitrogen into the water column. This induced bacterial organic nitrogen decomposition, as indicated by the increased abundance of gltB, gltD, gdh, and glnA as well as aminopeptidase activity. Genes associated with dissimilatory nitrate reduction to ammonium further fueled ammonium accumulation, driving Microcystis blooms in the summer. In Lake Zhiyin, fish bait deposits (high nitrogen, similar to Dolichospermum detritus) also caused Microcystis blooms. Detritus from Microcystis decomposition then produced high levels of labile dissolved organic phosphorus, inducing phosphatase activity and increasing soluble reactive phosphorus concentrations from September to April in Lakes Tangxun and Zhiyin. The high refractory DOM from macrophytes in Lake Houguan led to insufficient nutrient availability, leading to nutrient mutualism between algae and bacteria. The high levels of labile dissolved organic carbon from terrestrial detritus in Lake Yandong increased bacterial biomass and production, resulting in low chlorophyll content due to the competitive relationship between algal and bacterial nutrient requirements. Therefore, different DOM compositions induce unique connections among available nutrients, algae, and bacteria in the microbial loop.
Collapse
Affiliation(s)
- Lingling Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan430072, P. R. China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan430072, P. R. China
- University of Chinese Academy of Sciences, Beijing100039, P. R. China
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan430072, P. R. China
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan430072, P. R. China
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7# Donghu South Road, Wuhan430072, P. R. China
| |
Collapse
|
16
|
Shen Z, Shang Z, Wang F, Liang Y, Zou Y, Liu F. Bacterial diversity in surface sediments of collapsed lakes in Huaibei, China. Sci Rep 2022; 12:15784. [PMID: 36138093 PMCID: PMC9500014 DOI: 10.1038/s41598-022-20148-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
The collapse lake area due to coal mining in Huaibei shows high biodiversity, but the bacterial community composition and diversity in the lake sediments are still rarely studied. Therefore, based on 16S rRNA high-throughput sequencing and combined with analysis of environmental factors, we comparatively analyzed the bacterial community composition and diversity of surface sediments from East Lake (DH) and South Lake (NH) and Middle Lake (ZH) in the collapse lake area of Huaibei. The bacterial community compositions are significantly different in the sediments among Huaibei collapsed lakes, with DH having the largest number of species, and NH having a higher species diversity. Pseudomonadota is the most abundant phylum in the sediments of DH and NH, while the most abundant phyla in ZH are Bacteroidales, Chloroflexales, Acidobacteriales, and Firmicutes. Anaerolineae (24.05% ± 0.20%) is the most abundant class in the DH sediments, and Gammaproteobacteria (25.94% ± 0.40%) dominates the NH sediments, Bacteroidia (32.12% ± 1.32%) and Clostridia (21.98% ± 0.90%) contribute more than 50% to the bacteria in the sediments of ZH. Redundancy analysis (RDA) shows that pH, TN, and TP are the main environmental factors affecting the bacterial community composition in the sediments of the collapsed lake area. The results reveal the bacterial community composition and biodiversity in the sediments of the Huaibei coal mining collapsed lakes, and provide new insights for the subsequent ecological conservation and restoration of the coal mining collapsed lakes.
Collapse
Affiliation(s)
- Zijian Shen
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Zijian Shang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Faxin Wang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yanhong Liang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Youcun Zou
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Fei Liu
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|