1
|
Trabulo J, Pradhan A, Pascoal C, Cássio F. Microplastics and silver nanoparticles compromise detrital food chains in streams through effects on microbial decomposers and invertebrate detritivores. CHEMOSPHERE 2024; 367:143656. [PMID: 39486627 DOI: 10.1016/j.chemosphere.2024.143656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Abundance of microplastics (MPs) in freshwater ecosystems has become an emerging concern due to their persistence, toxicity and potential interactions with other contaminants. Silver nanoparticles (Ag-NPs), which share common sources with MPs (e.g., personal care products), are also a subject of concern. Thus, the high probability of co-occurrence of both contaminants raises additional apprehensions. This study assessed, for the first time, the impacts of MPs and Ag-NPs, alone or in mixtures, on stream detritus food webs. Physiological and ecological responses of aquatic fungal communities, invertebrate shredders (Allogamus sp.) and collectors (Chironomus riparius) were examined. Additionally, antioxidant enzymatic responses of microbes and shredders were analyzed to unravel the mechanisms of toxicity; also, neuronal stress responses of Allogamus sp. were assessed based on the activities of cholinesterases. Organisms were exposed to environmentally realistic concentrations of polyethylene MPs, extracted from a personal care product (0.1, 0.5 and 10 mg L-1), for 7 days, in the absence or presence of Ag-NPs (0.1 mg L-1 and 1 mg L-1). The exposure to both contaminants reduced the growth rates of all tested organisms. MPs, Ag-NPs, and their mixtures led to a decrease in leaf litter decomposition by fungi and shredders. The availability of fine particulate organic matter, released by the shredders, increased when exposed to these contaminants. The negative effects of these contaminants were further strengthened by the responses of antioxidant enzymes that revealed high level of oxidative stress in both fungi and Allogamus sp. Moreover, the activities of cholinesterases showed that Allogamus sp. were under neuronal stress upon exposure to both contaminants. The impacts in mixtures were stronger than those of individual contaminants suggesting interactive effects. Overall, our study showed adverse effects of MPs and Ag-NPs across trophic levels and indicated that they may compromise key processes, such as organic matter decomposition in streams.
Collapse
Affiliation(s)
- José Trabulo
- CBMA - Centre of Molecular and Environmental Biology, Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| | - Arunava Pradhan
- CBMA - Centre of Molecular and Environmental Biology, Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Cláudia Pascoal
- CBMA - Centre of Molecular and Environmental Biology, Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Fernanda Cássio
- CBMA - Centre of Molecular and Environmental Biology, Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
2
|
Kukkola A, Chetwynd AJ, Krause S, Lynch I. Beyond microbeads: Examining the role of cosmetics in microplastic pollution and spotlighting unanswered questions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135053. [PMID: 38976961 DOI: 10.1016/j.jhazmat.2024.135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The presence of microplastics in cosmetics and personal care products (C&PCPs) has been increasingly in the public eye since the early 2010s. Despite increasing research into the potential environmental and health effects of microplastics, most research to date on microplastics in C&PCPs has investigated "rinse-off" products, while the potential impacts of "leave-on" C&PCPs have been largely neglected, despite these products being purchased in greater volumes and often having two or more microplastic ingredients in their formulations(CosmeticsEurope, 2018b). This review aims to synthesize the current knowledge of microplastic in C&PCPs, assessing the potential environmental and human health impacts of C&PCPs and discussing the regulatory implications. The lack of studies on leave-on C&PCPs is significant, suggesting a severe knowledge gap regarding microplastic presence in, and emissions from, C&PCPs. There is a noticeable lack of studies on the (eco)toxicological consequences of microplastic exposure from C&PCPs. As a result, significant aspects of microplastic contamination may be overlooked in the microplastic legislations emerging globally (including from the European Commission), which intend to restrict microplastic use in C&PCPs but focus on rinse-off C&PCPs only. This review highlights the potential consequences of microplastics in leave-on C&PCPs for regulatory decision-making, particularly as alternatives to microplastics are considered during the phase-out periods and spotlights the need for sufficient monitoring and research on these alternatives, to avoid unforeseen consequences.
Collapse
Affiliation(s)
- Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Andrew J Chetwynd
- Centre for Proteome Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; LEHNA, Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, 3-6 Rue Raphaël Dubois, Villeurbanne 69622, France; Institute of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Institute of Global Innovation, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
3
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Shruti VC, Kutralam-Muniasamy G, Pérez-Guevara F. Do microbial decomposers find micro- and nanoplastics to be harmful stressors in the aquatic environment? A systematic review of in vitro toxicological research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166561. [PMID: 37633392 DOI: 10.1016/j.scitotenv.2023.166561] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Microbial decomposers (bacteria and fungi) are likely to interact with plastic particles introduced into natural systems, particularly micro- and nanoplastics (MNPs), exposing them to a variety of risks. In vitro testing has proven to be an accessible and viable method for gaining insights into how microbial decomposers behave individually and systemically toward MNPs. Recent advances have enhanced our understanding of MNP interactions with organisms, revealing the molecular foundations of adaptive responses as well as the biological impact and potential risks to MNPs. Despite widespread attention, this topic has not yet been reviewed. Here, we conducted a systematic review of the available research to critically assess and highlight the most recent advances in two major areas: (1) methods for in vitro evaluation of environmentally relevant microbial decomposers to MNPs; and (2) current understanding of the underlying toxicity mechanisms gained from in vitro assessments. We also addressed the key considerations throughout and proposed available opportunities in the field. Our analysis revealed that MNPs' toxicity has been studied in vitro either alone or in combination with other contaminants (e.g., antibiotics and metallic nanoparticles), with Escherichia coli and polystyrene particles receiving the most attention. Moreover, there were methodological differences in terms of MNP size, shape, polymer, surface characteristics, exposure period, and concentrations. A combination of methods, including growth-viability tests, biochemical assays, and omics profiling (metabolomics and transcriptomics), were employed to detect the effects of MNP exposure and explain its toxicity mechanism. The current literature suggests that the impacts of MNPs on microbial decomposers include alterations in the antioxidative system, gene expression levels and cell-membrane permeability and oxidative damage, all of which can be further influenced by MNPs interaction with other contaminants. This review will thus provide critical insights and up-to-date knowledge to assist novices and experts in promoting advancements and research.
Collapse
Affiliation(s)
- V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
5
|
Rani M, Ducoli S, Depero LE, Prica M, Tubić A, Ademovic Z, Morrison L, Federici S. A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices. Molecules 2023; 28:5710. [PMID: 37570680 PMCID: PMC10420958 DOI: 10.3390/molecules28155710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Sustainable development is a big global challenge for the 21st century. In recent years, a class of emerging contaminants known as microplastics (MPs) has been identified as a significant pollutant with the potential to harm ecosystems. These small plastic particles have been found in every compartment of the planet, with aquatic habitats serving as the ultimate sink. The challenge to extract MPs from different environmental matrices is a tangible and imperative issue. One of the primary specialties of research in environmental chemistry is the development of simple, rapid, low-cost, sensitive, and selective analytical methods for the extraction and identification of MPs in the environment. The present review describes the developments in MP extraction methods from complex environmental matrices. All existing methodologies (new, old, and proof-of-concept) are discussed and evaluated for their potential usefulness to extract MPs from various biotic and abiotic matrices for the sake of progress and innovation. This study concludes by addressing the current challenges and outlining future research objectives aimed at combating MP pollution. Additionally, a set of recommendations is provided to assist researchers in selecting appropriate analytical techniques for obtaining accurate results. To facilitate this process, a proposed roadmap for MP extraction is presented, considering the specific environmental compartments under investigation. By following this roadmap, researchers can enhance their understanding of MP pollution and contribute to effective mitigation strategies.
Collapse
Affiliation(s)
- Monika Rani
- Department of Mechanical and Industrial Engineering, University of Brescia and INSTM Research Unit of Brescia, 25123 Brescia, Italy (S.D.); (L.E.D.)
| | - Serena Ducoli
- Department of Mechanical and Industrial Engineering, University of Brescia and INSTM Research Unit of Brescia, 25123 Brescia, Italy (S.D.); (L.E.D.)
| | - Laura Eleonora Depero
- Department of Mechanical and Industrial Engineering, University of Brescia and INSTM Research Unit of Brescia, 25123 Brescia, Italy (S.D.); (L.E.D.)
| | - Miljana Prica
- Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Aleksandra Tubić
- Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Zahida Ademovic
- Faculty of Forestry, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, University of Brescia and INSTM Research Unit of Brescia, 25123 Brescia, Italy (S.D.); (L.E.D.)
| |
Collapse
|
6
|
Cássio F, Batista D, Pradhan A. Plastic Interactions with Pollutants and Consequences to Aquatic Ecosystems: What We Know and What We Do Not Know. Biomolecules 2022; 12:798. [PMID: 35740921 PMCID: PMC9221377 DOI: 10.3390/biom12060798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Plastics are a group of synthetic materials made of organic polymers and some additives with special characteristics. Plastics have become part of our daily life due to their many applications and uses. However, inappropriately managed plastic waste has raised concern regarding their ecotoxicological and human health risks in the long term. Due to the non-biodegradable nature of plastics, their waste may take several thousands of years to partially degrade in natural environments. Plastic fragments/particles can be very minute in size and are mistaken easily for prey or food by aquatic organisms (e.g., invertebrates, fishes). The surface properties of plastic particles, including large surface area, functional groups, surface topography, point zero charge, influence the sorption of various contaminants, including heavy metals, oil spills, PAHs, PCBs and DDT. Despite the fact that the number of studies on the biological effects of plastic particles on biota and humans has been increasing in recent years, studies on mixtures of plastics and other chemical contaminants in the aquatic environment are still limited. This review aims to gather information about the main characteristics of plastic particles that allow different types of contaminants to adsorb on their surfaces, the consequences of this adsorption, and the interactions of plastic particles with aquatic biota. Additionally, some missing links and potential solutions are presented to boost more research on this topic and achieve a holistic view on the effects of micro- and nanoplastics to biological systems in aquatic environments. It is urgent to implement measures to deal with plastic pollution that include improving waste management, monitoring key plastic particles, their hotspots, and developing their assessment techniques, using alternative products, determining concentrations of micro- and nanoplastics and the contaminants in freshwater and marine food-species consumed by humans, applying clean-up and remediation strategies, and biodegradation strategies.
Collapse
Affiliation(s)
- Fernanda Cássio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.B.); (A.P.)
- Institute for Science and Innovation for Bio-Sustainability (IB-S), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Daniela Batista
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.B.); (A.P.)
- Institute for Science and Innovation for Bio-Sustainability (IB-S), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.B.); (A.P.)
- Institute for Science and Innovation for Bio-Sustainability (IB-S), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|