1
|
Sun X, Qin L, Yu L, Wang J, Liu J, Wang M, Chen S. Ecological risk threshold for chromium in Chinese soils and its prediction models. ENVIRONMENTAL RESEARCH 2024; 262:119935. [PMID: 39270954 DOI: 10.1016/j.envres.2024.119935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
The derivation of chromium (Cr) ecological risk thresholds in soils remains limited, despite their importance as measurement standards and indicators for enacting soil protection policies. In this study, toxicity of Cr in soil to different species was tested based on Log-Logistic dose-effect relationship. On this basis, combined with Cr toxicity measurement data in literature, the ecological risk threshold HC5 for protecting 95% species safety in soils with different properties was obtained by fitting species sensitivity distribution curve (SSD). This research collected various Cr toxicological data from Chinese cropland soils, based on 31 different endpoints covering soil fauna, functional indicators of microorganisms, terrestrial plants, etc., sourced from both our laboratory and existing literature. We applied the SSD method to estimate the hazardous concentration of Cr for HC5 and ultimately established a predictive model according to HC5 and different soil properties. As a result, the EC10 (an effective concentration of Cr resulting in 10% suppression of terminal biological activity) based on 7 different soils and 4 endpoints ranged from 16.8 to 148.0 mg kg-1, and the hormesis of Cr induction reached up to 109%. Overall, the toxicity (EC10) to microorganisms was much lower, while it was higher for graminoids. All the toxicity data were corrected through an aging factor with up to 540 days of equilibration before fitting the SSD curves. After that, a prediction model considering HC5 values and soil properties was established as LogHC5 = 3.003LogpH +0.651LogOC +0.013LogCEC - 0.476. The model was well-verified in field experiments, as the actual and predicted values fell within a 2-fold error range. This approach offers a rigorous scientific foundation for determining the Cr ecological risk threshold and could be important for the conservation of ecological species in soils.
Collapse
Affiliation(s)
- Xiaoyi Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Luyao Qin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Lei Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jiaxiao Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Meng Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Shibao Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/ Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
2
|
Zemanová V, Pavlíková D, Novák M, Hnilička F. The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic. PLANTS (BASEL, SWITZERLAND) 2024; 13:3363. [PMID: 39683158 DOI: 10.3390/plants13233363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
The effects of zinc (Zn) on the physiology of spinach (Spinacia oleracea L.) were investigated in a pot experiment with increasing Zn contents in the horticultural substrate (0, 75, 150, and 300 mg Zn kg-1). Interactions among nutrients in the substrate solution affected plant vitality, biomass yield, and nutrient content in plants. The water-soluble Zn fraction increased with the Zn dose, rising from 0.26 mg kg-1 in the Control to 0.98 mg kg-1 in the Zn300 treatment. The most pronounced effects of elevated Zn content were observed for Ca, Mg, and Mn. In spinach, the dual role of Zn was evident through its impact on yield, particularly regarding aboveground biomass. The positive effects of Zn doses up to 150 mg kg-1 were supported by the tolerance index (TI). In contrast, the 300 mg kg-1 Zn dose exhibited toxic effects, resulting in a 33.3% decrease in the yield of aboveground biomass and a TI value of 0.7. The effects of Zn on nutrient content in aboveground biomass varied with the dose, and the relationship between Zn and P, Fe, Mn, Ca, and K content confirmed a correlation. The toxic effect of the Zn300 treatment was evidenced by a decrease in Ca, Cu, and Fe contents. Additionally, the results of the Zn300 treatment indicated a negative effect on the synthesis of photosynthetic pigments and photosynthesis, likely due to induced oxidative stress. The production of oxalic acid also suggested a toxic effect of the highest Zn dose on spinach.
Collapse
Affiliation(s)
- Veronika Zemanová
- Department of Nutrition Management, Crop Research Institute, Drnovská 507, Ruzyně, 16106 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Milan Novák
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| |
Collapse
|
3
|
Xu Z, Peng S, Pei L, Zhou K, Wang X. Integrated Analysis of Pollution Characteristic and Ecotoxicological Effect Reveals the Fate of Lithium in Soil-Plant Systems: A Challenge to Global Sustainability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15755-15765. [PMID: 39163250 DOI: 10.1021/acs.est.4c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Lithium, as an emerging contaminant, lacks sufficient information regarding its environmental and ecotoxicological implications within soil-plant systems. Employing maize, wheat, pea, and water spinach, we conducted a thorough investigation utilizing a multispecies, multiparameter, and multitechnique approach to assess the pollution characteristics and ecotoxicological effects of lithium. The findings suggested that lithium might persist in an amorphous state, altering surface functional groups and chemical bonds, although semiquantitative analysis was unattainable. Notably, lithium demonstrated high mobility, with a mild acid-soluble fraction accounting for 29.66-97.02% of the total, while a minor quantity of exogenous lithium tended to be a residual fraction. Plant analysis revealed that in 10-80 mg Li/kg soils lithium significantly enhanced certain growth parameters of maize and pea, and the calculated LC50 values for aerial part length across the four plant species varied from 173.58 to 315.63 mg Li/kg. Lithium accumulation in the leaves was up to 1127.61-4719.22 mg/kg, with its inorganic form accounting for 18.60-94.59%, and the cytoplasm fraction (38.24-89.70%) predominantly harbored lithium. Furthermore, the model displayed that growth stimulation might be attributed to the influence of lithium on phytohormone levels. Water spinach exhibited superior accumulation capacity and tolerance to lithium stress and was a promising candidate for phytoremediation strategies. Our findings contribute to a more comprehensive understanding of lithium's environmental behavior within soil-plant systems, particularly within the context of global initiatives toward carbon neutrality.
Collapse
Affiliation(s)
- Zhinan Xu
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| | - Si Peng
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| | - Luyao Pei
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| | - Kecen Zhou
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| | - Xiangrong Wang
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| |
Collapse
|
4
|
Qu M, Guang X, Chen J, Zhao Y, Huang B, Wang M, Wang H, Wang Y. Soil environmental carrying capacity and its spatial high-precision accounting framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173620. [PMID: 38815834 DOI: 10.1016/j.scitotenv.2024.173620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Human activity intensity should be controlled within the carrying capacity of soil units, which is crucial for environmental sustainability. However, the existing assessment methods for soil environmental carrying capacity (SECC) rarely consider the relationship between human activity intensity and pollutant emissions, making it difficult to provide effective early warning of human activity intensity. Moreover, there is a lack of spatial high-precision accounting methods for SECC. This study first established a spatial soil environmental capacity (SEC) model based on the pollutant thresholds corresponding to the specific protection target. Next, a spatial net-input flux model was proposed based on soil pollutants' input/output fluxes. Then, the quantitative relationship between human activity intensity and pollutant emissions was established and further incorporated into the SECC model. Finally, the spatial high-precision accounting framework of SECC was proposed. The methodology was used to assess the SECC for the copper production capacity in a typical copper smelting area in China. The results showed that (i) the average SECs for Cu, Cd, Pb, Zn, As and Cr are 427.89, 16.84, 306.41, 376.8, 71.63, and 392.7 kg hm-2, respectively; (ii) heavy metal (HM) concentrations and land-use types jointly influence the spatial distribution pattern of SEC; (iii) atmospheric deposition is the dominant HM input pathway and the high net-input fluxes are mainly located in the southeast of the study area; (iv) with the current human activity intensity for 50 years, the average SECs for Cu, Cd, Pb, Zn, As and Cr are 202.31, 1.71, 20.9, 66.15, 36.73, and 3 kg hm-2, respectively; and (v) to maintain the protection target at the acceptable risk level within 50 years, the SECC for the increased copper production capacity is 1.53 × 106 t. This study provided an effective tool for early warning of human activity intensity.
Collapse
Affiliation(s)
- Mingkai Qu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Xu Guang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Jian Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Yongcun Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Biao Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongmei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| |
Collapse
|
5
|
Shi W, Wang X, Xia T, Pu X, Bian J. Deriving ecological risk thresholds for soil molybdenum in China based on interspecies correlation estimation and quantitative ion character-activity relationship models. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134483. [PMID: 38703684 DOI: 10.1016/j.jhazmat.2024.134483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Soil molybdenum (Mo) levels can reach ecologically hazardous levels. China has not yet established the relevant thresholds, posing challenges for environmental management. Therefore, we present our data relevant to Mo toxicity for several important species. By normalizing soil properties, we obtained a correlation model of Mo toxicity to Hordeum vulgare, as well as 31 models for the toxicity of other elements including Cu and Ni to invertebrates and microbial processes. Using interspecies correlation estimation (ICE) extrapolation, the sensitivity coefficient (0.12-0.71) for five plants were found. For invertebrates and microbial processes lacking Mo data, we used regression analysis to establish Mo toxicity models based on the soil quantitative ion character-activity relationships (s-QICAR; R2 =0.70-0.95) and known toxicities of other metal elements to invertebrate and microbial processes. Furthermore, combining species sensitivity distribution calculations, the HC5 values for protecting 95% of soil species from Mo in three typical soil scenarios in China were calculated. After correction, the predicted no-effect concentrations were 6.8, 4.8, and 3.4 mg/kg, respectively. This study innovatively combined ICE and s - QICAR to derive soil Mo thresholds. Our results can provide a basis for decision-making in the assessment and management of soil Mo pollution.
Collapse
Affiliation(s)
- Wanyang Shi
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.
| | - Tianxiang Xia
- Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, 100037 Beijing, China
| | - Xiao Pu
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.
| | - Jianlin Bian
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| |
Collapse
|
6
|
Huang Y, Zhang N, Ge Z, Lv C, Zhu L, Ding C, Liu C, Peng P, Wu T, Wang Y. Determining soil conservation strategies: Ecological risk thresholds of arsenic and the influence of soil properties. ECO-ENVIRONMENT & HEALTH 2024; 3:238-246. [PMID: 38693960 PMCID: PMC11061221 DOI: 10.1016/j.eehl.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 05/03/2024]
Abstract
The establishment of ecological risk thresholds for arsenic (As) plays a pivotal role in developing soil conservation strategies. However, despite many studies regarding the toxicological profile of As, such thresholds varying by diverse soil properties have rarely been established. This study aims to address this gap by compiling and critically examining an extensive dataset of As toxicity data sourced from existing literature. Furthermore, to augment the existing information, experimental studies on As toxicity focusing on barley-root elongation were carried out across various soil types. The As concentrations varied from 12.01 to 437.25 mg/kg for the effective concentrations that inhibited 10% of barley-root growth (EC10). The present study applied a machine-learning approach to investigate the complex associations between the toxicity thresholds of As and diverse soil properties. The results revealed that Mn-/Fe-ox and clay content emerged as the most influential factors in predicting the EC10 contribution. Additionally, by using a species sensitivity distribution model and toxicity data from 21 different species, the hazardous concentration for x% of species (HCx) was calculated for four representative soil scenarios. The HC5 values for acidic, neutral, alkaline, and alkaline calcareous soils were 80, 47, 40, and 28 mg/kg, respectively. This study establishes an evidence-based methodology for deriving soil-specific guidance concerning As toxicity thresholds.
Collapse
Affiliation(s)
- Yihang Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Naichi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixuan Ge
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chen Lv
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Linfang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cun Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peiqin Peng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tongliang Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wang H, Zhao M, Huang X, Song X, Cai B, Tang R, Sun J, Han Z, Yang J, Liu Y, Fan Z. Improving prediction of soil heavy metal(loid) concentration by developing a combined Co-kriging and geographically and temporally weighted regression (GTWR) model. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133745. [PMID: 38401211 DOI: 10.1016/j.jhazmat.2024.133745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
The study of heavy metal(loid) (HM) contamination in soil using extensive data obtained from published literature is an economical and convenient method. However, the uneven distribution of these data in time and space limits their direct applicability. Therefore, based on the concentration data obtained from the published literature (2000-2020), we investigated the relationship between soil HM accumulation and various anthropogenic activities, developed a hybrid model to predict soil HM concentrations, and then evaluated their ecological risks. The results demonstrated that various anthropogenic activities were the main cause of soil HM accumulation using Geographically and temporally weighted regression (GTWR) model. The hybrid Co-kriging + GTWR model, which incorporates two of the most influential auxiliary variables, can improve the accuracy and reliability of predicting HM concentrations. The predicted concentrations of eight HMs all exceeded the background values for soil environment in China. The results of the ecological risk assessment revealed that five HMs accounted for more than 90% of the area at the "High risk" level (RQ ≥ 1), with the descending order of Ni (100%) = Cu (100%) > As (98.73%) > Zn (95.50%) > Pb (94.90%). This study provides a novel approach to environmental pollution research using the published data.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China
| | - Menglu Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoyong Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Boya Cai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiaxun Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Department of Geographical Sciences, University of Maryland, College Park 20742, the United States
| | - Zilin Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jing Yang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Yafeng Liu
- School of Resoureces and Environment, Anqing Normal University, Anqing 246133, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
Yu L, Chen S, Wang J, Qin L, Sun X, Zhang X, Wang M. Environmental risk thresholds and prediction models of Cd in Chinese agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167773. [PMID: 37839484 DOI: 10.1016/j.scitotenv.2023.167773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Soil environmental risk threshold of cadmium (Cd) is an important index in formulating soil protection policy. Environmental risk threshold refers to the maximal allowable critical concentration of hazardous substances in the environment. Although there is less study on how to determine soil Cd environmental risk threshold, it is a crucial indicator in formulating soil conservation policies and a key factor in assessing soil environmental quality. The main research content of the study is deducing the environmental risk threshold, aiming to provide scientific basis for the study of environmental quality standards of agricultural land and provide technical support for the protection of Cd pollution of agricultural land. The hazard concentration of 5 % species (HC5, which protects 95 % of species) was determined here using different toxicological data of Cd from 23 test endpoints, interspecific extrapolation using the species sensitivity distribution (SSD) method, and a prediction model was created on the basis of several soil parameters. According to the findings, Cd effective concentration (EC10) (Cd concentration which blocks 10 % of an endpoint's bioactivity) varied from 0.109 to 221 mg·kg-1, and the hormetic response induced by Cd reached 118 % displaying in the dose-response curve of Lolium perenne L.. Toxicology data was rectified by the aging factor considering biogeochemical processes of the newly added pollutants prior to SSD curves fitting. After that, the prediction model was created with the equation of LogHC5 = 0.147 pH + 0.067 OC -1.616. The field test properly validated the prediction model, demonstrating its ability to forecast Cd toxicity levels for various soil conditions. This study offers a scientifically sound methodology for determining the environmental risk limitation for Cd and identifies critical paths for the preservation of environmental species.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shibao Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Luyao Qin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyi Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xing Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Jalil S, Nazir MM, Ali Q, Zulfiqar F, Moosa A, Altaf MA, Zaid A, Nafees M, Yong JWH, Jin X. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:870-888. [PMID: 37598713 DOI: 10.1071/fp23021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Heavy metals and metalloids (HMs) contamination in the environment has heightened recently due to increasing global concern for food safety and human livability. Zinc (Zn2+ ) is an important nutrient required for the normal development of plants. It is an essential cofactor for the vital enzymes involved in various biological mechanisms of plants. Interestingly, Zn2+ has an additional role in the detoxification of HMs in plants due to its unique biochemical-mediating role in several soil and plant processes. During any exposure to high levels of HMs, the application of Zn2+ would confer greater plant resilience by decreasing oxidative stress, maintaining uptake of nutrients, photosynthesis productivity and optimising osmolytes concentration. Zn2+ also has an important role in ameliorating HMs toxicity by regulating metal uptake through the expression of certain metal transporter genes, targeted chelation and translocation from roots to shoots. This review examined the vital roles of Zn2+ and nano Zn in plants and described their involvement in alleviating HMs toxicity in plants. Moving forward, a broad understanding of uptake, transport, signalling and tolerance mechanisms of Zn2+ /zinc and its nanoparticles in alleviating HMs toxicity of plants will be the first step towards a wider incorporation of Zn2+ into agricultural practices.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, Punjab University, Lahore 54590, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agricultural and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abbu Zaid
- Department of Botany, Government Gandhi Memorial Science College, Jammu, India
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
10
|
Yu X, Li H, Yang Q, Sun Z, Ma Y. Accumulation of Cr in different vegetables and derivation of soil Cr threshold using the species sensitivity distribution method. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114993. [PMID: 37172408 DOI: 10.1016/j.ecoenv.2023.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Due to its high mobility and bioavailability, hexavalent chromium [Cr(VI)] in agricultural soil can be taken up by crops and pose threat to human being. In this study, two soils (Jiangxi red soil and Shandong fluvo-aquic soil) spiked with Cr(VI) and 8 common vegetable varieties were used to conduct the pot experiment. The bioconcentration factor (BCF) values based on the tetraacetic acid extractable Cr (EDTA-Cr) in soils were used to construct the species sensitivity distribution (SSD) curve. Afterwards, the soil Cr threshold was derived based on the critical BCF value and the permissible limit of Cr for vegetables. The results showed that when spiked with 5.6 mg kg-1 of Cr(Ⅵ), the soil EDTA-Cr concentrations were significantly increased compared with the control except Jiangxi red soil planted with carrot and radish, while the Cr concentrations in the edible parts of vegetables in both soils were below the permissible limit (0.5 mg kg-1 FW). However, there are dramatic differences in the accumulation of Cr by different varieties of vegetables. Apparent discrepancy was observed between the two soils for the bioconcentration of Cr by carrot. Among the leafy vegetables, lettuce and oilseed rape are the most and the least sensitive to Cr pollution, respectively. The safety threshold values of EDTA-Cr were 0.70 mg kg-1 for Shandong fluvo-aquic soil and 0.85 mg kg-1 for Jiangxi red soil, respectively. This study provides information on the safety production of vegetable products in Cr(Ⅵ) polluted soils and is helpful to the revision of soil quality standards of Cr.
Collapse
Affiliation(s)
- Xuezhen Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Helian Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Qian Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Zongquan Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yibing Ma
- Macao Environmental Research Institute, Macau University of Science and Technology, 999078, Macao.
| |
Collapse
|
11
|
Wang Q, Wang J, Cheng J, Zhu Y, Geng J, Wang X, Feng X, Hou H. A New Method for Ecological Risk Assessment of Combined Contaminated Soil. TOXICS 2023; 11:toxics11050411. [PMID: 37235226 DOI: 10.3390/toxics11050411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Ecological risk assessment of combined polluted soil has been conducted mostly on the basis of the risk screening value (RSV) of a single pollutant. However, due to its defects, this method is not accurate enough. Not only were the effects of soil properties neglected, but the interactions among different pollutants were also overlooked. In this study, the ecological risks of 22 soils collected from four smelting sites were assessed by toxicity tests using soil invertebrates (Eisenia fetida, Folsomia candida, Caenorhabditis elegans) as subjects. Besides a risk assessment based on RSVs, a new method was developed and applied. A toxicity effect index (EI) was introduced to normalize the toxicity effects of different toxicity endpoints, rendering assessments comparable based on different toxicity endpoints. Additionally, an assessment method of ecological risk probability (RP), based on the cumulative probability distribution of EI, was established. Significant correlation was found between EI-based RP and the RSV-based Nemerow ecological risk index (NRI) (p < 0.05). In addition, the new method can visually present the probability distribution of different toxicity endpoints, which is conducive to aiding risk managers in establishing more reasonable risk management plans to protect key species. The new method is expected to be combined with a complex dose-effect relationship prediction model constructed by machine learning algorithm, providing a new method and idea for the ecological risk assessment of combined contaminated soil.
Collapse
Affiliation(s)
- Qiaoping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junhuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiaqi Cheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yingying Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Jian Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Xianjie Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
12
|
Jiang R, Wang M, Xie T, Chen W. Site-specific ecological effect assessment at community level for polymetallic contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130531. [PMID: 36495636 DOI: 10.1016/j.jhazmat.2022.130531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Current ecological risk assessment (ERA) is based more on book-keeping than on science especially for terrestrial ecosystems due to the lack of relevance to real field. Accordingly, site-specific ecological effect assessment is critical for ERA, especially at high tiers. This study developed procedures to assess ecological effect at community level based on field data. As a case study, we assessed ecological effect of polymetallic contamination in soil in the surrounding of an abandoned mining and smelting site in Hunan, China. Firstly, Zn was identified as the dominant contaminant in soil and slope gradient (SG) and pH as environmental impact factors using distance-based redundancy analysis(db-RDA). Secondly, sensitive endpoints were screened using correlation analysis between Zn and parameters of plant community composition and functional traits. Thirdly, exposure-effect curves between Zn and screened endpoints were developed by taking SG and pH as covariates using Bayesian kernel machine regression analysis (BKMR), based on which half-effect concentrations (EC50s) and 10 %-effect concentrations (EC10s) of soil Zn for each endpoint were calculated. Finally, site-specific hazardous concentrations (HC50s) of Zn were estimated. It was revealed site-specific EC50s and EC10s for soil Zn ranged 80.5-201 mg kg-1 and 342-893 mgkg-1, respectively, and HC50s based on EC10s and EC50s ranged 104-110 mg kg-1 and 595-612 mg kg-1, respectively, which are more specific and inclusive than those obtained based on crop and vegetable seed germination and seedling growth toxicity experiments.
Collapse
Affiliation(s)
- Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Tian Xie
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Du Z, Dou W, Lin D, Qin L, An Y, Chen H, Wu L, Mou L. Do tillage systems affect the cadmium threshold in farmland soil for environmental quality standard setting? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160816. [PMID: 36496029 DOI: 10.1016/j.scitotenv.2022.160816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Tillage systems may change the cadmium (Cd) threshold of farmland soil. However, there have been few studies on this topic. Therefore, this study aimed to explore the influence of tillage systems on Cd threshold. The study conducted 2-year field experiments under different tillage systems (early rice-fallow, early rice-late rice and early rice-vegetable) at three typical Cd-polluted sites in China. The species sensitivity distribution (SSD) method was used to construct the SSD curves for the calculation of the Cd threshold by analyzing the experimental data. The sensitivity analysis results based on the SSD curves revealed that the sensitivities to Cd in rice varieties under the same tillage system were substantially different but almost the same under different tillage systems. These results can help select rice varieties with low Cd sensitivity for crop safety. Different tillage systems at the same site varied in their influence on Cd threshold values. Cd threshold values under early rice-late rice (e.g., 0.27, 0.28 mg/kg in Xiangtan City) and early rice-vegetable (e.g., 0.26, 0.31 mg/kg in Xiangtan City) tillage systems were roughly lower than that under the early rice-fallow tillage system (e.g., 0.33, 0.35 mg/kg in Xiangtan City). Notably, the influence of tillage systems resulted in Cd threshold values being generally lower than the Cd risk screening values of the current Chinese soil environmental quality standard. Analysis of the influence of different tillage systems on the Cd threshold is beneficial for the optimization of farmland soil environmental quality standards.
Collapse
Affiliation(s)
- Zhaolin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Weiqiang Dou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dasong Lin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Hongan Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lina Wu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liyan Mou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
14
|
Bai J, Lu D, Chen L, Liu W, Zheng Y, Xiang G, Meng G, Lin Z, Duan R. Ecotoxicological Differences of Antimony (III) and Antimony (V) on Earthworms Eisenia fetida (Savingy). TOXICS 2023; 11:230. [PMID: 36976994 PMCID: PMC10056663 DOI: 10.3390/toxics11030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
In this study, we assessed the acute and chronic toxic effects of Sb (III) and Sb (V) on Eisenia fetida (Savingy) (E. fetida) by applying the filter paper contact method, aged soil treatment, and avoidance test experiment. In the acute filter paper contact test, the LC50 values for Sb (III) were 2581 mg/L (24 h), 1427 mg/L (48 h), and 666 mg/L (72 h), which were lower than Sb (V). In the chronic aged soil exposure experiment, when the Sb (III)-contaminated soil was aged 10 d, 30 d, and 60 d after exposure for 7 d, the LC50 value of E. fetida was 370, 613, and >4800 mg/kg, respectively. Compared to Sb (V) spiked soils aged only for 10 d, the concentrations causing 50% mortality significantly increased by 7.17-fold after 14 days of exposure in soil aged for 60 d. The results show that Sb (III) and Sb (V) could cause death and directly affect the avoidance behavior of E. fetida; yet, the toxicity of Sb (III) was higher than that of Sb (V). Consistent with the decrease in water-soluble Sb, the toxicity of Sb to E. fetida was greatly reduced with time. Therefore, in order to avoid overestimating the ecological risk of Sb with varying oxidative states, it is important to consider the forms and bioavailability of Sb. This study accumulated and supplemented the toxicity data, and provided a more comprehensive basis for the ecological risk assessment of Sb.
Collapse
Affiliation(s)
- Jing Bai
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Key Laboratory of Ecological Remediation of Antimony Mine, Loudi 417000, China
| | - Dan Lu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Linyu Chen
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Weiying Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yu Zheng
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Key Laboratory of Ecological Remediation of Antimony Mine, Loudi 417000, China
| | - Guohong Xiang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Key Laboratory of Ecological Remediation of Antimony Mine, Loudi 417000, China
| | - Guiyuan Meng
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Key Laboratory of Ecological Remediation of Antimony Mine, Loudi 417000, China
| | - Zhong Lin
- College of Chemistry and Environmental Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Key Laboratory of Ecological Remediation of Antimony Mine, Loudi 417000, China
| |
Collapse
|
15
|
Qin L, Wang L, Sun X, Yu L, Wang M, Chen S. Ecological toxicity (EC x) of Pb and its prediction models in Chinese soils with different physiochemical properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158769. [PMID: 36108869 DOI: 10.1016/j.scitotenv.2022.158769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The lack of toxicological data becomes the main bottleneck of ecological risk assessment of lead (Pb) in Chinese soils. The present study assessed Pb toxicity on three underground test endpoints (barley root elongation, earthworm avoidance response, and substrate-induced respiration (SIR) of microorganism) in 10 different soils. Hormetic dose-response induced by Pb was >118 % for earthworm avoidance response. EC10 and EC50 (the effective concentrations of Pb that inhibit 10 % or 50 % of endpoint bioactivity and also represents the toxicity threshold of Pb) after leaching increased by 0.32-8.73 times, and 1.02-3.75 times, respectively. Leaching factor (LF) prediction models indicated pH and cation exchange capacity (CEC) were the vital predictors for LF10 and LF50, explaining 60.6 % and 73.1 % of variations, respectively. SIR was one sensitive test endpoint for Pb toxicity, with the lowest of EC10 and EC50 values (from 373.7 to 1008.5 mg·kg-1, and from 837.1 to 2869.0 mg·kg-1, respectively). The best prediction models between ECx and soil properties is LogEC50 = 1.324Log(pH) + 0.423Log(CEC) + 1.742 (R2 = 0.761, p < 0.01). The results displayed significant implications for deriving ECx of Pb, and provided a scientific basis for soil ecological risk assessment of Pb.
Collapse
Affiliation(s)
- Luyao Qin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Lifu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiaoyi Sun
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Lei Yu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Meng Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Shibao Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
16
|
Xu M, Yang L, Chen Y, Jing H, Wu P, Yang W. Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114244. [PMID: 36326557 DOI: 10.1016/j.ecoenv.2022.114244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is considered the primary dietary toxic element. Previous studies have demonstrated significant differences in heavy metal accumulation among crop species. However, this information in karst areas with low heavy metal activity is missing. In this study, the uptake and accumulation characteristics of cadmium in soil-crop samples of group 504 in the core karst region of East Asia were analyzed. Cadmium low-accumulating maize and rice were screened using cluster and Pareto analytic methods. In addition, a new method, the species-sensitive distribution model (SSD), was proposed, which could be used to estimate the environmental threshold for cadmium in regional cropland. The results showed that both maize and rice soils in the research area were contaminated with varying degrees of cadmium. The total concentrations of cadmium ω(T-Cd) in maize and rice fields are 0.18-1.32 and 0.20-4.42 mg kg-1, respectively. The ω(T-Cd) of heavy metals in maize kernels and rice grains is 0.002-0.429 and 0.003-0.393 mg kg-1, respectively. The bioaccumulation factor (BCF) of cadmium in maize ranged from 0.0079 to 0.9701, with a coefficient of variation of 1.71; the BCF of cadmium in rice ranged from 0.0074 to 0.1345, with a coefficient of variation of 0.99. According to cluster and Pareto analyses, the maize crop varieties with low cadmium accumulation suitable for local cultivation were screened as JHY809, JDY808, AD778, SN3H and SY13, and the rice varieties were DMY6188, GY725, NY6368, SY451 and DX4103. In addition, the environmental cadmium threshold ranges of 0.30-10.05 mg kg-1 and 0.89-24.39 mg kg-1 for maize and rice soils, respectively, were deduced in this study. This threshold will ensure that 5-95% of maize and rice will not be contaminated with cadmium in the soil.
Collapse
Affiliation(s)
- Mengqi Xu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Liyu Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Yonglin Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Haonan Jing
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Wentao Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
17
|
Sun X, Qin L, Wang L, Zhao S, Yu L, Wang M, Chen S. Aging factor and its prediction models of chromium ecotoxicity in soils with various properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157622. [PMID: 35901894 DOI: 10.1016/j.scitotenv.2022.157622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aging of pollutants determines bioavailability and toxicity thresholds of environmental pollutants in soil. However, the ecotoxicity of chromium (Cr) rarely considers the effect of aging as well as soil properties. In order to explore the aging characteristics and establish their quantitative relationship with different soil properties, this study selected 7 soils with different properties through exogenous addition of Cr and determined its toxicity on barley root elongation. From 14d to 540d, EC10 and EC50 of barley root elongation ranged from 21.40 to 312.52 (mg·kg-1) and 50.15 to 883.88 (mg·kg-1) respectively. The hormesis appeared in the dose-response curve of acid soil as relative barley root elongation reached >110 % compared with the control. Extended aging time of Cr from 14d to 540d was associated with the attenuation of the toxicity of Cr, as the aging factor increased from 1.26 to 6.09 for EC50, from 0.88 to 4.98 for EC10. The prediction model of AFEC50 and soil properties is lg (AF360d) = 0.306lg Clay+0.026lg CEC + 0.240 (R2 = 0.872, P < 0.01). The results demonstrated that with the extension of aging time, the toxicity of Cr decreased at 360d and reached a slow reaction stage, after that soil OC, Clay and CEC could well explain the aging procedure of Cr (VI). These results are beneficial for risk assessment of Cr contaminated soils and establishment of a soil environmental quality criteria for Cr.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Luyao Qin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lifu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shuwen Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lei Yu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Meng Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Shibao Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|