1
|
Shang Y, Zhao K, Xue W, An J, Zhong Y, Chen Y, Zeng Q, Tang Q, Qiu X. Comparative assessment of acute neurotoxicity of real-world ultra-fine black carbon emitted from residential solid fuel combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176597. [PMID: 39349200 DOI: 10.1016/j.scitotenv.2024.176597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Incomplete combustion of residential solid fuel is one of the main anthropogenic sources for black carbon (BC). Fresh BC, mainly enriched in ultra-fine fraction of particles, can directly cross blood-brain barrier and are reported to be associated with neurodegenerative diseases. Because of the difficulties in collection and purification of BC from ambient particles, there are still significant knowledge gaps in understanding neurotoxicity caused by real-world BC. The purpose of this study is to compare the neurotoxic effects caused by BCs emitted from combustion of six residential solid fuels, and try to reveal associated biological mechanisms in SH-SY5Y cells. Two straw BC (Wheat-BC and Corn-BC) showed highest neurotoxic effects followed by wood BC (Pine-BC and Aspen-BC) and coal BC (Xvzhou and Longkou Coal), as indicated by viability, lactic dehydrogenase, malondialdehyde, adenosine triphosphate and acetylcholine levels. Coal BC caused nearly no toxicity in human neuroblastoma (SH-SY5Y) cells within highest dose of 200 μg/mL. RNA sequence and bioinformatics analysis were applied to effectively identify differential genes and signaling pathways. Based on Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Protein Protein Interaction network (PPI network) construction, we found biomass BC affected mitochondrial function, interfered with cellular metabolic processes, disturbed redox homeostasis, and finally resulted in cellular damages. Coal-BC mainly caused cytokine/chemokine related inflammatory responses. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting methods were further applied to find out related signaling pathways. Biomass BC activated IL6R/JAK3/STAT3 and JAK3/STAT6 pathways leading to oxidative stress and inflammatory responses. Coal BC activated JAK3/STAT3 pathway leading to chemokine related responses. This study revealed the heterogeneity in neurotoxicity of BCs from different combustion sources and provided important data for health risk assessment. BC-related neurotoxicity should be considered when making air pollution emission control strategies, with residential biomass receiving more policy attention.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kunming Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qingming Zeng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qisheng Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, Shanghai 200040, China.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
3
|
Wang S, Qin T, Tu R, Li T, Chen GI, Green DC, Zhang X, Feng J, Liu H, Hu M, Fu Q. Indoor air quality in subway microenvironments: Pollutant characteristics, adverse health impacts, and population inequity. ENVIRONMENT INTERNATIONAL 2024; 190:108873. [PMID: 39024827 DOI: 10.1016/j.envint.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Rapidly increasing urbanization in recent decades has elevated the subway as the primary public transportation mode in metropolitan areas. Indoor air quality (IAQ) inside subways is an important factor that influences the health of commuters and subway workers. This review discusses the subway IAQ in different cities worldwide by comparing the sources and abundance of particulate matter (PM2.5 and PM10) in these environments. Factors that affect PM concentration and chemical composition were found to be associated with the subway internal structure, train frequency, passenger volume, and geographical location. Special attention was paid to air pollutants, such as transition metals, volatile/semi-volatile organic compounds (VOCs and SVOCs), and bioaerosols, due to their potential roles in indoor chemistry and causing adverse health impacts. In addition, given that the IAQ of subway systems is a public health issue worldwide, we calculated the Gini coefficient of urban subway exposure via meta-analysis. A value of 0.56 showed a significant inequity among different cities. Developed regions with higher per capita income tend to have higher exposure. By reviewing the current advances and challenges in subway IAQ with a focus on indoor chemistry and health impacts, future research is proposed toward a sustainable urban transportation systems.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tianchen Qin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Tu
- School of Transportation, Southeast University, Nanjing 210096, China; The Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Transportation Laboratory), Nanjing, China.
| | - Tianyuan Li
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gang I Chen
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - David C Green
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK; NIRH HPRU in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
| | - Xin Zhang
- School of Transportation, Southeast University, Nanjing 210096, China
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haobing Liu
- School of Transportation Engineering, Tongji University, Shanghai 201804, China
| | - Ming Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
4
|
Jiao J, Liu L, Xiao K, Liu Q, Long Q. Atmospheric pollutant black carbon induces ocular surface damage in mice. Exp Eye Res 2024; 239:109755. [PMID: 38128749 DOI: 10.1016/j.exer.2023.109755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The threats of air pollution to human health have been gradually discovered, including its effects on eyes. The purpose of the study is to investigate the potential correlation between ocular surface exposure to black carbon and ocular surface structural damage as well as tear film dysfunction. To achieve this goal, 60 6-8-week-aged male BALB/C mice were randomly divided into 4 groups (n = 15). 0.5 mg/ml (group A), 1 mg/ml (group B), 5 mg/ml (group C) black carbon suspension droplets and PBS solution (group D) were used in the right eyes, 4 μl per time of three times per day. Tear break-up time, corneal fluorescein staining scores, and tear volume were assessed before treatment (day 0) and on days 4, 7, 10, and 14 after treatment. On day 14, the mice were sacrificed, and corneal and conjunctival tissues were collected for histological analysis. As the exposure time increased, there were no significant changes in the measured parameters from PBS-treated group of mice (P > 0.05). However, in the black carbon-treated group, there were significant decreases in tear film break-up time, significant increases in corneal fluorescein staining scores, and significant reductions in tear secretion (all P < 0.05). After 14 days, H&E staining of the corneal epithelium showed that in the PBS-treated group of mice, the corneal epithelial cells were neatly arranged, with no inflammatory cell infiltration, while in the black carbon-treated group, the corneal epithelium was significantly thickened, the basal cell arrangement was disrupted, the number of cell layers increased, and there was evidence of inflammatory cell infiltration. In the ultrastructure of the corneal epithelium, it could be observed that the black carbon-treated group had an increased amount of corneal epithelial cell detachment compared to the PBS-treated group, at the same time, the intercellular connections were looser, and there was a decrease in the number of microvilli and desmosomes in the black carbon-treated group. The results indicate that the ocular surface exposure to black carbon can result in a decrease in tear film stability and tear secretion in mice. Moreover, it can induce alterations in the corneal structure.
Collapse
Affiliation(s)
- Jingyi Jiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Lin Liu
- State Key Laboratory of Environmental Chemistry & Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Kang Xiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry & Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
5
|
Gerber LS, de Leijer DCA, Rujas Arranz A, Lehmann JMML, Verheul ME, Cassee FR, Westerink RHS. In vitro neurotoxicity of particles from diesel and biodiesel fueled engines following direct and simulated inhalation exposure. ENVIRONMENT INTERNATIONAL 2024; 184:108481. [PMID: 38330748 DOI: 10.1016/j.envint.2024.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.
Collapse
Affiliation(s)
- Lora-Sophie Gerber
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dirk C A de Leijer
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Andrea Rujas Arranz
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jonas M M L Lehmann
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Meike E Verheul
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Flemming R Cassee
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Rönkkö T, Pirjola L, Karjalainen P, Simonen P, Teinilä K, Bloss M, Salo L, Datta A, Lal B, Hooda RK, Saarikoski S, Timonen H. Exhaust particle number and composition for diesel and gasoline passenger cars under transient driving conditions: Real-world emissions down to 1.5 nm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122645. [PMID: 37777056 DOI: 10.1016/j.envpol.2023.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Recent recommendations given by WHO include systematic measurements of ambient particle number concentration and black carbon (BC) concentrations. In India and several other highly polluted areas, the air quality problems are severe and the need for air quality related information is urgent. This study focuses on particle number emissions and BC emissions of passenger cars that are technologically relevant from an Indian perspective. Particle number and BC were investigated under real-world conditions for driving cycles typical for Indian urban environments. Two mobile laboratories and advanced aerosol and trace gas instrumentation were utilized. Our study shows that passenger cars without exhaust particle filtration can emit in real-world conditions large number of particles, and especially at deceleration a significant fraction of particle number can be even in 1.5-10 nm particle sizes. The mass concentration of exhaust plume particles was dominated by BC that was emitted especially at acceleration conditions. However, exhaust particles contained also organic compounds, indicating the roles of engine oil and fuel in exhaust particle formation. In general, our study was motivated by serious Indian air quality problems, by the recognized lack of emission information related to Indian traffic, and by the recent WHO air quality guidance; our results emphasize the importance of monitoring particle number concentrations and BC also in Indian urban areas and especially in traffic environments where people can be significantly exposed to fresh exhaust emissions.
Collapse
Affiliation(s)
- Topi Rönkkö
- Aerosol Physics Laboratory, Tampere University, Tampere, 33101, Finland.
| | - Liisa Pirjola
- Department of Automotive and Mechanical Engineering, Metropolia University of Applied Sciences, Vantaa, Finland; Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Panu Karjalainen
- Aerosol Physics Laboratory, Tampere University, Tampere, 33101, Finland
| | - Pauli Simonen
- Aerosol Physics Laboratory, Tampere University, Tampere, 33101, Finland
| | - Kimmo Teinilä
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Matthew Bloss
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Laura Salo
- Aerosol Physics Laboratory, Tampere University, Tampere, 33101, Finland
| | - Arindam Datta
- The Energy and Resources Institute (TERI), New Delhi, India
| | - Banwari Lal
- The Energy and Resources Institute (TERI), New Delhi, India
| | - Rakesh K Hooda
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Sanna Saarikoski
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
7
|
Costabile F, Gualtieri M, Rinaldi M, Canepari S, Vecchi R, Massimi L, Di Iulio G, Paglione M, Di Liberto L, Corsini E, Facchini MC, Decesari S. Exposure to urban nanoparticles at low PM[Formula: see text] concentrations as a source of oxidative stress and inflammation. Sci Rep 2023; 13:18616. [PMID: 37903867 PMCID: PMC10616204 DOI: 10.1038/s41598-023-45230-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Exposures to fine particulate matter (PM[Formula: see text]) have been associated with health impacts, but the understanding of the PM[Formula: see text] concentration-response (PM[Formula: see text]-CR) relationships, especially at low PM[Formula: see text], remains incomplete. Here, we present novel data using a methodology to mimic lung exposure to ambient air (2[Formula: see text] 60 [Formula: see text]g m[Formula: see text]), with minimized sampling artifacts for nanoparticles. A reference model (Air Liquid Interface cultures of human bronchial epithelial cells, BEAS-2B) was used for aerosol exposure. Non-linearities observed in PM[Formula: see text]-CR curves are interpreted as a result of the interplay between the aerosol total oxidative potential (OP[Formula: see text]) and its distribution across particle size (d[Formula: see text]). A d[Formula: see text]-dependent condensation sink (CS) is assessed together with the distribution with d[Formula: see text] of reactive species . Urban ambient aerosol high in OP[Formula: see text], as indicated by the DTT assay, with (possibly copper-containing) nanoparticles, shows higher pro-inflammatory and oxidative responses, this occurring at lower PM[Formula: see text] concentrations (< 5 [Formula: see text]g m[Formula: see text]). Among the implications of this work, there are recommendations for global efforts to go toward the refinement of actual air quality standards with metrics considering the distribution of OP[Formula: see text] with d[Formula: see text] also at relatively low PM[Formula: see text].
Collapse
Affiliation(s)
- Francesca Costabile
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133 Rome, Italy
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Maurizio Gualtieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 26126 Milan, Italy
| | - Matteo Rinaldi
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| | - Silvia Canepari
- Department of Environmental Biology, University of Rome Sapienza, 00185 Rome, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano,and INFN-Milan, 20133 Milan, Italy
| | - Lorenzo Massimi
- Department of Environmental Biology, University of Rome Sapienza, 00185 Rome, Italy
| | - Gianluca Di Iulio
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133 Rome, Italy
| | - Marco Paglione
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| | - Luca Di Liberto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133 Rome, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria Cristina Facchini
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| | - Stefano Decesari
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| |
Collapse
|
8
|
Lepistö T, Lintusaari H, Oudin A, Barreira LMF, Niemi JV, Karjalainen P, Salo L, Silvonen V, Markkula L, Hoivala J, Marjanen P, Martikainen S, Aurela M, Reyes FR, Oyola P, Kuuluvainen H, Manninen HE, Schins RPF, Vojtisek-Lom M, Ondracek J, Topinka J, Timonen H, Jalava P, Saarikoski S, Rönkkö T. Particle lung deposited surface area (LDSA al) size distributions in different urban environments and geographical regions: Towards understanding of the PM 2.5 dose-response. ENVIRONMENT INTERNATIONAL 2023; 180:108224. [PMID: 37757619 DOI: 10.1016/j.envint.2023.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Recent studies indicate that monitoring only fine particulate matter (PM2.5) may not be enough to understand and tackle the health risk caused by particulate pollution. Health effects per unit PM2.5 seem to increase in countries with low PM2.5, but also near local pollution sources (e.g., traffic) within cities. The aim of this study is to understand the differences in the characteristics of lung-depositing particles in different geographical regions and urban environments. Particle lung deposited surface area (LDSAal) concentrations and size distributions, along with PM2.5, were compared with ambient measurement data from Finland, Germany, Czechia, Chile, and India, covering traffic sites, residential areas, airports, shipping, and industrial sites. In Finland (low PM2.5), LDSAal size distributions depended significantly on the urban environment and were mainly attributable to ultrafine particles (<100 nm). In Central Europe (moderate PM2.5), LDSAal was also dependent on the urban environment, but furthermore heavily influenced by the regional aerosol. In Chile and India (high PM2.5), LDSAal was mostly contributed by the regional aerosol despite that the measurements were done at busy traffic sites. The results indicate that the characteristics of lung-depositing particles vary significantly both within cities and between geographical regions. In addition, ratio between LDSAal and PM2.5 depended notably on the environment and the country, suggesting that LDSAal exposure per unit PM2.5 may be multiple times higher in areas having low PM2.5 compared to areas with continuously high PM2.5. These findings may partly explain why PM2.5 seems more toxic near local pollution sources and in areas with low PM2.5. Furthermore, performance of a typical sensor based LDSAal measurement is discussed and a new LDSAal2.5 notation indicating deposition region and particle size range is introduced. Overall, the study emphasizes the need for country-specific emission mitigation strategies, and the potential of LDSAal concentration as a health-relevant pollution metric.
Collapse
Affiliation(s)
- Teemu Lepistö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland.
| | - Henna Lintusaari
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Anna Oudin
- Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Sustainable Health, Sweden; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Luis M F Barreira
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority HSY, Helsinki 00066, Finland
| | - Panu Karjalainen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Laura Salo
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Ville Silvonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Lassi Markkula
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Jussi Hoivala
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Petteri Marjanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Sampsa Martikainen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Minna Aurela
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | | | | | - Heino Kuuluvainen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority HSY, Helsinki 00066, Finland
| | - Roel P F Schins
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Michal Vojtisek-Lom
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 160 00, Czechia
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, ICPF CAS, Prague 165 00, Czechia
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, 142 20 Prague, Czechia
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Sanna Saarikoski
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00101, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| |
Collapse
|
9
|
Wang Y, Ju Q, Xing Z, Zhao J, Guo S, Li F, Du K. Observation of black carbon in Northern China in winter of 2018-2020 and its implications for black carbon mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162897. [PMID: 36934935 DOI: 10.1016/j.scitotenv.2023.162897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Enhanced observations of BC in hotspot regions with a high temporal resolution are critical to refining our BC mitigation strategies, which are co-directed by air-quality and climate goals. In this work, the temporal variation and emission sources of BC in Shijiazhuang, Northern China, during the winter of 2018-2020 were investigated on the basis of multi-wavelength Aethalometer BC observations. The average BC concentrations decreased from 9.13 ± 6.63 μg/m3 in the winter of 2018 to 3.51 ± 2.48 μg/m3 in the winter of 2020. The BC source attributions derived from the Aethalometer model showed that the BC concentrations in Shijiazhuang in the winter of 2018 were mainly contributed by biomass burning (53 %). In contrast, during the winter of 2019 and 2020, fossil fuel combustion (BCff) exhibited higher contributions, and higher BC concentrations attributed to greater BCff contributions. Potential source contribution function (PSCF) analysis suggested that local emissions in Shijiazhuang and transport from highly industrialized regions like central Shanxi and southern Hebei contributed significantly to BC in Shijiazhuang. Concentration weighted trajectory (CWT) analysis revealed that the BC contributions from source regions decreased successively from the winter of 2018 to the winter of 2020. Our results also implied an air quality/climate co-benefit effect of enforcing multi-scale air-quality improvement regulations. Yet, it is still worth noting that some of the measures in favor of reducing BC emissions contradict the measures for reducing CO2. The synergies of BC to air quality and climate should be considered and addressed by policymakers with the aim of realizing a sustainable environment.
Collapse
Affiliation(s)
- Yang Wang
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang, China; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing, China
| | - Qiuge Ju
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenyu Xing
- Department of Geography, University of Calgary, Calgary, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada.
| | - Jiaming Zhao
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing, China
| | - Fuxing Li
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang, China; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, China
| | - Ke Du
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada.
| |
Collapse
|
10
|
Yang M, Zeng HX, Wang XF, Hakkarainen H, Leskinen A, Komppula M, Roponen M, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Dong GH, Jalava P. Sources, chemical components, and toxicological responses of size segregated urban air PM samples in high air pollution season in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161092. [PMID: 36586693 DOI: 10.1016/j.scitotenv.2022.161092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The sources, sizes, components, and toxicological responses of particulate matter (PM) have demonstrated remarkable spatiotemporal variability. However, associations between components, sources, and toxicological effects in different-sized PM remain unclear. The purposes of this study were to 1) determine the sources of PM chemical components, 2) investigate the associations between components and toxicology of PM from Guangzhou high air pollution season. We collected size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) from December 2017 to March 2018 in Guangzhou. PM sources and components were analyzed. RAW264.7 mouse macrophages were treated with PM samples for 24 h followed by measurements of toxicological responses. The concentrations of PM10-2.5 and PM1-0.2 were relatively high in all samples. Water-soluble ions and PAHs were more abundant in smaller-diameter PM, while metallic elements were more enriched in larger-diameter PM. Traffic exhaust, soil dust, and biomass burning/petrochemical were the most important sources of PAHs, metals and ions, respectively. The main contributions to PM were soil dust, coal combustion, and biomass burning/petrochemical. Exposure to PM10-2.5 induced the most significant reduction of cell mitochondrial activity, oxidative stress and inflammatory response, whereas DNA damage, an increase of Sub G1/G0 population, and impaired cell membrane integrity were most evident with PM1-0.2 exposure. There were moderate or strong correlations between most single chemicals and almost all toxicological endpoints as well as between various toxicological outcomes. Our findings highlight those various size-segregated PM-induced toxicological effects in cells, and identify chemical components and sources of PM that play the key role in adverse intracellular responses. Although fine and ultrafine PM have attracted much attention, the inflammatory damage caused by coarse PM cannot be ignored.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Xian Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
11
|
Leni Z, Ess MN, Keller A, Allan JD, Hellén H, Saarnio K, Williams KR, Brown AS, Salathe M, Baumlin N, Vasilatou K, Geiser M. Role of Secondary Organic Matter on Soot Particle Toxicity in Reconstituted Human Bronchial Epithelia Exposed at the Air-Liquid Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17007-17017. [PMID: 36416368 PMCID: PMC9730840 DOI: 10.1021/acs.est.2c03692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Secondary organic matter (SOM) formed from gaseous precursors constitutes a major mass fraction of fine particulate matter. However, there is only limited evidence on its toxicological impact. In this study, air-liquid interface cultures of human bronchial epithelia were exposed to different series of fresh and aged soot particles generated by a miniCAST burner combined with a micro smog chamber (MSC). Soot cores with geometric mean mobility diameters of 30 and 90 nm were coated with increasing amounts of SOM, generated from the photo-oxidation of mesitylene and ozonolysis of α-pinene. At 24 h after exposure, the release of lactate dehydrogenase (LDH), indicating cell membrane damage, was measured and proteome analysis, i.e. the release of 102 cytokines and chemokines to assess the inflammatory response, was performed. The data indicate that the presence of the SOM coating and its bioavailability play an important role in cytotoxicity. In particular, LDH release increased with increasing SOM mass/total particle mass ratio, but only when SOM had condensed on the outer surface of the soot cores. Proteome analysis provided further evidence for substantial interference of coated particles with essential properties of the respiratory epithelium as a barrier as well as affecting cell remodeling and inflammatory activity.
Collapse
Affiliation(s)
- Zaira Leni
- University
of Bern, Bern 3012, Switzerland
| | - Michaela N. Ess
- Federal
Institute of Metrology METAS, Bern-Wabern 3003, Switzerland
| | - Alejandro Keller
- University
of Applied Sciences Northwestern Switzerland, Windisch 5210, Switzerland
| | - James D. Allan
- University
of Manchester, Manchester M13 9PL, United
Kingdom
| | - Heidi Hellén
- Finnish
Meteorological Institute, Helsinki 00101, Finland
| | - Karri Saarnio
- Finnish
Meteorological Institute, Helsinki 00101, Finland
| | | | - Andrew S. Brown
- National
Physical Laboratory, Teddington TW11 0LW, United
Kingdom
| | - Matthias Salathe
- Department
of Internal Medicine, University of Kansas
Medical Center, Kansas
City, Kansas 66160, United States
| | - Nathalie Baumlin
- Department
of Internal Medicine, University of Kansas
Medical Center, Kansas
City, Kansas 66160, United States
| | | | | |
Collapse
|