1
|
Kurtulus R, Akbarzadeh Khoei M, Damilola Adesanya E, Yliniemi J. Dissolution of EAF slag minerals in aqueous media: Effects of sonication on brownmillerite and gehlenite. ULTRASONICS SONOCHEMISTRY 2024; 110:107065. [PMID: 39276526 PMCID: PMC11416688 DOI: 10.1016/j.ultsonch.2024.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
The accumulation of electric arc furnace slag (EAFS) in landfills has been causing severe environmental problems. This study examines the dissolution properties of EAFS minerals, including brownmillerite and gehlenite, essential for their possible use in resource recovery. An investigation was conducted to compare the effects of sonication and stirring on mineral dissolution while also assessing the usage of citrate as a complexing agent for gehlenite. Synthetic brownmillerite and gehlenite minerals were dissolved in aqueous solutions at room temperature using a 1:100 g/ml ratio. The dissolved elements were measured using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), while zeta potential and X-ray Photoelectron Spectroscopy (XPS) were used to assess changes in surface chemistry. Brownmillerite had significant dissolution extents, with Al and Ca dissolving up to 16 % and 8 %, respectively, in contrast to gehlenite, which dissolved less than 2 % under similar conditions. Sonication significantly increased the dissolution of brownmillerite by up to 100 %, although its impact on gehlenite dissolution varied depending on the duration of time. Besides, adding citrate enhanced the leaching of Al and Ca from gehlenite by facilitating complexation. XPS data demonstrated differences in elemental ratios on brownmillerite and gehlenite surfaces affected by the method used and the presence of citrate. Lastly, the dissolution extents of Al and Ca from EAFS were up to 12 %, depending on time and mixing method, with a preference for sonication over stirring. In conclusion, this study showed that minerals in EAFS have distinct dissolution characteristics, and sonication and citrate can considerably enhance dissolution.
Collapse
Affiliation(s)
- Recep Kurtulus
- Fiber and Particle Engineering Research Unit, University of Oulu, PO Box 4300 90014, Finland; Department of Materials Science and Engineering, Faculty of Engineering, Afyon Kocatepe University, Turkey.
| | - Mahtab Akbarzadeh Khoei
- Fiber and Particle Engineering Research Unit, University of Oulu, PO Box 4300 90014, Finland
| | | | - Juho Yliniemi
- Fiber and Particle Engineering Research Unit, University of Oulu, PO Box 4300 90014, Finland
| |
Collapse
|
2
|
Liu X, Wu P, Liu X, Zhang Z, Ai X. The Utilization of Carbonated Steel Slag as a Supplementary Cementitious Material in Cement. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4574. [PMID: 39336314 PMCID: PMC11433562 DOI: 10.3390/ma17184574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Carbon emission reduction and steel slag (SS) treatment are challenges in the steel industry. The accelerated carbonation of SS and carbonated steel slag (CSS) as a supplementary cementitious material (SCM) in cement can achieve both large-scale utilization of SS and CO2 emission reduction, which is conducive to low-carbon sustainable development. This paper presents the utilization status of CSS. The accelerated carbonation route and its effects on the properties of CSS are described. The carbonation reaction of SS leads to a decrease in the average density, an increase in the specific surface area, a refinement of the pore structure, and the precipitation of different forms of calcium carbonate on the CSS surface. Carbonation can increase the specific surface area of CSS by about 24-80%. The literature review revealed that the CO2 uptake of CSS is 2-27 g/100 g SS. The effects of using CSS as an SCM in cement on the mechanical properties, workability, volume stability, durability, environmental performance, hydration kinetics, and microstructure of the materials are also analyzed and evaluated. Under certain conditions, CSS has a positive effect on cement hydration, which can improve the mechanical properties, workability, bulk stability, and sulfate resistance of SS cement mortar. Meanwhile, SS carbonation inhibits the leaching of heavy metal ions from the solid matrix. The application of CSS mainly focuses on material strength, with less attention being given to durability and environmental performance. The challenges and prospects for the large-scale utilization of CSS in the cement and concrete industry are described.
Collapse
Affiliation(s)
- Xinyue Liu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pengfei Wu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoming Liu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zengqi Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianbin Ai
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| |
Collapse
|
3
|
Liang C, Yang ZD, Tan Y, Ding B. Probing microscale crystallization phenomena: Transforming waste slags into riches. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:55-63. [PMID: 38861772 DOI: 10.1016/j.wasman.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Metal smelting and combustion of solid fuels produce significant quantities of waste slag, leading to issues such as land occupation and environmental pollution. Understanding and controlling the microscale crystallization phenomena of these slags during thermal treatment is crucial for transforming waste slags into materials suitable for carbon capture or glass ceramics. Previous research has primarily focused on macroscopic crystallization behaviors, significantly advancing the utilization of waste slags in cement clinker production. However, macroscopic results are inadequate for precisely controlling the microscale crystallization behaviors of waste slags. Here, we employed the single hot thermocouple technique to visually explore crystal growth modes, shapes, sizes, numbers, and translational rates of the crystal growth front in a representative blast furnace slag under various isothermal temperatures. The results revealed that crystals exhibited five modes as the isothermal temperature gradually increased, including equiaxed, equiaxed & columnar, columnar, columnar & planar, and planar. Moreover, the translational rate of the crystal growth front increased from 0.011 μm·s-1 to 43.7 μm·s-1 with an increase in the isothermal temperature. Simultaneously, the number of crystals decreased from around 104 to 100 μm-2. On this basis, correlations between microscale crystallization behaviors and isothermal temperature were established to fill the current gap.
Collapse
Affiliation(s)
- Cong Liang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China 266510
| | - Zheng-Da Yang
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong, China 266580
| | - Yu Tan
- School of Mechanical and Power Engineering, Chongqing University of Science & Technology, Chongqing, China 401331
| | - Bin Ding
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong, China 266580.
| |
Collapse
|
4
|
Wang J, Sun W. Decomposition of the site-level energy consumption and carbon dioxide emissions of the iron and steel industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16511-16529. [PMID: 38321278 DOI: 10.1007/s11356-024-32162-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Identifying the key factors influencing energy consumption and CO2 emissions is necessary for developing effective energy conservation and emission mitigation policies. Previous studies have focused mainly on decomposing changes in energy consumption and CO2 emissions at the national, regional, or sectoral levels, while the perspective of site-level decomposition has been neglected. To narrow this gap in research, a site-level decomposition of energy- and carbon-intensive iron and steel sites is discussed. In this work, the logarithmic mean Divisia index (LMDI) method is used to decompose the changes in the energy consumption and CO2 emissions of iron and steel sites. The results show that the production scale significantly contributes to the increase in both energy consumption and CO2 emissions, with cumulative contributions of 229.63 and 255.36%, respectively. Energy recovery and credit emissions are two key factors decreasing site-level energy consumption and CO2 emissions, with cumulative contributions to the changes in energy consumption and CO2 emissions of -158.30 and -160.45%, respectively. A decrease in energy, flux, and carbon-containing material consumption per ton of steel promotes direct emission reduction, and purchased electricity savings greatly contribute to indirect emission reduction. In addition, site products and byproducts promote an increase in credit emissions and ultimately inhibit an increase in the total CO2 emissions of iron and steel sites.
Collapse
Affiliation(s)
- Jiayang Wang
- Department of Energy Engineering, School of Metallurgy, Northeastern University, Shenyang, 110819, Liaoning, China
- State Environmental Protection Key Laboratory of Eco-Industry (Northeastern University), Ministry of Ecology and Environment, Shenyang, 110819, Liaoning, China
| | - Wenqiang Sun
- Department of Energy Engineering, School of Metallurgy, Northeastern University, Shenyang, 110819, Liaoning, China.
- State Environmental Protection Key Laboratory of Eco-Industry (Northeastern University), Ministry of Ecology and Environment, Shenyang, 110819, Liaoning, China.
| |
Collapse
|
5
|
Kapoor RT, Hasanuzzaman M. Unlocking the potential of co-application of steel slag and biochar in mitigation of arsenic-induced oxidative stress by modulating antioxidant and glyoxalase system in Abelmoschus esculentus L. CHEMOSPHERE 2024; 351:141232. [PMID: 38242510 DOI: 10.1016/j.chemosphere.2024.141232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/03/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
This study investigates our hypothesis that how effect of arsenic stress on okra (Abelmoschus esculentus L.) can be alleviated through the use of waste materials such as steel slag (SS) and corncob biochar (BC). Different growth variables, biochemical parameters, oxidative stress markers, enzymatic and non-enzymatic antioxidants and glyoxylase enzyme activities were assessed. When okra was exposed to As, there was a noticeable decrease in seedling length, biomass, relative water content, various biochemical attributes, however, electrolyte leakage and lipid peroxidation in okra were enhanced. The supplementation of SS and BC-either individually or in combination-improved the growth parameters and reduced oxidative stress markers. Application of SS and BC also lowered As accumulation in roots and shoots of okra mitigating adverse effects of As exposure. Additionally, the activities of antioxidant and glyoxalase enzyme increased when SS and BC were present, concurrently reducing methylglyoxal content. Arsenic-induced stress led to oxidative damage, an enhancement in both enzymatic and non-enzymatic antioxidants, induced the synthesis of thiol and phytochelatins in roots and shoots. These may play a vital function in alleviating oxidative stress induced by As. Superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase activities were significantly enhanced in As-treated plants. These enhancement were further amplified when SS and BC were amended to As-treated okra. Therefore, synergistic application of SS and BC effectively protects okra against oxidative stress induced by As by increasing both antioxidant defense and glyoxalase systems. Both SS, an industrial byproduct, and BC, generated from agricultural waste, are cost-effective, environmentally friendly, safe, and non-toxic materials which can be used for crop production in As contaminated soil.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
Zhang S, Zhang Q, Gao H, Wang L, Song C, Tang G, Li X, Hu X. Effects of adding steel slag on humification and characteristics of bacterial community during phosphate-amended composting of municipal sludge. BIORESOURCE TECHNOLOGY 2024; 394:130229. [PMID: 38135223 DOI: 10.1016/j.biortech.2023.130229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to investigate the effects of different proportions (0%, 5%, 7.5%, and 10%) of steel slag (SS) on humification and bacterial community characteristics during phosphate-amended composting of municipal sludge. Compared with adding KH2PO4 alone, co-adding SS significantly promoted the temperature, pH, nitrification, and critical enzyme activities (polyphenol oxidase, cellulase, laccase); especially organic matter (OM) degradation rate (25.5%) and humification degree (1.8) were highest in the 5%-SS treatment. Excitation-emission matrix-parallel factor confirmed that co-adding SS could promote the conversion of protein-like substances or microbial by-products into humic-like substances. Furthermore, adding 5%-SS significantly improved the relative abundances of Actinobacteria, Firmicutes and the genes related to carbohydrate and amino acid metabolism, and enhanced the interactions of bacterial community in stability and complexity. The partial least squares path model indicated that OM was the primary factor affecting humification. These results provided a promising strategy to optimize composting of municipal sludge via SS.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China.
| | - Qicheng Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Heyu Gao
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Liujian Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Chunqing Song
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Gang Tang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xiumin Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xiaobing Hu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| |
Collapse
|
7
|
Li X, Mehdizadeh H, Ling TC. Environmental, economic and engineering performances of aqueous carbonated steel slag powders as alternative material in cement pastes: Influence of particle size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166210. [PMID: 37574062 DOI: 10.1016/j.scitotenv.2023.166210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
The low reactivity and volume expansion issue of steel slag limits its application as alternative to cement. Studies demonstrated that aqueous carbonation (AC) can enhance the cementitious properties of finely sized steel slag as a cementitious supplementary material (SCM). However, the impact of particle size on the CO2 uptake capacity and its association of performance of carbonated steel slag remains unexplored. This study aims to optimize the grinding levels by examining the fineness of the steel slag used as SCM to reduce the high-energy consumption while maintaining the CO2 sequestration and properties of SCM. The results show that reducing the size of steel slag is favorable for CO2 sequestration (particle size 22.4-112.6 μm corresponds to sequestration of ∼88.5-37.9 kg CO2/t steel slag) and improve the leaching of Mg ions for mineralization. The life cycle assessment shows that the global warming potential of AC of steel slag is ∼96.2-24.9 kg CO2-eq/t steel slag, which can offset the carbon emissions due to further grinding. The 28-day compressive strength of the cement pastes blended with finer carbonated steel slag was also relatively higher due to the formation of mono-carboaluminates and stabilization of ettringite in facilitating the bond strength between the carbonated steel slag particle and the cement paste matrix. According to 3E (engineering, environmental and economic) triangle model, 22.4 μm steel slag powder showed the best comprehensive performance, including an increased revenue of 40.8 CNY/ton steel slag.
Collapse
Affiliation(s)
- Xinduo Li
- College of Civil Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Hamideh Mehdizadeh
- College of Civil Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Tung-Chai Ling
- College of Civil Engineering, Hunan University, Changsha 410082, Hunan, China.
| |
Collapse
|
8
|
Ma J, Dai G, Jiang F, Wang N, Zhao Y, Wang X. Effect of Carbonation Treatment on the Properties of Steel Slag Aggregate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5768. [PMID: 37687461 PMCID: PMC10488658 DOI: 10.3390/ma16175768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Steel slag is the waste slag generated after steel smelting, which has cementitious activity. However, untreated steel slag can damage the integrity of steel slag concrete due to its harmful expansion. This study prepared porous aggregates by mixing powdered steel slag, fly ash, and cement and carbonated them with CO2 under high pressure conditions (0.2 MPa). The effect of carbonation on the performance of steel slag aggregate was studied using volume stability and crushing value. The effect of different carbonation conditions on the products was studied using X-ray diffraction (XRD) and thermogravimetric (TG) analyses, and the carbon sequestration efficiency of steel slag under different treatment methods was quantitatively evaluated. The research results indicate that untreated steel slag was almost completely destroyed and lost its strength after autoclave curing. With the increase in temperature and carbonation time, the performance of steel slag aggregate gradually improved and the pulverization rate, expansion rate, and crushing value gradually decreased. According to the experimental results of XRD and TG, it was found that the reaction between f-CaO (free CaO) and CO2 in steel slag generated CaCO3, filling the pores inside the aggregate, which was the internal reason for the improvement of aggregate performance. After comparison, the best carbonation method was maintained at 55 °C for 72 h. After carbonation, the steel slag aggregate had a pulverization rate of 2.4%, an expansion rate of 0.23%, a crushing value of 23%, and a carbon sequestration efficiency of 11.27% per unit weight of aggregate.
Collapse
Affiliation(s)
- Jian Ma
- College of Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (J.M.); (G.D.); (X.W.)
- Suzhou Institute of Technology, Jiangsu University of Science and Technology, Suzhou 215600, China; (N.W.); (Y.Z.)
| | - Guangjian Dai
- College of Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (J.M.); (G.D.); (X.W.)
| | - Feifei Jiang
- Suzhou Institute of Technology, Jiangsu University of Science and Technology, Suzhou 215600, China; (N.W.); (Y.Z.)
- College of Civil Engineering, Nantong Institute of Technology (NIT), Nantong 226000, China
| | - Ning Wang
- Suzhou Institute of Technology, Jiangsu University of Science and Technology, Suzhou 215600, China; (N.W.); (Y.Z.)
| | - Yufeng Zhao
- Suzhou Institute of Technology, Jiangsu University of Science and Technology, Suzhou 215600, China; (N.W.); (Y.Z.)
| | - Xiaodong Wang
- College of Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; (J.M.); (G.D.); (X.W.)
| |
Collapse
|
9
|
Seekaew Y, Tammanoon N, Tuantranont A, Lomas T, Wisitsoraat A, Wongchoosuk C. Conversion of Carbon Dioxide into Chemical Vapor Deposited Graphene with Controllable Number of Layers via Hydrogen Plasma Pre-Treatment. MEMBRANES 2022; 12:membranes12080796. [PMID: 36005711 PMCID: PMC9412882 DOI: 10.3390/membranes12080796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/04/2023]
Abstract
In this work, we report the conversion of carbon dioxide (CO2) gas into graphene on copper foil by using a thermal chemical vapor deposition (CVD) method assisted by hydrogen (H2) plasma pre-treatment. The synthesized graphene has been characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results show the controllable number of layers (two to six layers) of high-quality graphene by adjusting H2 plasma pre-treatment powers (100-400 W). The number of layers is reduced with increasing H2 plasma pre-treatment powers due to the direct modification of metal catalyst surfaces. Bilayer graphene can be well grown with H2 plasma pre-treatment powers of 400 W while few-layer graphene has been successfully formed under H2 plasma pre-treatment powers ranging from 100 to 300 W. The formation mechanism is highlighted.
Collapse
Affiliation(s)
- Yotsarayuth Seekaew
- Graphene and Printed Electronics Research Division (GPERD), National Security and Dual-Use Technology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahon Yothin Road, Klong Nueng, Klong Luang, Phathum Thani 12120, Thailand
- Department of Physics, Faculty of Science, Ramkhamhaeng University, Bang Kapi, Bangkok 10240, Thailand
| | - Nantikan Tammanoon
- Graphene and Printed Electronics Research Division (GPERD), National Security and Dual-Use Technology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahon Yothin Road, Klong Nueng, Klong Luang, Phathum Thani 12120, Thailand
| | - Adisorn Tuantranont
- Graphene and Printed Electronics Research Division (GPERD), National Security and Dual-Use Technology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahon Yothin Road, Klong Nueng, Klong Luang, Phathum Thani 12120, Thailand
| | - Tanom Lomas
- Graphene and Printed Electronics Research Division (GPERD), National Security and Dual-Use Technology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahon Yothin Road, Klong Nueng, Klong Luang, Phathum Thani 12120, Thailand
| | - Anurat Wisitsoraat
- Graphene and Printed Electronics Research Division (GPERD), National Security and Dual-Use Technology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahon Yothin Road, Klong Nueng, Klong Luang, Phathum Thani 12120, Thailand
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|