1
|
Malla MA, Ansari FA, Bux F, Kumari S. Re-vitalizing wastewater: Nutrient recovery and carbon capture through microbe-algae synergy using omics-biology. ENVIRONMENTAL RESEARCH 2024; 259:119439. [PMID: 38901811 DOI: 10.1016/j.envres.2024.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Increasing amounts of wastewater is the most pervasive and challenging environmental problem globally. Conventional treatment methods are costly and entail huge energy, carbon consumption and greenhouse gas emissions. Owing to their unique ability of carbon capturing and resource recovery, microalgae-microbiome based treatment is a potential approach and is widely used for carbon-neutral wastewater treatment. Microalgae-bacteria synergy (i.e., the functionally beneficial microbial synthetic communities) performs better and enhances carbon-sequestration and nutrient recovery from wastewater treatment plants. This review presents a comprehensive information regarding the potential of microalgae-microbiome as a sustainable agent for wastewater and discusses synergistic approaches for effective nutrient removal. Moreover, this review discusses, the role of omics-biology and Insilco approaches in unravelling and understanding the algae-microbe synergism and their response toward wastewater treatment. Finally, it discusses various microbiome engineering approaches for developing the effective microalgae-bacteria partners for carbon sequestration and nutrient recovery from wastewater, and summarizes future research perspectives on microalgae-microbiome based bioremediation.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
2
|
Ren H, Wang R, Ying L, Iyobosa E, Chen G, Zang D, Tong M, Li E, Nerenberg R. Removal of sulfamethoxazole in an algal-bacterial membrane aerated biofilm reactor: Microbial responses and antibiotic resistance genes. WATER RESEARCH 2024; 268:122595. [PMID: 39423786 DOI: 10.1016/j.watres.2024.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Antibiotics are frequently detected in wastewater, but often are poorly removed in conventional wastewater treatment processes. Combining microalgal and nitrifying bacterial processes may provide synergistic removal of antibiotics and ammonium. In this research, we studied the removal of the antibiotic sulfamethoxazole (SMX) in two different reactors: a conventional nitrifying bacterial membrane aerated biofilm reactor (bMABR) and algal-bacterial membrane aerated biofilm reactor (abMABR) systems. We investigated the synergistic removal of antibiotics and ammonium, antioxidant activity, microbial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and their potential hosts. Our findings show that the abMABR maintained a high sulfamethoxazole (SMX) removal efficiency, with a minimum of 44.6 % and a maximum of 75.8 %, despite SMX inhibition, it maintained a consistent 25.0 % ammonium removal efficiency compared to the bMABR. Through a production of extracellular polymeric substances (EPS) with increased proteins/polysaccharides (PN/PS), the abMABR possibly allowed the microalgae-bacteria consortium to protect the bacteria from SMX inactivation. The activity of antioxidant enzymes caused by SMX was reduced by 62.1-98.5 % in the abMABR compared to the bMABR. Metagenomic analysis revealed that the relative abundance of Methylophilus, Pseudoxanthomonas, and Acidovorax in the abMABR exhibited a significant positive correlation with SMX exposure and reduced nitrate concentrations and SMX removal. Sulfonamide ARGs (sul1 and sul2) appeared to be primarily responsible for defense against SMX stress, and Hyphomicrobium and Nitrosomonas were the key carriers of ARGs. This study demonstrated that the abMABR system has great potential for removing SMX and reducing the environmental risks of ARGs.
Collapse
Affiliation(s)
- Haijing Ren
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rongchang Wang
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Luyao Ying
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Eheneden Iyobosa
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gaoxiang Chen
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Di Zang
- The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Computer Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China
| | - Min Tong
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Enchao Li
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
3
|
Shi J, Wan N, Yang S, Yang Y, Han H. Which biofilm reactor is suitable for degradation of 2,4-dimethylphenol, focusing on bacteria, algae, or a combination of bacteria-algae? JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135492. [PMID: 39141938 DOI: 10.1016/j.jhazmat.2024.135492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Effectively treating phenolic substances is a crucial task in environmental protection. This study aims to determine whether bacterial-algae biofilm reactors offer superior treatment efficacy compared to traditional activated sludge and biofilm reactors. The average degradation ratios of 2,4-dimethylphenol (40, 70, 150, 300, and 230 mg/L) were found to be 98 %, 99 %, 92.1 %, 84.7 %, and 63.7 % respectively. The bacterial-algae biofilm demonstrates a higher tolerance to toxicity, assimilation ability, and efficacy recovery ability. The cell membrane of Chlorella in the bacteria-algae biofilm is not easily compromised, thus ensuring a stable pH environment. High concentrations of tightly bound extracellular polymers (TB-EPS) enhance the efficacy in treating toxic pollutants, promote the stable structure. Intact Chlorella, bacilli, and EPS were observed in bacterial-algal biofilm. The structural integrity of bacteria-algae consistently enhances its resistance to the inhibitory effects of high concentrations of phenolic compounds. Cloacibacterium, Comamonas, and Dyella were the main functional bacterial genera that facilitate the formation of bacterial-algal biofilms and the degradation of phenolic compounds. The dominant microalgal families include Aspergillaceae, Chlorellales, Chlorellaceae, and Scenedesmaceae have certain treatment effects on phenolic substances. Chlorellales and Chlorellaceae have the ability to convert NH4+-N. The Aspergillaceae is also capable of generating synergistic effects with Chlorellales, Chlorellaceae, and Scenedesmaceae, thereby establishing a stable bacterial-algal biofilm system.
Collapse
Affiliation(s)
- Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ning Wan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shuhui Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuanyuan Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Huang J, Wang Z, Zhao C, Yang H, Niu L. Performance of four different microalgae-based technologies in antibiotics removal under multiple concentrations of antibiotics and strigolactone analogue GR24 administration. Sci Rep 2024; 14:16004. [PMID: 38992288 PMCID: PMC11239813 DOI: 10.1038/s41598-024-67156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
The formation of symbionts by using different combinations of endophytic bacteria, microalgae, and fungi to purify antibiotics-containing wastewater is an effective and promising biomaterial technology. As it enhances the mixed antibiotics removal performance of the bio-system, this technology is currently extensively studied. Using exogenous supplementation of various low concentrations of the phytohormone strigolactone analogue GR24, the removal of various antibiotics from simulated wastewater was examined. The performances of Chlorella vulgaris monoculture, activated sludge-C. vulgaris-Clonostachys rosea, Bacillus licheniformis-C. vulgaris-C. rosea, and endophytic bacteria (S395-2)-C. vulgaris-C. rosea co-culture systems were systematically compared. Their removal capacities for tetracycline, oxytetracycline, and chlortetracycline antibiotics from simulated wastewater were assessed. Chlorella vulgaris-endophytic bacteria-C. rosea co-cultures achieved the best performance under 0.25 mg L-1 antibiotics, which could be further enhanced by GR24 supplementation. This result demonstrates that the combination of endophytic bacteria with microalgae and fungi is superior to activated sludge-B. licheniformis-microalgae-fungi systems. Exogenous supplementation of GR24 is an effective strategy to improve the performance of antibiotics removal from wastewater.
Collapse
Affiliation(s)
- Jing Huang
- School of Mathematics and Statistics, Donghua University, Shanghai, 201620, People's Republic of China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou, 215009, People's Republic of China
| | - Chunzhi Zhao
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai, 201400, People's Republic of China
| | - Huayun Yang
- School of Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Lei Niu
- School of Mathematics and Statistics, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
5
|
Ma C, Qu W, Ho SH, Li J, Li F, Yi L. Effects of microalgal (Tetradesmus obliquus MCX38) attachment on photobioreactor treatment efficiency of raw swine wastewater. BIORESOURCE TECHNOLOGY 2024; 403:130866. [PMID: 38777231 DOI: 10.1016/j.biortech.2024.130866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Attachment of microalgae on the inner surfaces of photobioreactors impacts the efficiency of swine wastewater treatment by reducing the light intensity, which has been overlooked in previous studies. This study investigated the relationship between microalgal attachment biomass and light intensity in photobioreactors, determined the optimal attachment time for effective pollutant removal, and clarified the mechanisms of microalgal attachment in swine wastewater. After 9 days of treatment, the attached biomass in the photobioreactor increased from 0 to 6.4 g/m2, decreasing the light intensity from 2,000 to 936 lux. At the 24 h optimal attachment time, the concentrations of chemical oxygen demand, ammonia nitrogen, and total phosphorus decreased from 2725.1, 396.4, and 87.2 mg/L to 361.2, 4.9, and 0.8 mg/L, respectively. Polysaccharides in the extracellular polymeric substances released by microalgae play a significant role in facilitating microalgae attachment. Optimizing the microalgal attachment time within photobioreactors effectively mitigates pollutant concentrations in swine wastewater.
Collapse
Affiliation(s)
- Chengxiao Ma
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Wenying Qu
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| | - Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Fadong Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100190, Beijing, China.
| | - Lijuan Yi
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
6
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
7
|
Kumar A, Mishra S, Singh NK, Yadav M, Padhiyar H, Christian J, Kumar R. Ensuring carbon neutrality via algae-based wastewater treatment systems: Progress and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121182. [PMID: 38772237 DOI: 10.1016/j.jenvman.2024.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
The emergence of algal biorefineries has garnered considerable attention to researchers owing to their potential to ensure carbon neutrality via mitigation of atmospheric greenhouse gases. Algae-derived biofuels, characterized by their carbon-neutral nature, stand poised to play a pivotal role in advancing sustainable development initiatives aimed at enhancing environmental and societal well-being. In this context, algae-based wastewater treatment systems are greatly appreciated for their efficacy in nutrient removal and simultaneous bioenergy generation. These systems leverage the growth of algae species on wastewater nutrients-including carbon, nitrogen, and phosphorus-alongside carbon dioxide, thus facilitating a multifaceted approach to pollution remediation. This review seeks to delve into the realization of carbon neutrality through algae-mediated wastewater treatment approaches. Through a comprehensive analysis, this review scrutinizes the trajectory of algae-based wastewater treatment via bibliometric analysis. It subsequently examines the case studies and empirical insights pertaining to algae cultivation, treatment performance analysis, cost and life cycle analyses, and the implementation of optimization methodologies rooted in artificial intelligence and machine learning algorithms for algae-based wastewater treatment systems. By synthesizing these diverse perspectives, this study aims to offer valuable insights for the development of future engineering applications predicated on an in-depth understanding of carbon neutrality within the framework of circular economy paradigms.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Saurabh Mishra
- Institute of Water Science and Technology, Hohai University, Nanjing China, 210098, China.
| | - Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, Gujarat, India.
| | - Manish Yadav
- Central Mine Planning and Design Institute Limite, Bhubaneswar, India.
| | | | - Johnson Christian
- Environment Audit Cell, R. D. Gardi Educational Campus, Rajkot, Gujarat, India.
| | - Rupesh Kumar
- Jindal Global Business School (JGBS), O P Jindal Global University, Sonipat, 131001, Haryana, India.
| |
Collapse
|
8
|
Clagnan E, Petrini S, Pioli S, Piergiacomo F, Chowdhury AA, Brusetti L, Foladori P. Conventional activated sludge vs. photo-sequencing batch reactor for enhanced nitrogen removal in municipal wastewater: Microalgal-bacterial consortium and pathogenic load insights. BIORESOURCE TECHNOLOGY 2024; 401:130735. [PMID: 38670293 DOI: 10.1016/j.biortech.2024.130735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Municipal wastewater treatment plants are mostly based on traditional activated sludge (AS) processes. These systems are characterised by major drawbacks: high energy consumption, large amount of excess sludge and high greenhouse gases emissions. Treatment through microalgal-bacterial consortia (MBC) is an alternative and promising solution thanks to lower energy consumption and emissions, biomass production and water sanitation. Here, microbial difference between a traditional anaerobic sludge (AS) and a consortium-based system (photo-sequencing batch reactor (PSBR)) with the same wastewater inlet were characterised through shotgun metagenomics. Stable nitrification was achieved in the PSBR ensuring ammonium removal > 95 % and significant total nitrogen removal thanks to larger flocs enhancing denitrification. The new system showed enhanced pathogen removal, a higher abundance of photosynthetic and denitrifying microorganisms with a reduced emissions potential identifying this novel PSBR as an effective alternative to AS.
Collapse
Affiliation(s)
- Elisa Clagnan
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy; Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301 00123 Rome, Italy; Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università Degli Studi di Milano, Via Celoria 2 20133 Milano, Italy
| | - Serena Petrini
- University of Trento, Department of Civil, Environmental and Mechanical Engineering, Via Mesiano 77 38123, Trento, Italy
| | - Silvia Pioli
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Monterotondo Scalo RM, Italy
| | - Federica Piergiacomo
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Atif Aziz Chowdhury
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Lorenzo Brusetti
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy.
| | - Paola Foladori
- University of Trento, Department of Civil, Environmental and Mechanical Engineering, Via Mesiano 77 38123, Trento, Italy
| |
Collapse
|
9
|
Li J, Li W, Liu N, Du C. Chronic toxic effects of erythromycin and its photodegradation products on microalgae Chlorella pyrenoidosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106922. [PMID: 38615581 DOI: 10.1016/j.aquatox.2024.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The photodegradation products (PDPs) of antibiotics in the aquatic environment received increasing concern, but their chronic effects on microalgae remain unclear. This study initially focused on examining the acute effects of erythromycin (ERY), then explored the chronic impacts of ERY PDPs on Chlorella pyrenoidosa. ERY of 4.0 - 32 mg/L ERY notably inhibited the cell growth and chlorophyll synthesis. The determined 96 h median effective concentration of ERY to C. pyrenoidosa was 11.78 mg/L. Higher concentrations of ERY induced more serious oxidative damage, antioxidant enzymes alleviated the oxidative stress. 6 PDPs (PDP749, PDP747, PDP719, PDP715, PDP701 and PDP557) were identified in the photodegradation process of ERY. The predicted combined toxicity of PDPs increased in the first 3 h, then decreased. Chronic exposure showed a gradual decreasing inhibition on microalgae growth and chlorophyll content. The acute effect of ERY PDPs manifested as growth stimulation, but the chronic effect manifested as growth inhibition. The malonaldehyde contents decreased with the degradation time of ERY at 7, 14 and 21 d. However, the malonaldehyde contents of ERY PDPs treatments were elevated compared to those in the control group after 21 d. Risk assessment still need to consider the potential toxicity of degradation products under long-term exposure.
Collapse
Affiliation(s)
- Jiping Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Engineering Research Center for Cyanophytes Forecast and Ecological Restoration of Hongze Lake, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China; College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| | - Naisen Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Engineering Research Center for Cyanophytes Forecast and Ecological Restoration of Hongze Lake, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Chenggong Du
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Engineering Research Center for Cyanophytes Forecast and Ecological Restoration of Hongze Lake, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| |
Collapse
|
10
|
Yun JH, Lee H, Nam JW, Ko M, Park J, Lee DH, Lee SG, Kim HS. Unlocking synergies: Harnessing the potential of biological methane sequestration through metabolic coupling between Methylomicrobium alcaliphilum 20Z and Chlorella sp. HS2. BIORESOURCE TECHNOLOGY 2024; 399:130607. [PMID: 38499203 DOI: 10.1016/j.biortech.2024.130607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
A halotolerant consortium between microalgae and methanotrophic bacteria could effectively remediate in situ CH4 and CO2, particularly using saline wastewater sources. Herein, Methylomicrobium alcaliphilum 20Z was demonstrated to form a mutualistic association with Chlorella sp. HS2 at a salinity level above 3.0%. Co-culture significantly enhanced the growth of both microbes, independent of initial inoculum ratios. Additionally, increased methane provision in enclosed serum bottles led to saturated methane removal. Subsequent analyses suggested nearly an order of magnitude increase in the amount of carbon sequestered in biomass in methane-fed co-cultures, conditions that also maintained a suitable cultural pH suitable for methanotrophic growth. Collectively, these results suggest a robust metabolic coupling between the two microbes and the influence of the factors other than gaseous exchange on the assembled consortium. Therefore, multi-faceted investigations are needed to harness the significant methane removal potential of the identified halotolerant consortium under conditions relevant to real-world operation scenarios.
Collapse
Affiliation(s)
- Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Hyewon Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jang-Won Nam
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Minji Ko
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jaehyun Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Dae-Hee Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea; Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Seung-Goo Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
11
|
Xu P, Shao S, Qian J, Li J, Xu R, Liu J, Zhou W. Scale-up of microalgal systems for decarbonization and bioproducts: Challenges and opportunities. BIORESOURCE TECHNOLOGY 2024; 398:130528. [PMID: 38437968 DOI: 10.1016/j.biortech.2024.130528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The threat of global climate change presents a significant challenge for humanity. Microalgae-based carbon capture and utilization (CCU) technology has emerged as a promising solution to this global issue. This review aims to comprehensively evaluate the current advancements in scale-up of microalgae cultivation and its applications, specifically focusing on decarbonization from flue gases, organic wastewater remediation, and biogas upgrading. The study identifies critical challenges that need to be addressed during the scale-up process and evaluates the economic viability of microalgal CCU within the carbon market. Additionally, it analyzes the commercial status of microalgae-derived products and highlights those with high market demand. This review serves as a crucial resource for researchers, industry professionals, and policymakers to develop and implement innovative approaches to enhance the efficiency of microalgae-based CO2 utilization while addressing the challenges associated with the scale-up of microalgae technologies.
Collapse
Affiliation(s)
- Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Rui Xu
- Jiangxi Ganneng Co., Ltd, Nanchang 330096, China.
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
12
|
Odibo A, Janpum C, Pombubpa N, Monshupanee T, Incharoensakdi A, Ur Rehman Z, In-Na P. Microalgal-bacterial immobilized co-culture as living biofilters for nutrient recovery from synthetic wastewater and their potential as biofertilizers. BIORESOURCE TECHNOLOGY 2024; 398:130509. [PMID: 38452949 DOI: 10.1016/j.biortech.2024.130509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
This study investigates nutrient recovery from synthetic municipal wastewater using co-immobilized cultures of Chlorella vulgaris TISTR 8580 (CV) and plant growth-promoting bacteria, Bacillus subtilis TISTR 1415 (BS) as living biofilters for a subsequent biofertilizer activity. The optimal condition for nutrient recovery was at the 1:1 ratio of CV/BS using mixed guar gum/carrageenan (GG/CG) binders. After 7-day wastewater treatment, the living biofilters removed 86.7 ± 0.5% of ammonium and 99.3 ± 0.3% of phosphates and were tested subsequently as biofertilizers for 20 days to grow selected plants. The highest optimal biomass and chlorophyll a content was 2 ± 0.3 g (CV/BS 3:1) and 12.4 ± 0.7 µg/g (CV/BS 1:1) from cucumber respectively, however, the close-to-neutral pH (8.0 ± 0.3) was observed from sunflower using CV/BS 1:1 living biofilters. Conclusively, the designed living biofilters exhibit the potential to recover nutrients from wastewater and be used as biofertilizers for circular agriculture.
Collapse
Affiliation(s)
- Augustine Odibo
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalampol Janpum
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zia Ur Rehman
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit on Sustainable Algal Cultivation and Applications (RU SACAS), Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
13
|
Wang J, Tian Q, Zhou H, Kang J, Yu X, Qiu G, Shen L. Physiological regulation of microalgae under cadmium stress and response mechanisms of time-series analysis using metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170278. [PMID: 38262539 DOI: 10.1016/j.scitotenv.2024.170278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The investigation of heavy metal wastewater treatment utilizing microalgae adsorption has been extensively demonstrated. However, the response mechanism based on metabolomics to analyze the time-series changes of microalgae under Cd stress has not been described in detail. In this study, SEM/TEM demonstrated that Cd accumulated on the cell surface of microalgae and was bioconcentrated in the cytoplasm, vesicles, and chloroplasts. Carbonyl/quinone/ketone/carboxyl groups (OCO), membrane polysaccharides (OH), and phospholipids (PO) were involved in the interaction of Cd ions, and the chlorophyll content underwent a process of decreasing in the early stage (1.62 mg/g at 48 h) and recovering to the normal level in the late stage, and the contents of MDA, GSH, and SOD were all increased (29.7 nmol/g, 0.23 mg/g, and 30.01 u/106 cells) and then gradually returned to the steady state. The results of EPS content and fluorescent labeling showed that Cd induced the overexpression and synthesis of extracellular polysaccharides and proteins, which is one of the defense mechanisms participating in the reduction of cellular damage by complexed Cd. Metabolomics results indicated that the malate synthesis pathway was activated after Cd-20 h, and the microalgal cells began to shift the metabolic pathway to storage lipid or polysaccharide biosynthesis. In the Calvin cycle, the expression of D-Sedoheptulose 7-phosphate in Cd-20 h_vs_ck and Cd-72 h_vs_Cd-20 h firstly declined and then increased, and the photosynthesis system was suppressed at the beginning, and then gradually returned to normal to maintain the successful development of the dark reaction. The results of time series analysis revealed that the response of microalgae to Cd was categorized into fast response and slow response to regulate cell adsorption and growth metabolism.
Collapse
Affiliation(s)
- Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
14
|
Debnath S, Muthuraj M, Bandyopadhyay TK, Bobby MN, Vanitha K, Tiwari ON, Bhunia B. Engineering strategies and applications of cyanobacterial exopolysaccharides: A review on past achievements and recent perspectives. Carbohydr Polym 2024; 328:121686. [PMID: 38220318 DOI: 10.1016/j.carbpol.2023.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ideally suited for developing sustainable biological products but are underdeveloped due to a lack of genetic tools. Exopolysaccharide (EPS) is one of the essential bioproducts with widespread industrial applications. Despite their unique structural characteristics associated with distinct biological and physicochemical aspects, EPS from cyanobacteria has been underexplored. However, it is expected to accelerate in the near future due to the utilization of low-cost cyanobacterial platforms and readily available information on the structural data and specific features of these biopolymers. In recent years, cyanobacterial EPSs have attracted growing scientific attention due to their simple renewability, rheological characteristics, massive production, and potential uses in several biotechnology domains. This review focuses on the most recent research on potential new EPS producers and their distinct compositions responsible for novel biological activities. Additionally, nutritional and process parameters discovered recently for enhancing EPS production and engineering strategies applied currently to control the biosynthetic pathway for enhanced EPS production are critically highlighted. The process intensification of previously developed EPS extraction and purification processes from cyanobacterial biomass is also extensively explained. Furthermore, the newly reported biotechnological applications of cyanobacterial exopolysaccharides are also discussed.
Collapse
Affiliation(s)
- Shubhankar Debnath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| | | | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Kondi Vanitha
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
15
|
Dai C, Wang F. Potential applications of microalgae-bacteria consortia in wastewater treatment and biorefinery. BIORESOURCE TECHNOLOGY 2024; 393:130019. [PMID: 38000638 DOI: 10.1016/j.biortech.2023.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
The use of microalgae-bacteria consortia (MBC) for wastewater treatment has garnered attention as their interactions impart greater environmental adaptability and stability compared with that obtained by only microalgae or bacteria use, thereby improving the efficiency of pollutant removal and bio-product productivity. Additionally, the value-added bio-products produced via biorefineries can improve economic competitiveness and environmental sustainability. Therefore, this review focuses on the interaction between microalgae and bacteria that leads to nutrient exchange, gene transfer and signal transduction to comprehensively understand the interaction mechanisms underlying their strong adaptability. In addition, it includes recent research in which MBC has been efficiently used to treat various wastewater. Moreover, the review summarizes the use of MBC-produced biomass in a biorefining context to produce biofuel, biomaterial, high-value bio-products and bio-fertilizer. Overall, more effort is needed to identify the symbiotic mechanism in MBC to provide a foundation for circular bio-economy and environmentally friendly development programmes.
Collapse
Affiliation(s)
- Chenming Dai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Feifei Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
16
|
Kumar S, Ali Kubar A, Sobhi M, Cui Y, Liu W, Hu X, Zhu F, Huo S. Regulation of microclimate and shading effects of microalgal photobioreactors on rooftops: Microalgae as a promising emergent for green roof technology. BIORESOURCE TECHNOLOGY 2024; 394:130209. [PMID: 38135224 DOI: 10.1016/j.biortech.2023.130209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Urban areas remarkably affect global public health due to their emissions of greenhouse gases and poor air quality. Although urban areas only cover 2% of the Earth's surface, they are responsible for 80% of greenhouse gas emissions. Dense buildings limit vegetation, leading to increased air pollution and disruption of the local and regional carbon cycle. The substitution of urban gray roofs with microalgal green roofs has the potential to improve the carbon cycle by sequestering CO2 from the atmosphere. Microalgae can fix 15-50 times more CO2 than other types of vegetation. Advanced microalgal-based green roof technology may significantly accelerate the reduction of atmospheric CO2 in a more effective way. Microalgal green roofs also enhance air quality, oxygen production, acoustic isolation, sunlight absorption, and biomass production. This endeavor yields the advantage of simultaneously generating protein, lipids, vitamins, and a spectrum of valuable bioactive compounds, including astaxanthin, carotenoids, polysaccharides, and phycocyanin, thus contributing to a green economy. The primary focus of the current work is on analyzing the ecological advantages and CO2 bio-fixation efficiency attained through microalgal cultivation on urban rooftops. This study also briefly examines the idea of green roofs, clarifies the ecological benefits associated with them, discusses the practice of growing microalgae on rooftops, identifies the difficulties involved, and the positive aspects of this novel strategy.
Collapse
Affiliation(s)
- Santosh Kumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Thanigaivel S, Vinayagam S, Gnanasekaran L, Suresh R, Soto-Moscoso M, Chen WH. Environmental fate of aquatic pollutants and their mitigation by phycoremediation for the clean and sustainable environment: A review. ENVIRONMENTAL RESEARCH 2024; 240:117460. [PMID: 37866533 DOI: 10.1016/j.envres.2023.117460] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Emerging pollutants such as natural and manufactured chemicals, insecticides, pesticides, surfactants, and other biological agents such as personal care products, cosmetics, pharmaceuticals, and many industrial discharges hamper the aquatic environment. Nanomaterials and microplastics, among the categories of pollutants, can directly interfere with the marine ecosystem and translate into deleterious effects for humans and animals. They are either uncontrolled or poorly governed. Due to their known or suspected effects on human and environmental health, some chemicals are currently causing concern. The aquatic ecology is at risk from these toxins, which have spread worldwide. This review assesses the prevalence of emerging and hazardous pollutants that have effects on aquatic ecosystems and contaminated water bodies and their toxicity to non-target organisms. Microalgae are found to be a suitable source to remediate the above-mentioned risks. Microalgae based mitigation techniques are currently emerging approaches for all such contaminants, including the other categories that are discussed above. These studies describe the mechanism of phycoremediation, provide outrage factors that may significantly affect the efficiency of contaminants removal, and discuss the future directions and challenges of microalgal mediated remediations.
Collapse
Affiliation(s)
- S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - R Suresh
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India; Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | | | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| |
Collapse
|
18
|
Sundaram T, Rajendran S, Gnanasekaran L, Rachmadona N, Jiang JJ, Khoo KS, Show PL. Bioengineering strategies of microalgae biomass for biofuel production: recent advancement and insight. Bioengineered 2023; 14:2252228. [PMID: 37661811 PMCID: PMC10478748 DOI: 10.1080/21655979.2023.2252228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 09/05/2023] Open
Abstract
Algae-based biofuel developed over the past decade has become a viable substitute for petroleum-based energy sources. Due to their high lipid accumulation rates and low carbon dioxide emissions, microalgal species are considered highly valuable feedstock for biofuel generation. This review article presented the importance of biofuel and the flaws that need to be overcome to ensure algae-based biofuels are effective for future-ready bioenergy sources. Besides, several issues related to the optimization and engineering strategies to be implemented for microalgae-based biofuel derivatives and their production were evaluated. In addition, the fundamental studies on the microalgae technology, experimental cultivation, and engineering processes involved in the development are all measures that are commendably used in the pre-treatment processes. The review article also provides a comprehensive overview of the latest findings about various algae species cultivation and biomass production. It concludes with the most recent data on environmental consequences, their relevance to global efforts to create microalgae-based biomass as effective biofuels, and the most significant threats and future possibilities.
Collapse
Affiliation(s)
- Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Arica, Chile
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Arica, Chile
- Department of Mechanical Engineering, University Centre for Research & Development, Mohali, India
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, West Java, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN, Universitas Padjadjaran, West Java, Indonesia
| | - Jheng-Jie Jiang
- Advanced Environmental Ultra Research Laboratory (ADVENTURE) & Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management (CERM), Chung Yuan Christian University, Taoyuan, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
19
|
Kadri MS, Singhania RR, Haldar D, Patel AK, Bhatia SK, Saratale G, Parameswaran B, Chang JS. Advances in Algomics technology: Application in wastewater treatment and biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129636. [PMID: 37544548 DOI: 10.1016/j.biortech.2023.129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Advanced sustainable bioremediation is gaining importance with rising global pollution. This review examines microalgae's potential for sustainable bioremediation and process enhancement using multi-omics approaches. Recently, microalgae-bacterial consortia have emerged for synergistic nutrient removal, allowing complex metabolite exchanges. Advanced bioremediation requires effective consortium design or pure culture based on the treatment stage and specific roles. The strain potential must be screened using modern omics approaches aligning wastewater composition. The review highlights crucial research gaps in microalgal bioremediation. It discusses multi-omics advantages for understanding microalgal fitness concerning wastewater composition and facilitating the design of microalgal consortia based on bioremediation skills. Metagenomics enables strain identification, thereby monitoring microbial dynamics during the treatment process. Transcriptomics and metabolomics encourage the algal cell response toward nutrients and pollutants in wastewater. Multi-omics role is also summarized for product enhancement to make algal treatment sustainable and fit for sustainable development goals and growing circular bioeconomy scenario.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804201, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 805029, Republic of Korea
| | - Ganesh Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan.
| |
Collapse
|
20
|
Tarbajova V, Kolackova M, Chaloupsky P, Dobesova M, Capal P, Pilat Z, Samek O, Zemanek P, Svec P, Sterbova DS, Vaculovicova M, Richtera L, Pérez-de-Mora A, Adam V, Huska D. Physiological and transcriptome profiling of Chlorella sorokiniana: A study on azo dye wastewater decolorization. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132450. [PMID: 37708651 DOI: 10.1016/j.jhazmat.2023.132450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Over decades, synthetic dyes have become increasingly dominated by azo dyes posing a significant environmental risk due to their toxicity. Microalgae-based systems may offer an alternative for treatment of azo dye effluents to conventional physical-chemical methods. Here, microalgae were tested to decolorize industrial azo dye wastewater (ADW). Chlorella sorokiniana showed the highest decolorization efficiency in a preliminary screening test. Subsequently, the optimization of the experimental design resulted in 70% decolorization in a photobioreactor. Tolerance of this strain was evidenced using multiple approaches (growth and chlorophyll content assays, scanning electron microscopy (SEM), and antioxidant level measurements). Raman microspectroscopy was employed for the quantification of ADW-specific compounds accumulated by the microalgal biomass. Finally, RNA-seq revealed the transcriptome profile of C. sorokiniana exposed to ADW for 72 h. Activated DNA repair and primary metabolism provided sufficient energy for microalgal growth to overcome the adverse toxic conditions. Furthermore, several transporter genes, oxidoreductases-, and glycosyltransferases-encoding genes were upregulated to effectively sequestrate and detoxify the ADW. This work demonstrates the potential utilization of C. sorokiniana as a tolerant strain for industrial wastewater treatment, emphasizing the regulation of its molecular mechanisms to cope with unfavorable growth conditions.
Collapse
Affiliation(s)
- Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Zdenek Pilat
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Pavel Zemanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dagmar Skopalova Sterbova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Alfredo Pérez-de-Mora
- Department of Soil and Groundwater, TAUW GmbH, Landsbergerstr. 404, 81241 Munich, Germany
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
21
|
Kolesovs S, Semjonovs P. Microalgal conversion of whey and lactose containing substrates: current state and challenges. Biodegradation 2023; 34:405-416. [PMID: 37329398 DOI: 10.1007/s10532-023-10033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Currently dairy processing by-products, such as whey, still propose a significant threat to the environment if unproperly disposed. Microalgal bioconversion of such lactose containing substrates can be used for production of valuable microalgae-derived bio-products as well as for significant reduction of environmental risks. Moreover, it could significantly reduce microalgae biomass production costs, being a significant obstacle in commercialization of many microalgae species. This review summarizes current knowledge on the use of lactose containing substrates, e.g. whey, for the production of value-added products by microalgae, including information on producer cultures, fermentation methods and cultivation conditions, bioprocess productivity and ability of microalgal cultures to produce β-galactosidases. It can be stated, that despite several limitations lactose-containing substrates can be successfully used for both-the production of microalgal biomass and removal of high amounts of excess nutrients from the cultivation media. Moreover, co-cultivation of microalgae and other microorganisms can further increase the removal of nutrients and the production of biomass. Further investigations on lactose metabolism by microalgae, selection of suitable strains and optimisation of the cultivation process is required in order to enable large-scale microalgae production on these substrates.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, LV-1004, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, LV-1004, Latvia.
| |
Collapse
|
22
|
Tong CY, Honda K, Derek CJC. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. ENVIRONMENTAL RESEARCH 2023; 228:115872. [PMID: 37054838 DOI: 10.1016/j.envres.2023.115872] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023]
Abstract
Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
23
|
Mofijur M, Hasan MM, Sultana S, Kabir Z, Djavanroodi F, Ahmed SF, Jahirul MI, Badruddin IA, Khan TMY. Advancements in algal membrane bioreactors: Overcoming obstacles and harnessing potential for eliminating hazardous pollutants from wastewater. CHEMOSPHERE 2023:139291. [PMID: 37353165 DOI: 10.1016/j.chemosphere.2023.139291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Sabrina Sultana
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zobaidul Kabir
- School of Environmental and Life Sciences, University of Newcastle, NSW, 2258, Australia
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - M I Jahirul
- School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
24
|
Dai J, Zheng M, He Y, Zhou Y, Wang M, Chen B. Real-time response counterattack strategy of tolerant microalgae Chlorella vulgaris MBFJNU-1 in original swine wastewater and free ammonia. BIORESOURCE TECHNOLOGY 2023; 377:128945. [PMID: 36958682 DOI: 10.1016/j.biortech.2023.128945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
This work was the first time to systematically clarify the potential tolerance mechanism of an indigenous Chlorella vulgaris MBFJNU-1 towards the free ammonia (FA) during the original swine wastewater (OSW) treatment by transcriptome analysis using C. vulgaris UETX395 as the control group. The obtained results showed that C. vulgaris MBFJNU-1 was found to be more resistant to the high levels of FA (115 mg/L) and OSW in comparison to C. vulgaris UETX395 (38 mg/L). Moreover, the transcriptomic results stated that some key pathways from arginine biosynthesis, electron generation and transmission, ATP synthesis in chloroplasts, and glutathione synthesis of C. vulgaris MBFJNU-1 were greatly related with the OSW and FA. Additionally, C. vulgaris MBFJNU-1 in OSW and FA performed similar results in the common differentially expressed genes from these mentioned pathways. Overall, these obtained results deliver essential details in microalgal biotechnology to treat swine wastewater and high free ammonia wastewater.
Collapse
Affiliation(s)
- Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
25
|
Lauritano C, Galasso C. Microbial Interactions between Marine Microalgae and Fungi: From Chemical Ecology to Biotechnological Possible Applications. Mar Drugs 2023; 21:md21050310. [PMID: 37233504 DOI: 10.3390/md21050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Chemical interactions have been shown to regulate several marine life processes, including selection of food sources, defense, behavior, predation, and mate recognition. These chemical communication signals have effects not only at the individual scale, but also at population and community levels. This review focuses on chemical interactions between marine fungi and microalgae, summarizing studies on compounds synthetized when they are cultured together. In the current study, we also highlight possible biotechnological outcomes of the synthetized metabolites, mainly for human health applications. In addition, we discuss applications for bio-flocculation and bioremediation. Finally, we point out the necessity of further investigating microalgae-fungi chemical interactions because it is a field still less explored compared to microalga-bacteria communication and, considering the promising results obtained until now, it is worthy of further research for scientific advancement in both ecology and biotechnology fields.
Collapse
Affiliation(s)
- Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton n. 55, 80133 Naples, Italy
| | - Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Calabria Marine Centre, Stazione Zoologica Anton Dohrn, C. da Torre Spaccata, 87071 Amendolara, Italy
| |
Collapse
|
26
|
Sousa H, Sousa CA, Vale F, Santos L, Simões M. Removal of parabens from wastewater by Chlorella vulgaris-bacteria co-cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163746. [PMID: 37121314 DOI: 10.1016/j.scitotenv.2023.163746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Anthropogenic activities have increased the dispersal of emerging contaminants (ECs), particularly of parabens, causing an escalation of their presence in wastewater (WW). Current WW technologies do not present satisfactory efficiency or sustainability in removing these contaminants. However, bioremediation with microalgae-based systems is proving to be a relevant technology for WW polishing, and the use of microalgae-bacteria consortia can improve the efficiency of WW treatment. This work aimed to study dual cultures of selected bacteria (Raoultella ornithinolytica, Acidovorax facilis, Acinetobacter calcoaceticus, Leucobacter sp. or Rhodococcus fascians) and the microalga Chlorella vulgaris in microbial growth and WW bioremediation - removal of methylparaben (MetP) and nutrients. The association with the bacteria was antagonistic for C. vulgaris biomass productivity as a result of the decreased growth kinetics in comparison to the axenic microalga. The presence of MetP did not disturb the growth of C. vulgaris under axenic or co-cultured conditions, except when associated with R. fascians, where growth enhancement was observed. The removal of MetP by the microalga was modest (circa 30 %, with a removal rate of 0.0343 mg/L.d), but increased remarkably when the consortia were used (> 50 %, with an average removal rate > 0.0779 mg/L.d), through biodegradation and photodegradation. For nutrient removal, the consortia were found to be less effective than the axenic microalga, except for nitrogen (N) removal by C. vulgaris w/ R. fascians. The overall results propose that C. vulgaris co-cultivation with bacteria can increase MetP removal, while negatively affecting the microalga growth and the consequent reduction of sludge production, highlighting the potential of microalgae-bacteria consortia for the effective polishing of WW contaminated with parabens.
Collapse
Affiliation(s)
- Henrique Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Francisca Vale
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
27
|
Hassan S, Ganai BA. Deciphering the recent trends in pesticide bioremediation using genome editing and multi-omics approaches: a review. World J Microbiol Biotechnol 2023; 39:151. [PMID: 37029313 DOI: 10.1007/s11274-023-03603-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Pesticide pollution in recent times has emerged as a grave environmental problem contaminating both aquatic and terrestrial ecosystems owing to their widespread use. Bioremediation using gene editing and system biology could be developed as an eco-friendly and proficient tool to remediate pesticide-contaminated sites due to its advantages and greater public acceptance over the physical and chemical methods. However, it is indispensable to understand the different aspects associated with microbial metabolism and their physiology for efficient pesticide remediation. Therefore, this review paper analyses the different gene editing tools and multi-omics methods in microbes to produce relevant evidence regarding genes, proteins and metabolites associated with pesticide remediation and the approaches to contend against pesticide-induced stress. We systematically discussed and analyzed the recent reports (2015-2022) on multi-omics methods for pesticide degradation to elucidate the mechanisms and the recent advances associated with the behaviour of microbes under diverse environmental conditions. This study envisages that CRISPR-Cas, ZFN and TALEN as gene editing tools utilizing Pseudomonas, Escherichia coli and Achromobacter sp. can be employed for remediation of chlorpyrifos, parathion-methyl, carbaryl, triphenyltin and triazophos by creating gRNA for expressing specific genes for the bioremediation. Similarly, systems biology accompanying multi-omics tactics revealed that microbial strains from Paenibacillus, Pseudomonas putida, Burkholderia cenocepacia, Rhodococcus sp. and Pencillium oxalicum are capable of degrading deltamethrin, p-nitrophenol, chlorimuron-ethyl and nicosulfuron. This review lends notable insights into the research gaps and provides potential solutions for pesticide remediation by using different microbe-assisted technologies. The inferences drawn from the current study will help researchers, ecologists, and decision-makers gain comprehensive knowledge of value and application of systems biology and gene editing in bioremediation assessments.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
28
|
Zheng S, Wu A, Wang H, Chen L, Song J, Zhang H, He M, Wang C, Chen H, Wang Q. Purification efficiency of Pyropia-processing wastewater and microalgal biomass production by the combination of Chlorella sp. C2 cultivated at different culture temperatures and chitosan. BIORESOURCE TECHNOLOGY 2023; 373:128730. [PMID: 36791980 DOI: 10.1016/j.biortech.2023.128730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
To elucidate the impacts of culture temperature on nutrient removal efficiency of Pyropia-processing wastewater (PPW) and microalgal biomass production, Chlorella sp. C2 was employed and cultivated in raw PPW under different temperatures. Results showed that, after incubating for 7 days, higher biomass (0.50 g/L) and total lipids (21.84 %) were attained at 35 °C. The maximal chemical oxygen demand (COD), phycobiliprotein, total nitrogen and total phosphorus removal rates were observed at 30-35 °C and separately reached 62.41 %, 92.61 %, 92.19 % and 98.33 %. Interestingly, COD removal efficiencies of Chlorella cells, cultivated for 3, 5 and 7 days at 30-35 °C, 15-25 °C and 10 °C respectively, could reach >75 % with assistance from 60-80 mg/L chitosan. Meanwhile, the clarification efficiency of chitosan on algal cells reached >95 %. It suggests that Chlorella strain cultured at altered temperatures could efficiently remove PPW nutrients assisted by moderate chitosan, simultaneously achieving the rapid harvest of microalgae.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| | - Aihua Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hongyan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiamei Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China.
| |
Collapse
|
29
|
Li A, An Z, Li C, Cui X, Li K, Zhou H, Zhou B, Hao P, Kulyar MF, Yin W, Wan X, Li L, Luo Z, Hassan MW, Wu Y. Salt-contaminated water exposure induces gut microbial dysbiosis in chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114731. [PMID: 36905849 DOI: 10.1016/j.ecoenv.2023.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Microbes play a crucial role in maintaining health by aiding in digestion, regulating the immune system, producing essential vitamins, and preventing the colonization of harmful bacteria. The stability of the microbiota is, therefore, necessary for overall well-being. However, several environmental factors can negatively affect the microbiota, including exposure to industrial waste, i.e., chemicals, heavy metals, and other pollutants. Over the past few decades, industries have grown significantly, but the wastewater from those industries has seriously harmed the environment and the health of living beings both locally and globally. The current study investigated the effects of salt-contaminated water exposure on gut microbiota in chickens. According to our findings, amplicon sequencing showed 453 OTUs across control and salt-contaminated water exposure groups. Proteobacteria, Firmicutes, and Actinobacteriota were the most dominant phyla in the chickens regardless of treatment. However, exposure to salt-contaminated water resulted in a remarkable decline in gut microbial diversity. While, the beta diversity revealed substantial differences in major gut microbiota components. Moroever, microbial taxonomic investigation indicated that the proportions of one bacterial phylum and nineteen bacterial genera significantly decreased. Also, the levels of one bacterial phylum and thirty three bacterial genera markedly increased under salt-contaminated water exposure, which indicates a disruption in gut microbial homeostasis. Hence the current study provides a basis to explore the effects of salt-contaminated water exposure on the health of vertebrate species.
Collapse
Affiliation(s)
- Aoyun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhigao An
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Caiyue Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuejie Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, #4655 Daxue Road, Jinan 250355, Shandong, PR China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui Zhou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bingxue Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, PR China
| | - Ping Hao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wen Yin
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xin Wan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liangliang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Zhaojing Luo
- College of Animal Science, Yangtze University, Jingzhou 434025, PR China
| | - Muhammad Waqar Hassan
- Department of Entomology, Faculty of Agriculture and Environment, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
30
|
Photosynthetic and transcriptomic responses of Chlorella sp. to tigecycline. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
31
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
32
|
Lee J, Hong S, An SA, Khim JS. Methodological advances and future directions of microalgal bioassays for evaluation of potential toxicity in environmental samples: A review. ENVIRONMENT INTERNATIONAL 2023; 173:107869. [PMID: 36905773 DOI: 10.1016/j.envint.2023.107869] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Microalgal bioassays are widely applied to evaluate the potential toxicity of various persistent toxic substances in environmental samples due to multiple advantages, including high sensitivity, short test duration, and cost-effectiveness. Microalgal bioassay is gradually developing in method, and the scope of application to environmental samples is also expanding. Here, we reviewed the published literature on microalgal bioassays for environmental assessments, focusing on types of samples, sample preparation methods, and endpoints, and highlighted key scientific advancements. Bibliographic analysis was performed with the keywords 'microalgae' and 'toxicity' or 'bioassay', and 'microalgal toxicity'; 89 research articles were selected and reviewed. Traditionally, most studies implementing microalgal bioassays focused on water samples (44%) with passive samplers (38%). Studies using the direct exposure method (41%) of injecting microalgae into sampled water mainly evaluated toxic effects by growth inhibition (63%). Recently, various automated sampling techniques, in situ bioanalytical methods with multiple endpoints, and targeted and non-targeted chemical analyses have been applied. More research is needed to identify causative toxicants affecting microalgae and to quantify the cause-effect relationships. This study provides the first comprehensive overview of recent advances in microalgal bioassays performed with environmental samples, suggesting future research directions based on current understanding and limitations.
Collapse
Affiliation(s)
- Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Seong-Ah An
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
33
|
Show KY, Chang JS, Lee DJ. Degradation of high-strength acrylic acid wastewater with anaerobic granulation technology: A mini-review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121018. [PMID: 36610649 DOI: 10.1016/j.envpol.2023.121018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The anaerobic granulation technology has been successfully applied full-scale for treating high-strength recalcitrant acrylic acid wastewater. This mini-review highlighted the recalcitrance of acrylic acid and its biological degradation pathways. And then, the full-scale practices using anaerobic granulation technology for acrylic wastewater treatment were outlined. The granules are proposed to provide barriers for high-concentration acrylic acid to the embedded anaerobic microbes, maintaining its high degradation rate without apparent substrate inhibition. Based on this proposal, the prospects of applying anaerobic granulation technology to handle a wide range of high-strength recalcitrant wastewaters, to improve the current process performances, and to recover renewable resources were delineated. The anaerobic granulation for high-strength recalcitrant wastewater treatment is an emergent technology that can assist in fulfilling the appeals of the circular bioeconomy of modern society.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co., Ltd., Nanjing, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
34
|
Olabi AG, Shehata N, Sayed ET, Rodriguez C, Anyanwu RC, Russell C, Abdelkareem MA. Role of microalgae in achieving sustainable development goals and circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158689. [PMID: 36108848 DOI: 10.1016/j.scitotenv.2022.158689] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
In 2015, the United Nations General Assembly (UNGA) set out 17 Sustainable Development Goals (SDGs) to be achieved by 2030. These goals highlight key objectives that must be addressed. Each target focuses on a unique perspective crucial to meeting these goals. Social, political, and economic issues are addressed to comprehensively review the main issues combating climate change and creating sustainable and environmentally friendly industries, jobs, and communities. Several mechanisms that involve judicious use of biological entities are among instruments that are being explored to achieve the targets of SDGs. Microalgae have an increasing interest in various sectors, including; renewable energy, food, environmental management, water purification, and the production of chemicals such as biofertilizers, cosmetics, and healthcare products. The significance of microalgae also arises from their tendency to consume CO2, which is the main greenhouse gas and the major contributor to the climate change. This work discusses the roles of microalgae in achieving the various SDGs. Moreover, this work elaborates on the contribution of microalgae to the circular economy. It was found that the microalgae contribute to all the 17th SDGs, where they directly contribute to 9th of the SDGs and indirectly contribute to the rest. The major contribution of the Microalgae is clear in SDG-6 "Clean water and sanitation", SDG-7 "Affordable and clean energy", and SDG-13 "Climate action". Furthermore, it was found that Microalgae have a significant contribution to the circular economy.
Collapse
Affiliation(s)
- A G Olabi
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK.
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.
| | - Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Faculty of Engineering, Minia University, Elminia, Egypt.
| | - Cristina Rodriguez
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Ruth Chinyere Anyanwu
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Callum Russell
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Mohammad Ali Abdelkareem
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Engineering, Minia University, Elminia, Egypt.
| |
Collapse
|
35
|
Janpum C, Pombubpa N, Monshupanee T, Incharoensakdi A, In-Na P. Advancement on mixed microalgal-bacterial cultivation systems for nitrogen and phosphorus recoveries from wastewater to promote sustainable bioeconomy. J Biotechnol 2022; 360:198-210. [PMID: 36414126 DOI: 10.1016/j.jbiotec.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Biological wastewater treatment is a promising and environmentally friendly method that utilises living microorganisms to remediate water and enable recovery or conversion of contaminants into valuable products. For many decades, microalgae and cyanobacteria, photosynthetic living microorganisms, have been explored extensively for wastewater bioremediation. They can be used for recovering valuable nutrients such as nitrogen and phosphorous from secondary effluents and capable of transforming those nutrients into marketable products such as biofuels, biofertilisers, nutraceutical, and pigments for promoting a Bio-Circular Green economy. In recent years, there has been a shift towards mixing compatible microalgae with bacteria, which is inspired by their natural symbiotic relationships to increase nitrogen and phosphorus recoveries. With this enhanced bioremediation, recovery of polluted wastes can be intensified and higher biomass quality (with high nutrient density) can be achieved. This review focuses on the state-of-the-art of mixed microalgal-bacterial cultivating systems. A comprehensive comparison of existing studies that used Chlorella species as microalgae in various mixed microalgal-bacterial cultivating systems (suspension, biofilm, and immobilisation) for nitrogen and phosphorus recoveries from wastewater is conducted. Key technical challenges such as balancing microalgae and bacteria species, pH regulation, light distribution, biomass harvesting, and biomass conversion are also discussed. From the data comparisons among different cultivation systems, it has been suggested that immobilisation appears to require less amount of operational light compared to the suspended and biofilm-based systems for similar nitrogen and phosphorus removal efficiencies.
Collapse
Affiliation(s)
- Chalampol Janpum
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
36
|
Wang W, Chang JS, Show KY, Lee DJ. Anaerobic recalcitrance in wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2022; 363:127920. [PMID: 36087651 DOI: 10.1016/j.biortech.2022.127920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic treatment is applied as an alternative to traditional aerobic treatment for recalcitrant compound degradation. This review highlighted the recalcitrant compounds in wastewaters and their pathways under aerobic and anaerobic conditions. Forty-one recalcitrant compounds commonly found in wastewater along with associated anaerobic removal performance were summarized from current research. Anaerobic degradability of wastewater could not be appropriately evaluated by BOD/COD ratio, which should only be suitable for determining aerobic degradability. Recalcitrant wastewaters with a low BOD/COD ratio may be handled by anaerobic treatments after the adaption and provision of sufficient electron donors. Novel indicator characterizing the anaerobic recalcitrance of wastewater is called for, essential for emergent needs to resource recovery from high-strength recalcitrant wastewater for fulfilling appeals of circular bioeconomy of modern societies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Kuan-Yeow Show
- Puritek Research Institute, Puritec Co., Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering & Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
37
|
Liang D, Wu J, Lu L, Fang R, Xu J, Alam MA. Coupling with in-situ electrochemical reactive chlorine species generation and two-phase partitioning method for enhanced microalgal biodiesel production. BIORESOURCE TECHNOLOGY 2022; 364:128100. [PMID: 36241067 DOI: 10.1016/j.biortech.2022.128100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Microalgal-based biofuel production is of great significance in alleviating energy crisis and achieving carbon neutrality. However, the excessive costs and high solvent consumption in lipids extraction from microalgal obstruct the widespread application of biodiesel in practice. Reported herein is the construction of facile strategy for lipids extraction via electrocatalytic pretreatment and a subsequent two-phase partitioning method. Electrocatalytic pretreatment method adopts the solar as power source and avoids the drying of microalgal biomass, in favor of carbon neutrality requirement. During this process, eco-friendly electrode with high specific surface area could contribute to the sufficient generation of reactive chlorine species (RCS), facilitating the outflows of intracellular lipid. As a result, assisted with two-phase partitioning method, a satisfied performance of lipid recovery (86.72 %) was obtained. Notably, compared with traditional solvent method, two-phase partitioning method greatly reduced the dosage of organic solvent, which is an economical or environmental technique.
Collapse
Affiliation(s)
- Dong Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingcheng Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Luying Lu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
| | - Ronglei Fang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi street, Suzhou 215006, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
38
|
Hung CM, Chen CW, Huang CP, Dong CD. Bioremediation pretreatment of waste-activated sludge using microalgae Spirulina platensis derived biochar coupled with sodium sulfite: Performance and microbial community dynamics. BIORESOURCE TECHNOLOGY 2022; 362:127867. [PMID: 36049715 DOI: 10.1016/j.biortech.2022.127867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
4-Nonylphenol is a typical endocrine-disrupting compound found in waste-activated sludge. This study evaluates the feasibility of blue-green algae (Spirulina platensis)-based biochar as a carbon-neutral material to improve sodium sulfite (S(IV))-mediated sludge purification. Blue-green algae-based biochar is an effective activator (at 500 °C and 3 × 10-6 M) of sodium sulfite and removed 75 % of 4-nonylphenol at pH 6 using at 1.7 g/L of dosage. Possible synergistic relationships among the coexisting oxidizing species (SO3•-, SO4•-, HO•, and 1O2), obvious defect structure, and abundant carbonyl oxygen groups on the surface of the biochar together dived advanced oxidation process. The bacterial consortia promoted the decomposition of biologically available substrates in the biosolid mixture, which led to the enrichment of Denitratisoma, and boosted 4-nonylphenol biodegradation. This study outlines a potential carbon-neutral, cost-effective, and sustainable sludge treatment strategy using renewable blue-green algae-based biochar, aiding 4-nonylphenol biodegradation in waste-activated sludge.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|