1
|
Han Y, Qi Y, Zhong J, Yi Y, Nai H, He D, He C, Shi Q, Li SL. Deciphering dissolved organic matter characteristics and its fate in a glacier-fed desert river-the Tarim river, China. ENVIRONMENTAL RESEARCH 2024; 257:119251. [PMID: 38815714 DOI: 10.1016/j.envres.2024.119251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The bioavailable diverse dissolved organic matter (DOM) present in glacial meltwater significantly contributes to downstream carbon cycling in mountainous regions. However, the comprehension of molecular-level characteristics of riverine DOM, from tributary to downstream and their fate in glacier-fed desert rivers remains limited. Herein, we employed spectroscopic and high-resolution mass spectrometry techniques to study both optical and molecular-level characteristics of DOM in the Tarim River catchment, northwest China. The results revealed that the DOC values in the downstream were higher than those in the tributaries, yet they remained comparable to those found in other glacier-fed streams worldwide. Five distinct components were identified using EEM-PARAFAC analysis in both tributary and downstream samples. The dominance of three protein-like components in tributary samples, contrasting with a higher presence of humic-like components in downstream samples, which implied that the dilution and alterations of the glacier DOM signature and overprinting with terrestrial-derived DOM. Molecular composition revealed that thousands of compounds with higher molecular weight and increased aromaticity were transformed, generated and introduced from terrestrial inputs during downstream transportation. The twofold rise in polycyclic aromatic and polyphenolic compounds observed downstream compared to tributaries indicated a greater influx of terrestrial organic matter introduced into the downstream during water transportation. The study suggests that the glacier-sourced DOM experienced minimal photodegradations, with limited influence from human activities, while also being shaped by terrestrial inputs during its transit in the alpine-arid region. This unique scenario offers valuable insights into comprehending the fate of DOM originating from glacial meltwater in arid mountainous regions.
Collapse
Affiliation(s)
- Yufu Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Jun Zhong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China.
| | - Yuanbi Yi
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Hui Nai
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| |
Collapse
|
2
|
Jiang W, Ma L, Niedek C, Anastasio C, Zhang Q. Chemical and Light-Absorption Properties of Water-Soluble Organic Aerosols in Northern California and Photooxidant Production by Brown Carbon Components. ACS EARTH & SPACE CHEMISTRY 2023; 7:1107-1119. [PMID: 37223426 PMCID: PMC10202033 DOI: 10.1021/acsearthspacechem.3c00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Atmospheric brown carbon (BrC) can impact the radiative balance of the earth and form photooxidants. However, the light absorption and photochemical properties of BrC from different sources remain poorly understood. To address this gap, dilute water extracts of particulate matter (PM) samples collected at Davis, CA over one year were analyzed using high resolution aerosol mass spectrometry (HR-AMS) and UV-vis spectroscopy. Positive matrix factorization (PMF) on combined AMS and UV-vis data resolved five water-soluble organic aerosol (WSOA) factors with distinct mass spectra and UV-vis spectra: a fresh and an aged water-soluble biomass burning OA (WSBBOAfresh and WSBBOAaged) and three oxygenated OA (WSOOAs). WSBBOAfresh is the most light-absorbing, with a mass absorption coefficient (MAC365 nm) of 1.1 m2 g-1, while the WSOOAs are the least (MAC365 nm = 0.01-0.1 m2 g-1). These results, together with the high abundance of WSBBOAs (∼52% of the WSOA mass), indicate that biomass burning activities such as residential wood burning and wildfires are an important source of BrC in northern California. The concentrations of aqueous-phase photooxidants, i.e., hydroxyl radical (·OH), singlet molecular oxygen (1O2*), and oxidizing triplet excited states of organic carbon (3C*), were also measured in the PM extracts during illumination. Oxidant production potentials (PPOX) of the five WSOA factors were explored. The photoexcitation of BrC chromophores from BB emissions and in OOAs is a significant source of 1O2* and 3C*. By applying our PPOX values to archived AMS data at dozens of sites, we found that oxygenated organic species play an important role in photooxidant formation in atmospheric waters.
Collapse
Affiliation(s)
- Wenqing Jiang
- Department
of Environmental Toxicology, University
of California, 1 Shields Avenue, Davis, California 95616, United States
- Agricultural
and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Lan Ma
- Agricultural
and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States
- Department
of Land, Air, and Water Resources, University
of California, 1 Shields
Avenue, Davis, California 95616, United States
| | - Christopher Niedek
- Department
of Environmental Toxicology, University
of California, 1 Shields Avenue, Davis, California 95616, United States
- Agricultural
and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Cort Anastasio
- Agricultural
and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States
- Department
of Land, Air, and Water Resources, University
of California, 1 Shields
Avenue, Davis, California 95616, United States
| | - Qi Zhang
- Department
of Environmental Toxicology, University
of California, 1 Shields Avenue, Davis, California 95616, United States
- Agricultural
and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|