1
|
Zhao Y, Chen L, Tang F, Zhang L, Yang Q, Yang X. Boosting peroxymonosulfate activation for complete removal of gatifloxacin by a bead-chain zeolitic imidazolate framework composite. J Colloid Interface Sci 2025; 685:116-128. [PMID: 39837247 DOI: 10.1016/j.jcis.2025.01.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
A bead-chain metal-organic framework composite was designed and synthesized by assembling a zeolitic imidazolate framework (ZIF) onto manganese dioxide (MnO2) nanowires. The prepared catalyst MnO2@ZIF-X (X = 1, 2 and 3) was used to facilitate gatifloxacin (GAT) degradation by using potassium peroxymonopulfate (PMS) as an activator. MnO2@ZIF-2 exhibited excellent catalytic performance, achieving 100 % degradation of GAT (10 mg/L) in the presence of PMS (1 mM) in 15 min, and the toxicity of the majority of degradation intermediates decreased. Furthermore, the removal efficiency was maintained above 90 % throughout a wide pH range (3-11) and in the coexistence of anions ( [Formula: see text] , Cl-, SO42-). The main mechanism of the MnO2@ZIF-2/PMS system involves the synergistic effect of radicals and non-radicals (single linear oxygen and electron-mediated transfer), making the system highly resistant to interference from environmental matrices. Moreover, the GAT degradation pathway was elucidated through intermediate analysis and theoretical calculations. In particular, MnO2@ZIF-2 was well dispersed on a microporous filter membrane to create an immobilized membrane reactor that displayed excellent catalytic performance for the continuous degradation of GAT for 300 min. This work offers an avenue for the design of catalysts with good catalytic activity, particularly for PMS activation in antibiotic wastewater remediation.
Collapse
Affiliation(s)
- Yan Zhao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Lianfang Chen
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China.
| | - Fenglin Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, PR China
| | - Qiang Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China.
| |
Collapse
|
2
|
He B, Li M, Zhao X, Zou H, Xu B, He J. Comparative study of the quick action effect of multiple enzyme-based nano-emulsified oils in enhancing nitrate contamination remediation in groundwater. ENVIRONMENTAL RESEARCH 2024; 257:119297. [PMID: 38824986 DOI: 10.1016/j.envres.2024.119297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/28/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Emulsified vegetable oil (EVO), as a novel green slow-releasing substrate, has performed great potential in subsurface bioremediation due to its slow release and longevity. Nevertheless, the long time it takes to initiate this process still exposed some limitations. Herein, multiple enzyme-based EVOs (EN-EVOs) were developed to enhance the quick-acting effect in nitrate-contaminated bioremediation. This study demonstrated that EN-EVOs loaded with cellulose (c-EVO) and protein enzymes (p-EVO) performed best, not only did not change the advantages of traditional EVO, but also optimized the stability and particle size to the level of 0.8-0.9 and 247.95-252.25 nm, respectively. Nitrate (NO3-N) degradation further confirmed the superiority of c-EVO in rapidly initiating degradation and achieving stable denitrification. Compared with traditional EVO, the maximum start-up efficiency and the rapid achieving stable denitrification efficiency were improved by 37.6% and 1.71 times, respectively. In such situation, the corresponding NO3-N removal efficiency, kinetics rate constant (k1), and half-life period (t1/2) reached as high as 85.39%, as quick as 1.079 d-1, and as short as 0.64 d after 30-day cultivation. Meanwhile, the rapid conversion efficiency of NO2-N was observed (k2 = 0.083 d-1). High-throughput 16S rRNA gene sequencing indicated that the quick-acting process of NO3-N reduction coupled to c-EVO was mediated by microbial reducers (e.g., Ralstonia, Gulbenkiania, and Sphingobacterium) with regulations of narG, nirS and norB genes. Microorganisms with these genes could achieve quick-acting not only by enhancing microbial activity and the synthesis and metabolism of volatile fatty acids, but also by reducing the production and accumulation of loosely bound-extracellular polymeric substances (LB-EPS). These findings advance our understanding on fast-acting of NO3-N degradation supported by c-EVO and also offer a promising direction for groundwater remediation.
Collapse
Affiliation(s)
- Baonan He
- Key Laboratory of Groundwater Conservation of Ministry of Water Resources, China University of Geosciences (Beijing), Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Meiying Li
- Key Laboratory of Groundwater Conservation of Ministry of Water Resources, China University of Geosciences (Beijing), Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Xiejie Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Hua Zou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Baoshi Xu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Jiangtao He
- Key Laboratory of Groundwater Conservation of Ministry of Water Resources, China University of Geosciences (Beijing), Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
3
|
Cui H, Feng Y, Lu W, Wang L, Li H, Teng Y, Bai Y, Qu K, Song Y, Cui Z. Effect of hydraulic retention time on denitrification performance and microbial communities of solid-phase denitrifying reactors using polycaprolactone/corncob composite. MARINE POLLUTION BULLETIN 2024; 205:116559. [PMID: 38852202 DOI: 10.1016/j.marpolbul.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This study investigated the effect of hydraulic retention time (HRT) on the denitrification performance and microbial composition of reactors, packed with composite polycaprolactone and corncob carbon sources, during the treatment mariculture wastewater. The optimal HRT was 3 h, and average nitrogen removal efficiency was 99.00 %, 99.07 %, and 98.98 % in the HRT =3, 5, and 7 h groups, respectively. However, the 3 h group (DOC 2.91 mg/L) was the only group with a lower DOC concentration than that of the influent group (3.31 mg/L). Moreover, species richness was lower at HRT =3 h, with a greater proportion of denitrification-dominant phyla, such as Proteobacteria. The abundance of the NarG, NirK, and NirS functional genes suggested that the HRT =3 h group had a significant advantage in the nitrate and nitrite reduction phases. Under a short HRT, the composite carbon source achieved a good denitrification effect.
Collapse
Affiliation(s)
- Hongwu Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Yuna Feng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Weibin Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lu Wang
- Laoshan Laboratory, Qingdao 266237, China
| | - Hao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Yu Teng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Ying Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Yingying Song
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
4
|
Wei L, Han Y, Zheng J, Xu X, Zhu L. Accelerated dissemination of antibiotic resistant genes via conjugative transfer driven by deficient denitrification in biochar-based biofiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173268. [PMID: 38754503 DOI: 10.1016/j.scitotenv.2024.173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biofiltration systems harbored and disseminated antibiotic resistance genes (ARGs), when confronting antibiotic-contained wastewater. Biochar, a widely used environmental remediation material, can mitigate antibiotic stress on adjoining microbes by lowering the availability of sorbed antibiotics, and enhance the attachment of denitrifiers. Herein, bench-scale biofiltration systems, packed with commercial biochars, were established to explore the pivotal drivers affecting ARG emergence. Results showed that biofiltration columns, achieving higher TN removal and denitrification capacity, showed a significant decrease in ARG accumulation (p < 0.05). The relative abundance of ARGs (0.014 ± 0.0008) in the attached biofilms decreased to 1/5-folds of that in the control group (0.065 ± 0.004). Functional analysis indicated ARGs' accumulation was less attributed to ARG activation or horizontal gene transfer (HGT) driven by sorbed antibiotics. Most denitrifiers, like Bradyrhizobium, Geothrix, etc., were found to be enriched and host ARGs. Nitrosative stress from deficient denitrification was demonstrated to be the dominant driver for affecting ARG accumulation and dissemination. Metagenomic and metaproteomic analysis revealed that nitrosative stress promoted the conjugative HGT of ARGs mainly via increasing the transmembrane permeability and enhancing the amino acid transport and metabolism, such as cysteine, methionine, and valine metabolism. Overall, this study highlighted the risks of deficient denitrification in promoting ARG transfer and transmission in biofiltration systems and natural ecosystems.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University.
| |
Collapse
|
5
|
Zhou Z, Huang F, Chen L, Liu F, Wang B, Tang J. Effects of antibiotics on microbial nitrogen cycling and N 2O emissions: A review. CHEMOSPHERE 2024; 357:142034. [PMID: 38615962 DOI: 10.1016/j.chemosphere.2024.142034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Sulfonamides, quinolones, tetracyclines, and macrolides are the most prevalent classes of antibiotics used in both medical treatment and agriculture. The misuse of antibiotics leads to their extensive dissemination in the environment. These antibiotics can modify the structure and functionality of microbial communities, consequently impacting microbial-mediated nitrogen cycling processes including nitrification, denitrification, and anammox. They can change the relative abundance of nirK/norB contributing to the emission of nitrous oxide, a potent greenhouse gas. This review provides a comprehensive examination of the presence of these four antibiotic classes across different environmental matrices and synthesizes current knowledge of their effects on the nitrogen cycle, including the underlying mechanisms. Such an overview is crucial for understanding the ecological impacts of antibiotics and for guiding future research directions. The presence of antibiotics in the environment varies widely, with significant differences in concentration and type across various settings. We conducted a comprehensive review of over 70 research articles that compare various aspects including processes, antibiotics, concentration ranges, microbial sources, experimental methods, and mechanisms of influence. Antibiotics can either inhibit, have no effect, or even stimulate nitrification, denitrification, and anammox, depending on the experimental conditions. The influence of antibiotics on the nitrogen cycle is characterized by dose-dependent responses, primarily inhibiting nitrification, denitrification, and anammox. This is achieved through alterations in microbial community composition and diversity, carbon source utilization, enzyme activities, electron transfer chain function, and the abundance of specific functional enzymes and antibiotic resistance genes. These alterations can lead to diminished removal of reactive nitrogen and heightened nitrous oxide emissions, potentially exacerbating the greenhouse effect and related environmental issues. Future research should consider diverse reaction mechanisms and expand the scope to investigate the combined effects of multiple antibiotics, as well as their interactions with heavy metals and other chemicals or organisms.
Collapse
Affiliation(s)
- Zikun Zhou
- MOE Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Fuyang Huang
- MOE Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, PR China.
| | - Linpeng Chen
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, PR China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing, PR China
| | - Bin Wang
- MOE Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan, PR China.
| | - Jie Tang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, PR China
| |
Collapse
|
6
|
Zou H, He J, Chu Y, Xu B, Li W, Huang S, Guan X, Liu F, Li H. Revealing discrepancies and drivers in the impact of lomefloxacin on groundwater denitrification throughout microbial community growth and succession. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133139. [PMID: 38056273 DOI: 10.1016/j.jhazmat.2023.133139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
The coexistence of antibiotics and nitrates has raised great concern about antibiotic's impact on denitrification. However, conflicting results in these studies are very puzzling, possibly due to differences in microbial succession stages. This study investigated the effects of the high-priority urgent antibiotic, lomefloxacin (LOM), on groundwater denitrification throughout microbial growth and succession. The results demonstrated that LOM's impact on denitrification varied significantly across three successional stages, with the most pronounced effects exhibited in the initial stage (53.8% promotion at 100 ng/L-LOM, 84.6% inhibition at 100 μg/L-LOM), followed by the decline stage (13.3-18.2% inhibition), while no effect in the stable stage. Hence, a distinct pattern encompassing susceptibility, insusceptibility, and sub-susceptibility in LOM's impact on denitrification was discovered. Microbial metabolism and environment variation drove the pattern, with bacterial numbers and antibiotic resistance as primary influencers (22.5% and 15.3%, p < 0.01), followed by carbon metabolism and microbial community (5.0% and 3.68%, p < 0.01). The structural equation model confirmed results reliability. Bacterial numbers and resistance influenced susceptibility by regulating compensation and bacteriostasis, while carbon metabolism and microbial community impacted energy, electron transfer, and gene composition. These findings provide valuable insights into the complex interplay between antibiotics and denitrification patterns in groundwater.
Collapse
Affiliation(s)
- Hua Zou
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Jiangtao He
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China.
| | - Yanjia Chu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Baoshi Xu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Wei Li
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Shiwen Huang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Xiangyu Guan
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Haiyan Li
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
7
|
Chen L, Huang F, Lu A, Liu F, Guan X, Wang J. Critical role of multiple antibiotics on the denitrification rate in groundwater: Field investigative proof. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169785. [PMID: 38181946 DOI: 10.1016/j.scitotenv.2023.169785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The impact of antibiotics on denitrification has emerged as a significant topic; however, there is a dearth of mechanistic understanding regarding the effects of multiple antibiotics at the ng/L level on denitrification in groundwater. This study conducted five field samplings between March 2019 and July 2021 at two representative monitoring wells. The investigation utilized metagenomic sequencing to unveil the antibiotic mechanisms influencing denitrification. Results revealed the detection of 16 out of 64 antibiotics, with a maximum detection frequency and total concentration of 100 % and 187 ng/L, respectively. Additionally, both nitrate and total antibiotic concentrations exhibited a gradual decrease along the groundwater flow direction. Metagenomic evidence indicated that denitrification served as the dominant biogeochemical process controlling nitrate attenuation in groundwater. However, the denitrification capacity experienced significant inhibition in the presence of multiple antibiotics at the ng/L level. This inhibition was attributed to decreases in the relative abundance of dominant denitrifying bacteria (Candidatus_Scalindua, Herminiimonas and unclassified_p_Planctomycetes) and denitrifying functional genes (narGH, nirKS and norB), signifying the pressure exerted by antibiotics on denitrifying bacteria. The variation in antibiotic concentration (∆Cantibiotics) indicated a change in antibiotic pressure on denitrifying bacteria. A larger ∆Cantibiotics corresponded to a greater rebound in the relative abundance of denitrifying functional genes, resulting in a faster denitrification rate (Kdenitrification). Field observations further demonstrated a positive correlation between Kdenitrification and ∆Cantibiotics. Comparatively, a higher Kdenitrification observed at higher ∆Cantibiotics was primarily due to the enrichment of more nondominant denitrifying bacteria carrying key denitrifying functional genes. In conclusion, this study underscores that multiple antibiotics at the ng/L level in groundwater inhibited denitrification, and the degree of inhibition was closely related to ∆Cantibiotics.
Collapse
Affiliation(s)
- Linpeng Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fuyang Huang
- School of Environment and Resources, Southwest University of Sciences and Technology, Mianyang 621010, PR China
| | - Anhuai Lu
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijng 100871, PR China
| | - Fei Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jialin Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
8
|
Wang G, Huang X, Wang S, Yang F, Sun S, Yan P, Chen Y, Fang F, Guo J. Effect of food-to-microorganisms ratio on aerobic granular sludge settleability: Microbial community, potential roles and sequential responses of extracellular proteins and polysaccharides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118814. [PMID: 37591089 DOI: 10.1016/j.jenvman.2023.118814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
The food-to-microorganism ratio (F/M) is an important parameter in wastewater biotreatment that significantly affects the granulation and settleability of aerobic granular sludge (AGS). Hence, understanding the long-term effects and internal mechanisms of F/M on AGS settling performance is essential. This study investigated the relationship between F/M and the sludge volume index (SVI) within a range of 0.23-2.50 kgCOD/(kgMLVSS·d). Thiothrix and Candidatus_Competibacter were identified as two dominant bacterial genera influencing AGS settling performance. With F/M increased from 0.27 kgCOD/(kgMLVSS·d) to 1.53 kgCOD/(kgMLVSS·d), the abundance of Thiothrix significantly increased from 0.20% to 27.02%, and the hydrophobicity of extracellular proteins (PN) decreased, which collectively reduced AGS settling performance. However, under high-F/M conditions, the gel-like polysaccharides (PS) effectively retained the granular biomass by binding to the highly abundant Thiothrix (53.65%). The progressive increment in biomass led to a concomitant reduction in F/M, resulting in the recovery of AGS settleability. In addition, two-dimensional correlation infrared spectroscopy analysis revealed the preferential responses of PN and PS to the increase and decrease of F/M, and the content and characteristics of PN and PS played important roles in granular settling. The study provides insight into the microbial composition and the potential role of extracellular polymer substances in the AGS sedimentation behavior, offering valuable theoretical support for stable AGS operation.
Collapse
Affiliation(s)
- Gonglei Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiaoxiao Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Shuai Wang
- College of Environment Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Fan Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Shiting Sun
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
9
|
Zhang T, Peng J, Dai Y, Xie X, Luo S, Ding Y, Ma Y. Effect of florfenicol on nirS-type denitrifying communities structure of water in an aquatic microcosm model. Front Vet Sci 2023; 10:1205394. [PMID: 37529176 PMCID: PMC10388553 DOI: 10.3389/fvets.2023.1205394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Florfenicol is used worldwide for its low side effects and strong bactericidal effect. Florfenicol is physicochemically stable and can persist in natural water bodies and affect water denitrification. Indoor aquatic microcosm models were constructed and water samples were collected at different florfenicol concentrations (0.1, 1, 10, and 100 mg/L) on days 0, 7, 30, and 60 to extract the microbial genome DNA and determine the water properties. qPCR and amplicon sequencing were used to study the dynamic changes of nirS gene and nirS-type denitrifying communities structure, diversity and abundance, respectively. The results showed that higher florfenicol concentrations caused accumulation of nitrate and ammonium nitrogen in water. Florfenicol stress caused orders of magnitude changes in nirS gene abundance, showing a trend of increasing first and then decreasing. 100 mg/L florfenicol addition led to a sustained increase of nirS gene abundance in water bodies. The florfenicol addition altered denitrifying community structure and suppressed the richness and diversity index of denitrifying bacteria in water body. Over time, the richness and diversity index gradually recovered. Proteobacteria was always the dominant denitrifying phylum in water. The relative abundance of Pseudomonas and beta proteobacterium showed obvious positive correlation with nirS gene abundance and were the dominant genera under florfenicol stress. Our study provided a scientific basis for the rational use of florfenicol in aquaculture to maintain a healthy and stable microecological environment, and also provided a preliminary understanding of the response characteristics of water denitrifying microorganisms to florfenicol exposure.
Collapse
Affiliation(s)
- Tengyue Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jinju Peng
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yue Dai
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xingpeng Xie
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Shuaishuai Luo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yuexia Ding
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yi Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
10
|
Fu L, Yu Y, Yu F, Xiao J, Fang H, Li W, Xie Z, Zhang F, Lin S. Profiles and spatial distributions of heavy metals, microbial communities, and metal resistance genes in sediments from an urban river. Front Microbiol 2023; 14:1188681. [PMID: 37455724 PMCID: PMC10340544 DOI: 10.3389/fmicb.2023.1188681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023] Open
Abstract
The occurrence and propagation of resistance genes due to exposure to heavy metals (HMs) in rivers is an emerging environmental issue. Little is known about resistance genes in microbial communities in river sediments with low HM concentrations. The profiles and spatial distributions of HMs, the microbial community, and metal resistance genes (MRGs) were analyzed in sediment samples from the Zhilong River basin in Yangjiang city, near the Pearl River Delta. Concentrations of copper (Cu), cadmium (Cd), lead (Pb), chromium (Cr), and nickel (Ni) were relatively low compared with those in other urban river sediments in China. HM chemical composition and fractions and the structure of the microbial community varied along the main channel, but the composition and abundance of MRGs were relatively homogeneous. Variations in HMs and microbial communities in mid- to upstream areas were related to the presence of tributaries, whose inputs were one of the major factors affecting HM chemical fractions and genera structure in mainstream sediments. There were no significant correlations (p < 0.05) between HM concentrations, bacterial communities, and the MRG profiles; thus, HM concentrations were not the main factor affecting MRGs in sediments. These results contribute to understanding the propagation of MRGs in urban rivers in developing cities.
Collapse
|
11
|
Guan X, Guo Z, Wang X, Xiang S, Sun T, Zhao R, He J, Liu F. Transfer route and driving forces of antibiotic resistance genes from reclaimed water to groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121800. [PMID: 37169235 DOI: 10.1016/j.envpol.2023.121800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The infiltration of reclaimed water has created a significant environmental risk due to the spread of antibiotic resistance genes (ARGs) in riparian groundwater. Reclaimed water from wastewater treatment plants (WWTPs) had been identified as a source of both antibiotics and ARGs in groundwater, based on their spatial and temporal distribution. The assembly process of microbial communities in the groundwater of the infiltration zone was more influenced by deterministic processes. Co-occurrence network analysis revealed that Thermotoga, Desulfotomaculum, Methanobacterium, and other such genera were dominant shared genera. These were considered core genera and hosts of ARGs for transport from reclaimed water to groundwater. The most abundant ARG in these shared genera was MacB, enriched in groundwater point G3 and potentially transferred from reclaimed water to groundwater by Acidovorax, Hydrogenophaga, Methylotenera, Dechloromonas, and Nitrospira. During the infiltration process, environmental factors and the tradeoff between energy metabolism and antibiotic defense strategy may have affected ARG transfer. Understanding the transfer route and driving forces of ARGs from reclaimed water to groundwater provided a new perspective for evaluating the spread risk of ARGs in reclaimed water infiltration.
Collapse
Affiliation(s)
- Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Zining Guo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xusheng Wang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shizheng Xiang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Tongxin Sun
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Ruoyu Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jiangtao He
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
12
|
Wei Z, Lai Y, Li W, Cui X, Zhou D, Zhang C, Chen C, Fang Y. Accumulation of nitrite after reclaimed water recharge due to the disinfection byproduct chlorite. CHEMOSPHERE 2023; 321:138119. [PMID: 36804496 DOI: 10.1016/j.chemosphere.2023.138119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Due to its toxicity, the disinfection byproduct chlorite in drinking water is strictly regulated to be ≤ 1.0 mg/L, but in reclaimed, non-drinking water chlorite is unregulated and rarely considered. However, chlorite is cytotoxic and has a high oxidation potential. Therefore, as reclaimed water infiltrates soil and groundwater, it may alter the soil environment and microbial community, which may affect the degradation of organic matter and the transformation of the N element. In this study, the effects of reclaimed water containing chlorite on soil microorganisms were investigated by simulating subsurface infiltration. It was found that chlorite improved the conversion of nitrate nitrogen to nitrite nitrogen, but inhibited further conversion of nitrite nitrogen. The nitrite nitrogen in the effluent reached 4.61 mg/L when chlorite was present, while only 0.16 mg/L was found in the control system. The chlorite produced obvious oxidative stress reactions in cells, inhibited the EPSs production, in which the contents of polysaccharides and proteins reduced by nearly 41% and 62%, respectively. Besides, chlorite resulted in the enrichment of efflux resistance genes in the microbial community, mainly adeF and cmlB1. Self-protection against chlorite is achieved mainly using efflux pump related genes. Metagenomics data analysis showed that Delftia became the dominant genus when exposed to chlorite, with the greatest abundance at 17.9%. Chlorite also resulted in the upregulated expression of nar genes (by more than 149%) and downregulation of nir gene expression (by more than 62%). This study reveals the effects of the disinfection byproduct chlorite on a soil microecosystem, providing important information for the management and reuse of reclaimed water.
Collapse
Affiliation(s)
- Ziyao Wei
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Yingnan Lai
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Wenjing Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Xiaochun Cui
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Chaofan Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Congli Chen
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| | - Yuanping Fang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun, 130117, China
| |
Collapse
|
13
|
Bruno A, Cafiso A, Sandionigi A, Galimberti A, Magnani D, Manfrin A, Petroni G, Casiraghi M, Bazzocchi C. Red mark syndrome: Is the aquaculture water microbiome a keystone for understanding the disease aetiology? Front Microbiol 2023; 14:1059127. [PMID: 36922974 PMCID: PMC10010170 DOI: 10.3389/fmicb.2023.1059127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Aquaculture significantly contributes to the growing demand for food worldwide. However, diseases associated with intensive aquaculture conditions, especially the skin related syndromes, may have significant implications on fish health and industry. In farmed rainbow trout, red mark syndrome (RMS), which consists of multiple skin lesions, currently lacks recognized aetiological agents, and increased efforts are needed to elucidate the onset of these conditions. Most of the past studies were focused on analyzing skin lesions, but no study focused on water, a medium constantly interacting with fish. Indeed, water tanks are environmental niches colonized by microbial communities, which may be implicated in the onset of the disease. Here, we present the results of water and sediment microbiome analyses performed in an RMS-affected aquaculture facility, bringing new knowledge about the environmental microbiomes harbored under these conditions. On the whole, no significant differences in the bacterial community structure were reported in RMS-affected tanks compared to the RMS-free ones. However, we highlighted significant differences in microbiome composition when analyzing different samples source (i.e., water and sediments). Looking at the finer scale, we measured significant changes in the relative abundances of specific taxa in RMS-affected tanks, especially when analyzing water samples. Our results provide worthwhile insight into a mostly uncharacterized ecological scenario, aiding future studies on the aquaculture built environment for disease prevention and monitoring.
Collapse
Affiliation(s)
- Antonia Bruno
- ZooPlantLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Cafiso
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | | | - Andrea Galimberti
- ZooPlantLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Davide Magnani
- ZooPlantLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Amedeo Manfrin
- Experimental Zooprophylactic Institute of the Venezie (IZSVe), Legnaro, Italy
| | | | - Maurizio Casiraghi
- ZooPlantLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|