1
|
Kim Y, Choe S, Cho Y, Moon H, Shin H, Seo J, Myung J. Biodegradation of poly(butylene adipate terephthalate) and poly(vinyl alcohol) within aquatic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176129. [PMID: 39255933 DOI: 10.1016/j.scitotenv.2024.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Understanding the environmental fate of biodegradable plastics in aquatic systems is crucial, given the alarming amount of plastic waste and microplastic particles transported through aquatic pathways. In particular, there is a need to analyze the biodegradation of commercialized biodegradable plastics upon release from wastewater treatment plants into natural aquatic systems. This study investigates the biodegradation behaviors of poly(butylene adipate terephthalate) (PBAT) and poly(vinyl alcohol) (PVA) in wastewater, freshwater, and seawater. Biodegradation of PBAT and PVA assessed through biochemical oxygen demand (BOD) experiments and microcosm tests revealed that the type of aquatic system governs the biodegradation behaviors of each plastic, with the highest biodegradation rate achieved in wastewater for both PBAT and PVA (25.6 and 32.2 % in 30 d, respectively). Plastic release pathway from wastewater into other aquatic systems simulated by sequential incubation in different microcosms suggested that PBAT exposed to wastewater and freshwater before reaching seawater was more prone to degradation than when directly exposed to seawater. On the other hand, PVA displayed comparable biodegradation rate regardless of whether it was directly exposed to seawater or had passed through other environments beforehand. Metagenome amplicon sequencing of 16S rRNA genes revealed distinct community shifts dependent on the type of plastics in changing environments along the simulated aquatic pathway. Several bacterial species putatively implicated in the biodegradation of PBAT and PVA are discussed. Our findings underscore the significant influence of pollution routes on the biodegradation of PBAT and PVA, highlighting the potential for wastewater treatment to facilitate rapid degradation compared to direct exposure to pristine aquatic environments.
Collapse
Affiliation(s)
- Youngju Kim
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Shinhyeong Choe
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Yongjun Cho
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hoseong Moon
- Graduate School of Green Growth and Sustainability, KAIST, Daejeon 34141, Republic of Korea
| | - Hojun Shin
- Department of Packaging and Logistics, Yonsei University, Wonju 26493, Republic of Korea
| | - Jongchul Seo
- Department of Packaging and Logistics, Yonsei University, Wonju 26493, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Green Growth and Sustainability, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Stankiewicz K, Boroń P, Prajsnar J, Żelazny M, Heliasz M, Hunter W, Lenart-Boroń A. Second life of water and wastewater in the context of circular economy - Do the membrane bioreactor technology and storage reservoirs make the recycled water safe for further use? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170995. [PMID: 38378066 DOI: 10.1016/j.scitotenv.2024.170995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
In recent years water demand drastically increased which is particularly evident in tourism-burdened mountain regions. In these areas, climate neutral circular economy strategies to minimize human impact on the environment can be successfully applied. Among these strategies, treated wastewater reuse and retaining water in storage reservoirs deserve particular attention. This study aimed to determine if recycled water produced with two circular economy systems, namely membrane bioreactor treatment plant (MBR) with UV-light effluent disinfection and a storage reservoir, is safe enough for further use in green areas irrigation in summer and artificial snow production in winter. The assessment was based on the presence and concentration of antimicrobial agents, antibiotic resistant bacteria, antibiotic resistance genes, bacterial community composition and diversity. The treated water and wastewater was compared with natural water in their vicinity. Both systems fulfill the criteria set by the European Union in terms of reclaimed water suitable for reuse. Although the MBR/UV light wastewater treatment substantially reduced the numbers of E. coli and E. faecalis (from e.g. 32,000 CFU/100 ml to 20 CFU/100 ml and 15,000 CFU/100 ml to nearly 0 CFU/ml), bacteria resistant to ampicillin, aztreonam, cefepime, ceftazidime, ertapenem and tigecycline, as well as ESBL-positive and multidrug resistant E. coli were highly prevalent in MBR-treated wastewater (88.9 %, 55.6 %, 33.3 %, 22.2 % and 11.1 % and 44.4 and 55.6 %, respectively). Applying additional tertiary treatment technology is recommended. Retaining water in storage reservoirs nearly eliminated bacterial contaminants (e.g. E. coli dropped from 350 CFU/100 ml to 10 CFU/100 ml), antibiotic resistant bacteria, resistance genes (none detected in the storage reservoir) and antibiotics (only enrofloxacin detected once in the concentration of 3.20 ng/l). Findings of this study point to the limitations of solely culture-based assessment of reclaimed water and wastewater while they may prove useful in risk management and prevention in wastewater reuse.
Collapse
Affiliation(s)
- Klaudia Stankiewicz
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239 Kraków, Poland
| | - Mirosław Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387 Kraków, Poland
| | - Miłosz Heliasz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listpada Ave. 54, 31-425 Kraków, Poland
| | - Walter Hunter
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listpada Ave. 54, 31-425 Kraków, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| |
Collapse
|
3
|
Espinosa-Barrera PA, Gómez-Gómez M, Vanegas J, Machuca-Martinez F, Torres-Palma RA, Martínez-Pachón D, Moncayo-Lasso A. Systematic analysis of the scientific-technological production on the use of the UV, H 2O 2, and/or Cl 2 systems in the elimination of bacteria and associated antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6782-6814. [PMID: 38165540 PMCID: PMC10821820 DOI: 10.1007/s11356-023-31435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
This study presents a systematic review of the scientific and technological production related to the use of systems based on UV, H2O2, and Cl2 for the elimination of antibiotic-resistant bacteria (ARB) and genes associated with antibiotic resistance (ARGs). Using the Pro Know-C (Knowledge Development Process-Constructivist) methodology, a portfolio was created and analyzed that includes 19 articles and 18 patents published between 2011 and 2022. The results show a greater scientific-technological production in UV irradiation systems (8 articles and 5 patents) and the binary combination UV/H2O2 (9 articles and 4 patents). It was emphasized that UV irradiation alone focuses mainly on the removal of ARB, while the addition of H2O2 or Cl2, either individually or in binary combinations with UV, enhances the removal of ARB and ARG. The need for further research on the UV/H2O2/Cl2 system is emphasized, as gaps in the scientific-technological production of this system (0 articles and 2 patents), especially in its electrochemically assisted implementation, have been identified. Despite the gaps identified, there are promising prospects for the use of combined electrochemically assisted UV/H2O2/Cl2 disinfection systems. This is demonstrated by the effective removal of a wide range of contaminants, including ARB, fungi, and viruses, as well as microorganisms resistant to conventional disinfectants, while reducing the formation of toxic by-products.
Collapse
Affiliation(s)
- Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
- Doctorado en Ciencia Aplicada (DCA), Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Marcela Gómez-Gómez
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Javier Vanegas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Fiderman Machuca-Martinez
- Centro de Excelencia en Nuevos Materiales, Universidad del Valle, Calle 13 No. 100-00, Cali, Colombia
| | - Ricardo Antonio Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia.
| |
Collapse
|
4
|
Jabri T, Khan NA, Makhlouf Z, Akbar N, Gul J, Shah MR, Siddiqui R. Antibacterial Properties of Ethacridine Lactate and Sulfmethoxazole Loaded Functionalized Graphene Oxide Nanocomposites. Antibiotics (Basel) 2023; 12:antibiotics12040755. [PMID: 37107117 PMCID: PMC10135308 DOI: 10.3390/antibiotics12040755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The emergence of drug-resistant bacterial strains that reduce the effectiveness of antimicrobial agents has become a major ongoing health concern in recent years. It is therefore necessary to find new antibacterials with broad-spectrum activity against both Gram-positive and Gram-negative bacteria, and/or to use nanotechnology to boost the potency of already available medications. In this research, we examined the antibacterial efficacy of sulfamethoxazole and ethacridine lactate loaded two-dimensional glucosamine functionalized graphene-based nanocarriers against a range of bacterial isolates. Graphene oxide was first functionalized with glucosamine, which as a carbohydrate moiety can render hydrophilic and biocompatible characters to the GO surface, and subsequently loaded with ethacridine lactate and sulfamethoxazole. The resulting nanoformulations had distinct, controllable physiochemical properties. By analyzing the formulation using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (PXRD), a thermogravimetric analysis (TGA), zetasizer, and a morphological analysis using Scanning Electron Microscopy and Atomic Force Microscopy, researchers were able to confirm the synthesis of nanocarriers. Both nanoformulations were tested against Gram-negative bacteria, including Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica, as well as Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, and Streptococcus pneumoniae. Importantly, ethacridine lactate and its nanoformulations exhibited significant antibacterial properties against all bacteria tested in this study. When tested for minimum inhibitory concentration (MIC), the results were remarkable and revealed that ethacridine lactate presented MIC90 at 9.7 µg/mL against S. enteric, and MIC90 at 6.2 µg/mL against B. cereus. Notably, ethacridine lactate and its nanoformulations showed limited toxicity effects against human cells using lactate dehydrogenase assays. Overall, the results revealed that ethacridine lactate and its nanoformulations possess antibacterial activities against various Gram-negative and Gram-positive bacteria and that nanotechnology can be employed for the targeted delivery of effective drugs without harming the host tissue.
Collapse
Affiliation(s)
- Tooba Jabri
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Noor Akbar
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Jasra Gul
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Ruqaiyyah Siddiqui
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
5
|
Custodio M, Peñaloza R, Ordinola-Zapata A, Peralta-Ortiz T, Sánches-Suárez H, Vieyra-Peña E, De la Cruz H, Alvarado-Ibáñez J. Diversity of enterobacterales in sediments of lagoons with fish farming activity and analysis of antibiotic resistance. Toxicol Rep 2023; 10:235-244. [PMID: 36845256 PMCID: PMC9950807 DOI: 10.1016/j.toxrep.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The use of antibiotics in fish production can induce bacterial populations to develop resistance to multiple antibiotics and transfer antibiotic resistance genes to other bacteria, including clinically relevant bacteria. This study evaluated the diversity of Enterobacterales in sediment from lagoons with fish farming activity and analyzed antibiotic resistance in the central region of Peru. Sediment samples were collected from four fish-active ponds and transported to the laboratory for analysis. Bacterial diversity was analyzed using DNA sequencing and antibiotic resistance was tested using the disk diffusion method. The results showed variability of bacterial diversity in the ponds with fish farming activity. Simpson's index indicated that the Habascocha lagoon is the most diverse in bacterial species of the order Enterobacterales (0.8), but the least dominant. The Shannon-Wiener index revealed that it is the most diverse (2.93) and the Margalef index revealed that species richness in this lagoon is high (5.72). Similarity percentage analysis (SIMPER) allowed the identification of the main Enterobacterales with the highest percentage contribution in the frequencies of individuals. In general, the Enterobacterales species isolated showed multi-resistance to the antibiotics used and Escherichia coli was the most resistant.
Collapse
Affiliation(s)
- María Custodio
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | - Richard Peñaloza
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | | | | | | | | | - Heidi De la Cruz
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | - Juan Alvarado-Ibáñez
- Universidad Nacional Intercultural “Fabiola Salazar Leguía” de Bagua, Bagua, Peru
| |
Collapse
|