1
|
Ma F, Su L, Tang W, Zhang R, Zhao Q, Chen J, Xie HB. Sulfuric Acid-Driven Nucleation Enhanced by Amines from Ethanol Gasoline Vehicle Emission: Machine Learning Model and Mechanistic Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22278-22287. [PMID: 39636119 DOI: 10.1021/acs.est.4c06578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The sulfuric acid (SA)-amine nucleation mechanism gained increasing attention due to its important role in atmospheric secondary particle formation. However, the intrinsic enhancing potential (IEP) of various amines remains largely unknown, restraining the assessment on the role of the SA-amines mechanism at various locations. Herein, machine learning (ML) models were constructed for high-throughput prediction of IEP of amines, and the nucleation mechanism of specific amines with high IEP was investigated. The formation free energy (ΔG) of SA-amines dimer clusters, a key parameter for assessing IEP, was calculated for 58 amines. Based on the calculated ΔG values, seven ML models were constructed and the best one was further utilized to predict the ΔG values of the remaining 153 amines. Diethylamine (DEA), mainly emitted from ethanol gasoline vehicles, was found to be one of the amines with the highest IEP for SA-driven nucleation. By studying larger SA-DEA clusters, it was found that the nucleation rate of DEA with SA is 3-7 times higher than that of dimethylamine, a well-known key base for SA-driven nucleation. The study provides a powerful tool for evaluating the actual role of amines on SA-driven nucleation and revealed that the mechanism could be particularly important in areas where ethanol gasoline vehicles are widely used.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Weihao Tang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rongjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiaojing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Li J, Ning A, Liu L, Zhang X. Atmospheric Bases-Enhanced Iodic Acid Nucleation: Altitude-Dependent Characteristics and Molecular Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39252395 DOI: 10.1021/acs.est.4c06053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Iodic acid (IA), the key driver of marine aerosols, is widely detected within the gas and particle phases in the marine boundary layer (MBL) and even the free troposphere (FT). Although atmospheric bases like dimethylamine (DMA) and ammonia (NH3) can enhance IA particles formation, their different efficiencies and spatial distributions make the dominant base-stabilization mechanisms of forming IA particles unclear. Herein, we investigated the IA-DMA-NH3 nucleation system through quantum chemical calculations at the DLPNO-CCSD(T)/aug-cc-pVTZ(-PP)//ωB97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ-PP level of theory and cluster dynamics simulations. We provide molecular-level evidence that DMA and NH3 can jointly stabilize the IA clusters. The formation rates of IA clusters initially decline before rising from the MBL to the FT, owing to variations in mechanism. In the MBL, IA-DMA nucleation predominates, while the contribution of IA-DMA-NH3 synergistic nucleation cannot be overlooked in polar and NH3-polluted regions. In the lower FT, IA-DMA-NH3 nucleation prevails, whereas in the upper FT, IA-NH3 nucleation dominates. The efficiency of IA-DMA-NH3 nucleation is comparable to that of IA-iodous acid nucleation in the MBL and sulfuric acid-NH3 nucleation in the FT. Hence, the IA-DMA-NH3 mechanism holds promise for revealing the missing sources of tropospheric IA particles.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Ning A, Shen J, Zhao B, Wang S, Cai R, Jiang J, Yan C, Fu X, Zhang Y, Li J, Ouyang D, Sun Y, Saiz-Lopez A, Francisco JS, Zhang X. Overlooked significance of iodic acid in new particle formation in the continental atmosphere. Proc Natl Acad Sci U S A 2024; 121:e2404595121. [PMID: 39047040 PMCID: PMC11295062 DOI: 10.1073/pnas.2404595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
New particle formation (NPF) substantially affects the global radiation balance and climate. Iodic acid (IA) is a key marine NPF driver that recently has also been detected inland. However, its impact on continental particle nucleation remains unclear. Here, we provide molecular-level evidence that IA greatly facilitates clustering of two typical land-based nucleating precursors: dimethylamine (DMA) and sulfuric acid (SA), thereby enhancing particle nucleation. Incorporating this mechanism into an atmospheric chemical transport model, we show that IA-induced enhancement could realize an increase of over 20% in the SA-DMA nucleation rate in iodine-rich regions of China. With declining anthropogenic pollution driven by carbon neutrality and clean air policies in China, IA could enhance nucleation rates by 1.5 to 50 times by 2060. Our results demonstrate the overlooked key role of IA in continental NPF nucleation and highlight the necessity for considering synergistic SA-IA-DMA nucleation in atmospheric modeling for correct representation of the climatic impacts of aerosols.
Collapse
Affiliation(s)
- An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Jiewen Shen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Bin Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Runlong Cai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Chao Yan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Joint International Research Laboratory of Atmospheric and Earth System Science, School of Atmospheric Sciences, Nanjing University, Nanjing210023, China
| | - Xiao Fu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, China
| | - Yunhong Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Daiwei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Yisheng Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid28006, Spain
| | - Joseph S. Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA19104-6316
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6316
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
4
|
Engsvang M, Wu H, Elm J. Iodine Clusters in the Atmosphere I: Computational Benchmark and Dimer Formation of Oxyacids and Oxides. ACS OMEGA 2024; 9:31521-31532. [PMID: 39072118 PMCID: PMC11270685 DOI: 10.1021/acsomega.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The contribution of iodine-containing compounds to atmospheric new particle formation is still not fully understood, but iodic acid and iodous acid are thought to be significant contributors. While several quantum chemical studies have been carried out on clusters containing iodine, there is no comprehensive benchmark study quantifying the accuracy of the applied methods. Here, we present the first study in a series that investigate the role of iodine species in atmospheric cluster formation. In this work, we have studied the iodic acid, iodous acid, iodine tetroxide, and iodine pentoxide monomers and their dimers formed with common atmospheric precursors. We have tested the accuracy of commonly applied methods for calculating the geometry of the monomers, thermal corrections of monomers and dimers, the contribution of spin-orbit coupling to monomers and dimers, and finally, the accuracy of the electronic energy correction calculated at different levels of theory. We find that optimizing the structures either at the ωB97X-D3BJ/aug-cc-pVTZ-PP or the M06-2X/aug-cc-pVTZ-PP level achieves the best thermal contribution to the binding free energy. The electronic energy correction can then be calculated at the ZORA-DLPNO-CCSD(T0) level with the SARC-ZORA-TZVPP basis for iodine and ma-ZORA-def2-TZVPP for non-iodine atoms. We applied this methodology to calculate the binding free energies of iodine-containing dimer clusters, where we confirm the qualitative trends observed in previous studies. However, we identify that previous studies overestimate the stability of the clusters by several kcal/mol due to the neglect of relativistic effects. This means that their contributions to the currently studied nucleation pathways of new particle formation are likely overestimated.
Collapse
Affiliation(s)
- Morten Engsvang
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Haide Wu
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Rörup B, He XC, Shen J, Baalbaki R, Dada L, Sipilä M, Kirkby J, Kulmala M, Amorim A, Baccarini A, Bell DM, Caudillo-Plath L, Duplissy J, Finkenzeller H, Kürten A, Lamkaddam H, Lee CP, Makhmutov V, Manninen HE, Marie G, Marten R, Mentler B, Onnela A, Philippov M, Scholz CW, Simon M, Stolzenburg D, Tham YJ, Tomé A, Wagner AC, Wang M, Wang D, Wang Y, Weber SK, Zauner-Wieczorek M, Baltensperger U, Curtius J, Donahue NM, El Haddad I, Flagan RC, Hansel A, Möhler O, Petäjä T, Volkamer R, Worsnop D, Lehtipalo K. Temperature, humidity, and ionisation effect of iodine oxoacid nucleation. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:531-546. [PMID: 38764888 PMCID: PMC11097302 DOI: 10.1039/d4ea00013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 05/21/2024]
Abstract
Iodine oxoacids are recognised for their significant contribution to the formation of new particles in marine and polar atmospheres. Nevertheless, to incorporate the iodine oxoacid nucleation mechanism into global simulations, it is essential to comprehend how this mechanism varies under various atmospheric conditions. In this study, we combined measurements from the CLOUD (Cosmic Leaving OUtdoor Droplets) chamber at CERN and simulations with a kinetic model to investigate the impact of temperature, ionisation, and humidity on iodine oxoacid nucleation. Our findings reveal that ion-induced particle formation rates remain largely unaffected by changes in temperature. However, neutral particle formation rates experience a significant increase when the temperature drops from +10 °C to -10 °C. Running the kinetic model with varying ionisation rates demonstrates that the particle formation rate only increases with a higher ionisation rate when the iodic acid concentration exceeds 1.5 × 107 cm-3, a concentration rarely reached in pristine marine atmospheres. Consequently, our simulations suggest that, despite higher ionisation rates, the charged cluster nucleation pathway of iodic acid is unlikely to be enhanced in the upper troposphere by higher ionisation rates. Instead, the neutral nucleation channel is likely to be the dominant channel in that region. Notably, the iodine oxoacid nucleation mechanism remains unaffected by changes in relative humidity from 2% to 80%. However, under unrealistically dry conditions (below 0.008% RH at +10 °C), iodine oxides (I2O4 and I2O5) significantly enhance formation rates. Therefore, we conclude that iodine oxoacid nucleation is the dominant nucleation mechanism for iodine nucleation in the marine and polar boundary layer atmosphere.
Collapse
Affiliation(s)
- Birte Rörup
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge UK
| | - Jiali Shen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Helsinki Institute of Physics, University of Helsinki Helsinki Finland
| | - Rima Baalbaki
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
| | - Lubna Dada
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Mikko Sipilä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
| | - Jasper Kirkby
- CERN, European Organisation for Nuclear Research Geneva Switzerland
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing China
| | | | - Andrea Baccarini
- Laboratory of Atmospheric Processes and their Impacts, École polytechnique fédérale de Lausanne Lausanne Switzerland
| | - David M Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Lucía Caudillo-Plath
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Jonathan Duplissy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Helsinki Institute of Physics, University of Helsinki Helsinki Finland
| | - Henning Finkenzeller
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Department of Chemistry & CIRES, University of Colorado Boulder Boulder USA
| | - Andreas Kürten
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Houssni Lamkaddam
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Chuan Ping Lee
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Vladimir Makhmutov
- Lebedev Physical Institute, Russian Academy of Sciences Moscow Russia
- Moscow Institute of Physics and Technology, National Research University Moscow Russia
| | - Hanna E Manninen
- CERN, European Organisation for Nuclear Research Geneva Switzerland
| | - Guillaume Marie
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Ruby Marten
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Bernhard Mentler
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge UK
| | - Antti Onnela
- CERN, European Organisation for Nuclear Research Geneva Switzerland
| | - Maxim Philippov
- Lebedev Physical Institute, Russian Academy of Sciences Moscow Russia
| | | | - Mario Simon
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Dominik Stolzenburg
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Institute for Materials Chemistry, TU Wien Vienna Austria
- Faculty of Physics, University of Vienna Vienna Austria
| | - Yee Jun Tham
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- School of Marine Sciences, Sun Yat-sen University Zhuhai China
| | - António Tomé
- IDL-UBI, Universidade da Beira Interior Covilhã Portugal
| | - Andrea C Wagner
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
- Aerosol Physics, Tampere University Tampere Finland
| | - Mingyi Wang
- Department of the Geophysical Sciences, University of Chicago Chicago USA
| | - Dongyu Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Yonghong Wang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing China
| | - Stefan K Weber
- CERN, European Organisation for Nuclear Research Geneva Switzerland
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Marcel Zauner-Wieczorek
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Joachim Curtius
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University Pittsburgh USA
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Richard C Flagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena USA
| | - Armin Hansel
- Institute for Ion and Applied Physics, University of Innsbruck Innsbruck Austria
| | - Ottmar Möhler
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology Karlsruhe Germany
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
| | - Rainer Volkamer
- Department of Chemistry & CIRES, University of Colorado Boulder Boulder USA
| | - Douglas Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
| | - Katrianne Lehtipalo
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Finnish Meteorological Institute Helsinki Finland
| |
Collapse
|
6
|
Zhang H, Wang J, Dong B, Xu F, Liu H, Zhang Q, Zong W, Shi X. New mechanism for the participation of aromatic oxidation products in atmospheric nucleation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170487. [PMID: 38296079 DOI: 10.1016/j.scitotenv.2024.170487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Oxygenated organic molecules (OOMs) are recognized as important precursors for new particle formation (NPF) in the urban atmosphere. The paper theoretically studied the formation of OOMs by styrene oxidation processes initiated by OH radicals, focusing on the OOMs nucleation mechanism. The results found that in the presence of an H2SO4 molecule, lowly oxygenated organic molecules containing a benzene ring (LOMBs) can form stable clusters and grow to the scale of a critical nucleus through pi-pi stacking and OH hydrogen bonding. In addition, LOMBs are more readily generated in a styrene-oxidized system in the presence/absence of NOx than highly oxygenated organic molecules (HOMs). The reaction of OH radicals with other aromatics containing a branched chain on the benzene ring produces LOMBs to varying degrees, with pi-pi stacking playing an essential role. This result suggests that, in the presence of H2SO4 molecules, LOMBs may play a more significant role in promoting nucleation than HOMs. Our findings serve as a pivotal foundation for future investigations into the oxidation and nucleation processes of diverse aromatics in urban environments.
Collapse
Affiliation(s)
- Huidi Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Juanbao Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Biao Dong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Xiangli Shi
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
7
|
Zhang R, Ma F, Zhang Y, Chen J, Elm J, He XC, Xie HB. HIO 3-HIO 2-Driven Three-Component Nucleation: Screening Model and Cluster Formation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:649-659. [PMID: 38131199 DOI: 10.1021/acs.est.3c06098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Iodine oxoacids (HIO3 and HIO2)-driven nucleation has been suggested to efficiently contribute to new particle formation (NPF) in marine atmospheres. Abundant atmospheric nucleation precursors may further enhance HIO3-HIO2-driven nucleation through various multicomponent nucleation mechanisms. However, the specific enhancing potential (EP) of different precursors remains largely unknown. Herein, the EP-based screening model of precursors and enhancing mechanism of the precursor with the highest EP on HIO3-HIO2 nucleation were investigated. The formation free energies (ΔG), as critical parameters for evaluating EP, were calculated for the dimers of 63 selected precursors with HIO2. Based on the ΔG values, (1) a quantitative structure-activity relationship model was developed for evaluating ΔG of other precursors and (2) atmospheric concentrations of 63 (precursor)1(HIO2)1 dimer clusters were assessed to identify the precursors with the highest EP for HIO3-HIO2-driven nucleation by combining with earlier results for the nucleation with HIO3 as the partner. Methanesulfonic acid (MSA) was found to be one of the precursors with the highest EP. Finally, we found that MSA can effectively enhance HIO3-HIO2 nucleation at atmospheric conditions by studying larger MSA-HIO3-HIO2 clusters. These results augment our current understanding of HIO3-HIO2 and MSA-driven nucleation and may suggest a larger impact of HIO2 in atmospheric aerosol nucleation.
Collapse
Affiliation(s)
- Rongjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yangjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Xu-Cheng He
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki 00014, Finland
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Wu N, Ning A, Liu L, Zu H, Liang D, Zhang X. Methanesulfonic acid and iodous acid nucleation: a novel mechanism for marine aerosols. Phys Chem Chem Phys 2023. [PMID: 37323049 DOI: 10.1039/d3cp01198d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
By seeding clouds, new particle formation (NPF) has a substantial impact on radiation balance, bio-geochemical cycles and global climate. Over oceans, both methanesulfonic acid (CH3S(O)2OH, MSA) and iodous acid (HIO2) have been reported to be closely associated with NPF events; however, much less is known about whether they can jointly nucleate to form nanoclusters. Hence, quantum chemical calculations and Atmospheric Cluster Dynamics Code (ACDC) simulations were performed to investigate the novel mechanism of MSA-HIO2 binary nucleation. The results indicate that MSA and HIO2 can form stable clusters via multiple interactions including hydrogen bonds, halogen bonds, and electrostatic forces between ion pairs after proton transfer, which are more diverse than those in MSA-iodic acid (HIO3) and MSA-dimethylamine (DMA) clusters. Interestingly, HIO2 can be protonated by MSA exhibiting base-like behavior, but it differs from base nucleation precursors by self-nucleation rather than solely binding to MSA. Due to the greater stability of MSA-HIO2 clusters, the formation rate of MSA-HIO2 clusters can be even higher than that of MSA-DMA clusters, suggesting that MSA-HIO2 nucleation is a non-negligible source of marine NPF. This work proposes a novel mechanism of MSA-HIO2 binary nucleation for marine aerosols and provides deeper insights into the distinctive nucleation characteristics of HIO2, which can help in constructing a more comprehensive sulfur- and iodine-bearing nucleation model for marine NPF.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Haotian Zu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Danli Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
9
|
Ma F, Xie HB, Zhang R, Su L, Jiang Q, Tang W, Chen J, Engsvang M, Elm J, He XC. Enhancement of Atmospheric Nucleation Precursors on Iodic Acid-Induced Nucleation: Predictive Model and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6944-6954. [PMID: 37083433 PMCID: PMC10157892 DOI: 10.1021/acs.est.3c01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Iodic acid (IA) has recently been recognized as a key driver for new particle formation (NPF) in marine atmospheres. However, the knowledge of which atmospheric vapors can enhance IA-induced NPF remains limited. The unique halogen bond (XB)-forming capacity of IA makes it difficult to evaluate the enhancing potential (EP) of target compounds on IA-induced NPF based on widely studied sulfuric acid systems. Herein, we employed a three-step procedure to evaluate the EP of potential atmospheric nucleation precursors on IA-induced NPF. First, we evaluated the EP of 63 precursors by simulating the formation free energies (ΔG) of the IA-containing dimer clusters. Among all dimer clusters, 44 contained XBs, demonstrating that XBs are frequently formed. Based on the calculated ΔG values, a quantitative structure-activity relationship model was developed for evaluating the EP of other precursors. Second, amines and O/S-atom-containing acids were found to have high EP, with diethylamine (DEA) yielding the highest potential to enhance IA-induced nucleation by combining both the calculated ΔG and atmospheric concentration of considered 63 precursors. Finally, by studying larger (IA)1-3(DEA)1-3 clusters, we found that the IA-DEA system with merely 0.1 ppt (2.5×106 cm-3) DEA yields comparable nucleation rates to that of the IA-iodous acid system.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Rongjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qi Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Weihao Tang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Morten Engsvang
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki 00014, Finland
- Finnish Meteorological Institute, Helsinki 00560, Finland
| |
Collapse
|