1
|
Yu GH, Song M, Oh SH, Jeon H, Park K, Jang KS, Bae MS. Ratios of organic mass to organic carbon in fine particulate matter at urban sites in China and Korea during winter and summer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60389-60400. [PMID: 39382807 DOI: 10.1007/s11356-024-35246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
This study evaluates the composition and seasonal characteristics of fine particulate matter (PM2.5) during winter and summer through simultaneous measurements conducted at the Gwangju Institute of Science and Technology in South Korea and the Changping campus of Peking University in China. PM2.5 samples were concurrently collected at both sites, and chemical analyses were conducted to quantify various components, including carbonaceous materials, ionic species, and metals. Although the average PM2.5 concentrations were comparable between the two sites, there were distinct differences in the concentrations of major components. Organic indicator compounds were analyzed to discern the contributions of primary and secondary pollution sources. Changping displayed a mix of primary and secondary pollution, characterized by higher concentrations of primary organic carbon (POC) such as polycyclic aromatic hydrocarbons and hopanes, compared to Gwangju. In contrast, Gwangju demonstrated a higher prevalence of secondary organic carbon (SOC), particularly water-soluble organic carbon not related to biomass burning (WSOCnbb) and various polar organic compounds. The organic mass to organic carbon (OM/OC) ratios estimated using the mass balance method revealed significant differences, with Gwangju showing a higher ratio of 2.3 compared to 1.9 at Changping, indicating a greater influence of secondary pollutants at Gwangju. Additionally, both Changping and Gwangju exhibited higher OM/OC ratios in summer (Changping: 2.0, Gwangju: 2.5) compared to winter (Changping: 1.8, Gwangju: 2.2), indicating seasonal differences in organic mass contributions to PM2.5. These findings underscore the importance of accounting for spatial and seasonal variations in air pollution studies and suggest that updating commonly used OM/OC ratios could enhance the reliability of research outcomes.
Collapse
Affiliation(s)
- Geun-Hye Yu
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Myoungki Song
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Sea-Ho Oh
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Hajeong Jeon
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Kihong Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Kyoung-Soon Jang
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea.
| |
Collapse
|
2
|
Oh SH, Choe S, Song M, Schauer JJ, Yu GH, Bae MS. Impact of terephthalic acid emissions from intensive nocturnal biomass incineration on oxidative potential in Seoul, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173587. [PMID: 38810754 DOI: 10.1016/j.scitotenv.2024.173587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
This study investigated the impact of large-scale incineration facilities on PM2.5 levels in Seoul during winter. Due to the challenge of obtaining accurate combustion data from external sources, heat supply records were used as a proxy for combustion activity. To assess health risks, dithiothreitol-oxidative potential (DTT-OP) was analyzed to identify potential hazards to human health. By comparing DTT-OP with PM2.5 sources related to combustion, the study aimed to understand the impact of local pollution sources on human health in Seoul. The diurnal analysis showed that oxidative potential (0.19 μM/m3) and the biomass burning factor (5.53 μg/m3) peaked between 4:00 and 8:00 AM, with lower levels observed from 12:00 to 20:00. A significant correlation was found between combustion sources and oxidative potential, with a high correlation coefficient (r2 = 0.92). The presence of terephthalic acid (TPA) in the Cellulose combustion source profile, which is produced by the pyrolysis of plastics like polyester fiber and polyethylene terephthalate (PET), further supported the link to emissions from incineration facilities. These findings suggest that the biomass burning source is strongly correlated with DTT-OP, indicating a significant association with health risks among various local sources of PM2.5 in Seoul.
Collapse
Affiliation(s)
- Sea-Ho Oh
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - Seoyeong Choe
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - Myoungki Song
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - James J Schauer
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison 53705, USA
| | - Geun-Hye Yu
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
3
|
Dominutti PA, Mari X, Jaffrezo JL, Dinh VTN, Chifflet S, Guigue C, Guyomarc'h L, Vu CT, Darfeuil S, Ginot P, Elazzouzi R, Mhadhbi T, Voiron C, Martinot P, Uzu G. Disentangling fine particles (PM 2.5) composition in Hanoi, Vietnam: Emission sources and oxidative potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171466. [PMID: 38447718 DOI: 10.1016/j.scitotenv.2024.171466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
A comprehensive chemical characterization of fine particulate matter (PM2.5) was conducted at an urban site in one of the most densely populated cities of Vietnam, Hanoi. Chemical analysis of a series of 57 daily PM2.5 samples obtained in 2019-2020 included the quantification of a detailed set of chemical tracers as well as the oxidative potential (OP), which estimates the ability of PM to catalyze reactive oxygen species (ROS) generation in vivo as an initial step of health effects due to oxidative stress. The PM2.5 concentrations ranged from 8.3 to 148 μg m-3, with an annual average of 40.2 ± 26.3 μg m-3 (from September 2019 to December 2020). Our results obtained by applying the Positive Matrix Factorization (PMF) source-receptor apportionment model showed the contribution of nine PM2.5 sources. The main anthropogenic sources contributing to the PM mass concentrations were heavy fuel oil (HFO) combustion (25.3 %), biomass burning (20 %), primary traffic (7.6 %) and long-range transport aerosols (10.6 %). The OP activities were evaluated for the first time in an urban site in Vietnam. The average OPv levels obtained in our study were 3.9 ± 2.4 and 4.5 ± 3.2 nmol min-1 m-3 for OPDTT and OPAA, respectively. We assessed the contribution to OPDTT and OPAA of each PM2.5 source by applying multilinear regression models. It shows that the sources associated with human activities (HFO combustion, biomass burning and primary traffic) are the sources driving OP exposure, suggesting that they should be the first sources to be controlled in future mitigation strategies. This study gives for the first time an extensive and long-term chemical characterization of PM2.5, providing also a link between emission sources, ambient concentrations and exposure to air pollution at an urban site in Hanoi, Vietnam.
Collapse
Affiliation(s)
- Pamela A Dominutti
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France.
| | - Xavier Mari
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Jean-Luc Jaffrezo
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Vy Thuy Ngoc Dinh
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Sandrine Chifflet
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Catherine Guigue
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Lea Guyomarc'h
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Cam Tu Vu
- Water-Environment-Oceanography (WEO) Department, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Sophie Darfeuil
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Patrick Ginot
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Rhabira Elazzouzi
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Takoua Mhadhbi
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Céline Voiron
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Pauline Martinot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Gaëlle Uzu
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France.
| |
Collapse
|
4
|
Oh SH, Choe S, Song M, Yu GH, Schauer JJ, Shin SA, Bae MS. Effects of long-range transport on carboxylic acids, chlorinated VOCs, and oxidative potential in air pollution events. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123666. [PMID: 38417601 DOI: 10.1016/j.envpol.2024.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
In the context of air quality research, the collection and analysis of fine particulate matter (PM2.5, with a diameter less than 2.5 μm) and volatile organic compound (VOCs) play a pivotal role in understanding and addressing environmental issues across the Korean Peninsula. PM2.5 and VOCs were collected over 4-hr intervals from October 17 to November 26, 2021 during the 2021 Satellite Integrated Joint Monitoring of Air Quality campaign at Olympic Park in the Republic of Korea to understand the factors controlling air quality over the Seoul Metropolitan Area. Source apportionment was performed using the positive matrix factorization (PMF) model incorporating PM2.5 and VOCs. The factor identified by chlorinated VOCs as a major component was presumed to be due to transboundary influx and was referred to as the long-range transport factor. The long-range transport factor of PM2.5 was composed of NO3-, SO42-, NH4+, and di-carboxylic acids. Back trajectory analysis showed that the airflows originated from China and passed through the west coast of Korea to the Korean Peninsula. In the PMF results using PM2.5 and VOCs, long-range transport factors were identified in both analyses, and the high correlation observed between these factors confirms that they were transported from abroad. The dithiothreitol oxidation potential normalized to quinine showed the highest oxidation potential during the same period as the long-range transport factors increased. In conclusion, PM2.5 from external sources significantly contribute to elevated levels of dithiothreitol assay-oxidative potential (DTT-OP) in Korea. The toxic concentration, expressed as the mean ± standard deviation, was determined to be 0.29 ± 0.05 μM/m³, peaking at 0.39 μM/m³. This level is 1.8 times higher than that observed outside the event period. A notable increase in secondary pollutants was observed during these periods. These pollutants are known to enhance oxidative potential, thereby potentially impacting human health.
Collapse
Affiliation(s)
- Sea-Ho Oh
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Seoyeong Choe
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Myoungki Song
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Geun-Hye Yu
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - James J Schauer
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, 53705, USA
| | - Sun-A Shin
- Environmental Satellite Center, Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea.
| |
Collapse
|
5
|
Amani Room S, Huang KT, Pan SY, Chen PJ, Hsu YC, Chi KH. Health assessment of emerging persistent organic pollutants (POPs) in PM 2.5 in northern and central Taiwan. CHEMOSPHERE 2024; 353:141573. [PMID: 38428532 DOI: 10.1016/j.chemosphere.2024.141573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Over the last two decades, Taiwan has effectively diminished atmospheric concentrations of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) through the adept utilization of advanced technologies and the implementation of air pollution control devices. Despite this success, there exists a dearth of data regarding the levels of other PM2.5-bound organic pollutants and their associated health risks. To address this gap, our study comprehensively investigates the spatial and seasonal variations, potential sources, and health risks of PCDD/Fs, Polychlorinated biphenyls (PCBs), and Polychlorinated naphthalene (PCNs) in Northern and Central Taiwan. Sampling collections were conducted at three specific locations, including six municipal waste incinerators in Northern Taiwan, as well as a traffic and an industrial site in Central Taiwan. As a result, the highest mean values of PM2.5 (20.3-39.6 μg/m3) were observed at traffic sites, followed by industrial sites (14.4-39.3 μg/m3), and the vicinity of the municipal waste incinerator (12.4-29.4 μg/m3). Additionally, PCDD/Fs and PCBs exhibited discernible seasonal fluctuations, displaying higher concentrations in winter (7.53-11.9 and 0.09-0.12 fg I-TEQWHO/m3) and spring (7.02-13.7 and 0.11-0.16 fg I-TEQWHO/m3) compared to summer and autumn. Conversely, PCNs displayed no significant seasonal variations, with peak values observed in winter (0.05-0.10 fg I-TEQWHO/m3) and spring (0.03-0.08 fg I-TEQWHO/m3). Utilizing a Positive Matrix Factorization (PMF) model, sintering plants emerged as the predominant contributors to PCDD/Fs, constituting 77.9% of emissions. Woodchip boilers (68.3%) and municipal waste incinerators (21.0%) were identified as primary contributors to PCBs, while municipal waste incinerators (64.6%) along with a secondary copper and a copper sludge smelter (22.1%) were the principal sources of PCNs. Moreover, the study specified that individuals aged 19-70 in Northern Taiwan and those under the age of 12 years in Central Taiwan were found to have a significantly higher cancer risk, with values ranging from 9.26 x 10-9-1.12 x 10-7 and from 2.50 x 10-8-2.08 x 10-7respectively.
Collapse
Affiliation(s)
- Shahzada Amani Room
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kai Ting Huang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Shih Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Po Jui Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yuam-Cheng Hsu
- National Environmental Research Academy, Ministry of Environment, Taoyuan, 330, Taiwan
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
6
|
Moon HG, Bae S, Chae Y, Kim YJ, Kim HM, Song M, Bae MS, Lee CH, Ha T, Seo JS, Kim S. Assessment of potential ecological risk for polycyclic aromatic hydrocarbons in urban soils with high level of atmospheric particulate matter concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116014. [PMID: 38295737 DOI: 10.1016/j.ecoenv.2024.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known to be representative carcinogenic environmental pollutants with high toxicity. However, information on the potential ecological and environmental risks of PAH contamination in soil remains scarce. Thus, this study was evaluated the potential ecological risks of PAHs in soils of five Korean areas (Gunsan (GS), Gwangju, Yeongnam, Busan, and Gangwon) using organic carbon (OC)-normalized analysis, mean effect range-median quotient (M-ERM-Q), toxic equivalent quantity (TEQ) analysis, and risk quotient (RQ) derived by the species sensitivity distribution model. In this study, atmospheric particulate matter has a significant effect on soil pollution in GS through the presence of hopanes and the similar pattern of PAHs in soil and atmospheric PAHs. From analysis of source identification, combustion sources in soils of GS were important PAH sources. For PAHs in soils of GS, the OC-normalized analysis, M-ERM-Q, and TEQ analysis have 26.78 × 105 ng/g-OC, 0.218, and 49.72, respectively. Therefore, the potential ecological risk assessment results showed that GS had moderate-high ecological risk and moderate-high carcinogenic risk, whereas the other regions had low ecological risk and low-moderate carcinogenic risk. The risk level (M-ERM-Q) of PAH contamination in GS was similar to that in Changchun and Xiangxi Bay in China. The Port Harcourt City in Nigeria for PAH has the highest risk (M-ERM-Q = 4.02 and TEQ = 7923). Especially, compared to China (RQPhe =0.025 and 0.05), and Nigeria (0.059), phenanthrene showed the highest ecological risk in Korea (0.001-0.18). Korea should focus on controlling the release of PAHs originating from the PM in GS.
Collapse
Affiliation(s)
- Hi Gyu Moon
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Seonhee Bae
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Yooeun Chae
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Yong-Jae Kim
- Medical Industry Venture Center, Korea Testing Laboratory, Wonju 26495, the Republic of Korea
| | - Hyung-Min Kim
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Mijung Song
- Department of Earth and Environmental Sciences, Jeonbuk National University, the Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan 58554, the Republic of Korea
| | - Chil-Hyoung Lee
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, the Republic of Korea
| | - Taewon Ha
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, the Republic of Korea
| | - Jong-Su Seo
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea.
| | - Sooyeon Kim
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea.
| |
Collapse
|
7
|
Park J, Lee KH, Kim H, Woo J, Heo J, Jeon K, Lee CH, Yoo CG, Hopke PK, Koutrakis P, Yi SM. Analysis of PM 2.5 inorganic and organic constituents to resolve contributing sources in Seoul, South Korea and Beijing, China and their possible associations with cytokine IL-8. ENVIRONMENTAL RESEARCH 2024; 243:117860. [PMID: 38072108 DOI: 10.1016/j.envres.2023.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
China and South Korea are the most polluted countries in East Asia due to significant urbanization and extensive industrial activities. As neighboring countries, collaborative management plans to maximize public health in both countries can be helpful in reducing transboundary air pollution. To support such planning, PM2.5 inorganic and organic species were determined in simultaneously collected PM2.5 integrated filters. The resulting data were used as inputs to positive matrix factorization, which identified nine sources at the ambient air monitoring sites in both sites. Secondary nitrate, secondary sulfate/oil combustion, soil, mobile, incinerator, biomass burning, and secondary organic carbon (SOC) were found to be sources at both sampling sites. Industry I and II were only identified in Seoul, whereas combustion and road dust sources were only identified in Beijing. A subset of samples was selected for exposure assessment. The expression levels of IL-8 were significantly higher in Beijing (167.7 pg/mL) than in Seoul (72.7 pg/mL). The associations between the PM2.5 chemical constituents and its contributing sources with PM2.5-induced inflammatory cytokine (interleukin-8, IL-8) levels in human bronchial epithelial cells were investigated. For Seoul, the soil followed by the secondary nitrate and the biomass burning showed increase with IL-8 production. However, for the Beijing, the secondary nitrate exhibited the highest association with IL-8 production and SOC and biomass burning showed modest increase with IL-8. As one of the highest contributing sources in both cities, secondary nitrate showed an association with IL-8 production. The soil source having the strongest association with IL-8 production was found only for Seoul, whereas SOC showed a modest association only for Beijing. This study can provide the scientific basis for identifying the sources to be prioritized for control to provide effective mitigation of particulate air pollution in each city and thereby improve public health.
Collapse
Affiliation(s)
- Jieun Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| | - Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyewon Kim
- Incheon Regional Customs, Korea Customs Service, 70, Gonghangdong-ro 193 Beon-gil Jung-gu, Incheon, 22381, Republic of Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jongbae Heo
- Busan Development Institute, 955 Jungangdae-ro, Busanjin-gu, Busan, 47210, Republic of Korea
| | - Kwonho Jeon
- Climate and Air Quality Research, Department Global Environment Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehakno, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Boston, MA, 02215, USA
| | - Seung-Muk Yi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Park M, Lee S, Lee H, Denna MCFJ, Jang J, Oh D, Bae MS, Jang KS, Park K. New health index derived from oxidative potential and cell toxicity of fine particulate matter to assess its potential health effect. Heliyon 2024; 10:e25310. [PMID: 38356560 PMCID: PMC10864913 DOI: 10.1016/j.heliyon.2024.e25310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Toxicological data and exposure levels of fine particulate matters (PM2.5) are necessary to better understand their health effects. Simultaneous measurements of PM2.5 oxidative potential (OP) and cell toxicity in urban areas (Beijing, China and Gwangju, Korea) reveal their dependence on chemical composition. Notably, acids (Polar), benzocarboxylic acids, and Pb were the chemical components that affected both OP and cell toxicity. OP varied more significantly among different locations and seasons (winter and summer) than cell toxicity. Using the measured OP, cell toxicity, and PM2.5 concentration, a health index was developed to better assess the potential health effects of PM2.5. The health index was related to the sources of PM2.5 derived from the measured chemical components. The contributions of secondary organic aerosols and dust to the proposed health index were more significant than their contributions to PM2.5 mass. The developed regression equation was used to predict the health effect of PM2.5 without further toxicity measurements. This new index could be a valuable health metric that provides information beyond just the PM2.5 concentration level.
Collapse
Affiliation(s)
- Minhan Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seunghye Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Haebum Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ma. Cristine Faye J. Denna
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jiho Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dahye Oh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Kihong Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|