1
|
Wang L, Wei Y, Wang B, Hu J, Zhao C, Yu D, Wang J, Liu Z. Co-exposure of microplastics with heavy metals increases environmental pressure in the endangered and rare wildlife reserve: A case study of the zhalong wetland red-crowned crane nature reserve, northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125287. [PMID: 39528136 DOI: 10.1016/j.envpol.2024.125287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) exposure to remote areas, including endangered and rare wildlife reserves, has attracted increasing concern. Compared with previous research mostly draws attention to the single exposure of MPs to the environment, greater emphasis should be placed on understanding the complex environmental behaviors of MPs. Therefore, the potential risks of MPs to ecosystems need to be explored in combination with their coexistence with other contaminants, but this is not well-understood. The presented study, taking Zhalong National Nature Reserve (Zhalong wetland), the largest habitat and breeding site for migratory Red-crowned cranes (Grus japonensis) in China, as an example, reveals the possibility of the co-exposure of MPs with various heavy metals. The average abundance of MPs in surface water and sediments in Zhalong Wetland is 738 particles/L and 7332 particles/kg, respectively, which is at a high level of MP pollution worldwide. The obtained results figure out that MPs are also widely found in Red-crowned cranes' feces and feathers. Notably, this study confirms that MP co-exposes to the wetland with Cr, Cd, and As via common sources, exposure routes, and the vector effect of MP. Importantly, we develop the methods of the environmental pressure for individual contaminants and achieve a comprehensive risk assessment of MPs co-exposure with other contaminants in the wetland ecosystem for the first time. It is found that co-exposure to heavy metal can increase the ecological risks of MPs. This is conducive to making a more standardized and reliable framework to estimate the environmental impacts of MP pollution and to formulate prevention and control policies.
Collapse
Affiliation(s)
- Lei Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yuchen Wei
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Bing Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Jufang Hu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Chuntao Zhao
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Dongmei Yu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Jianping Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Ze Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China.
| |
Collapse
|
2
|
Zhang J, Choi CE. Towards A universal settling model for microplastics with diverse shapes: Machine learning breaking morphological barriers. WATER RESEARCH 2024; 272:122961. [PMID: 39689552 DOI: 10.1016/j.watres.2024.122961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Accurately predicting the settling velocity of microplastics in aquatic environments is a prerequisite for reliably modeling their transport processes. An increasing number of settling models have been proposed for microplastics with fragmented, filmed, and fibrous morphologies, respectively. However, none of the existing models demonstrates universal applicability across all three morphologies. Scientists now have to rely on the predominate microplastic morphology extracted from filed samples to determine the appropriate settling model used for transport modeling. Given the spatiotemporal variability in morphologies and the coexistence of diverse morphologies of microplastics in natural aquatic environments, the extracted morphological information poses significant challenges in reliably determining the appropriate model. Evidently, to reliably model the transport of microplastics in aquatic environments, a universal settling model for microplastics with diverse shapes is warranted. To develop such a universal model, a unique shape factor, which can explicitly distinguish between the distinct morphologies of microplastics, was first proposed in this study by using a specifically-modified machine learning method. Using this newly-proposed shape factor, a universal model for predicting the settling velocity of microplastics with distinct morphologies was developed by using a physics-informed machine learning algorithm and then systematically evaluated against independent data sets. The newly-developed model enables reasonable predictions of the settling velocity of microplastic fragments, films, and fibers. In contrast to purely data-driven models, the newly-developed model is characterized by its transparent formulaic structure and physical interpretability, which is conducive to further expansion and improvement. This study can serve as a paradigm for future studies, inspiring the adoption of machine learning techniques in the development of physically-based models to investigate the transport of microplastics in aquatic environments.
Collapse
Affiliation(s)
- Jiaqi Zhang
- The Department of Civil Engineering, The University of Hong Kong, HKSAR, PR China
| | - Clarence Edward Choi
- The Department of Civil Engineering, The University of Hong Kong, HKSAR, PR China.
| |
Collapse
|
3
|
Zhao W, Ge ZM, Zhu KH, Lyu Q, Liu SX, Chen HY, Li ZF. Impacts of plastic pollution on soil-plant properties and greenhouse gas emissions in wetlands: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136167. [PMID: 39413522 DOI: 10.1016/j.jhazmat.2024.136167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Plastic pollution in wetlands has recently emerged as an urgent environmental problem. However, the impacts of plastic contamination on soil-plant properties and greenhouse gas (GHG) emissions in wetlands remain unclear. Thus, this study conducted a meta-analysis based on 44 study sites to explore the influence of plastic pollution on soil physicochemical variables, soil microorganisms, enzyme activity, functional genes, plant characteristics, and GHG emissions (CO2, CH4, and N2O) in different wetland types. Based on the collected dataset, the plastic pollution significantly increased soil organic matter and organic carbon by on average 28.9 % and 34.2 %, respectively, while decreased inorganic nutrient elements, bacteria alpha diversity and enzyme activities by an average of 5.9 -14.2 %. The response of bacterial abundance to plastic pollution varied depending on phylum classes. Plant biomass and photosynthetic efficiency were decreased by an average of 12.8 % and 18.4 % due to plastic pollution. The concentration and exposure time of plastics play a key role in influencing the soil and plant properties in wetlands. Furthermore, plastic exposure notably increased the abundance of the functional genes related to C degradation and the ammonia oxidizing microorganisms, and the consequent CO2 and N2O emissions (with effect sizes of 2.10 and 1.94, respectively). We also found that plastic concentrations and exposure duration affected the wetland soil-plant system. Our results might be helpful to design further investigations on plastic effects and develop appropriate measures for mitigating plastic pollution in wetlands.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Zhen-Ming Ge
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China.
| | - Ke-Hua Zhu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Qing Lyu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Shi-Xian Liu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Hua-Yu Chen
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Zeng-Feng Li
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| |
Collapse
|
4
|
Gong N, Wang Z, Wang X, Shao K. Uptake, removal and trophic transfer of fluorescent polyethylene microplastics by freshwater model organisms: the impact of particle size and food availability. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107165. [PMID: 39549359 DOI: 10.1016/j.aquatox.2024.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
As an emerging contaminant, microplastics (MPs) are widely distributed in freshwater ecosystems and pose potential threats to aquatic organisms, attracting significant attention from both the scientific community and the general public. However, there is still uncertainty regarding the mechanisms of MPs transfer within aquatic biota and how particle size and food availability influence their transport patterns. In this study, zebrafish (Danio rerio) were selected as a model organism to investigate the uptake and elimination of fluorescent polyethylene (PE) MPs under different exposure scenarios (waterborne or trophic transfer, with or without food) and varying particle sizes (ranging from 10-300 μm at concentrations of 0.1, 2, and 300 mg/L). Additionally, water fleas (Daphnia magna) were provided as prey for the fish. The dynamic accumulation of PE-MPs sized between 10-20 μm at a concentration of 25 mg/L by daphnia was also determined along with its impact on animal feeding behavior. The results demonstrated that both organisms were capable of ingesting PE-MPs during exposures lasting up to 24 hours for daphnia and up to 72 hours for zebrafish. Furthermore, rapid elimination rates were observed within just 30 minutes for daphnia and between 6-12 hours for zebrafish. The presence of food reduced MPs uptake and removal by daphnia but significantly increased MP elimination by fish. Zebrafish showed a preference for ingesting larger-sized MPs that they could easily recognize; however, trophic transfer from daphnia to fish was found to be the primary route of ingestion specifically for PE-MPs sized between 10-20 μm. The findings suggest that while fish directly ingest fewer invisible MPs from the water column, they still accumulate these particles through predation on contaminated prey organisms. Therefore, it is imperative to prioritize the ecological risks associated with the transfer of MPs from zooplankton to fish.
Collapse
Affiliation(s)
- Ning Gong
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zhiyuan Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaofan Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Kuishuang Shao
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| |
Collapse
|
5
|
Gallitelli L, Cera A, Scalici M, Sodo A, Di Gioacchino M, Luzi B, Hortas F, Green AJ, Coccia C. Plastic ingestion in aquatic insects: Implications of waterbirds and landfills and association with stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176707. [PMID: 39378951 DOI: 10.1016/j.scitotenv.2024.176707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Wetlands provide numerous ecosystem services including freshwater purification. Nonetheless, their functionality is continuously impacted by many pollutants. Plastics are considered as an emerging threat for these ecosystems, but only recently have studies began to focus on plastic and microplastic (MP) contamination in wetlands, especially in biota. This study aims to investigate the abundance of MPs in two ubiquitous aquatic insect taxa (i.e. Corixidae (Hemiptera) and Chironomidae (Diptera)) collected in twelve zones within Mediterranean wetlands belonging to three basins located in Andalusia (south-west Spain). We compared MP contamination across basins and tested the proximity to landfills and presence of colonial waterbirds [i.e. white storks (Ciconia ciconia) and gulls (Larus michahellis and L. fuscus)] on MP abundance in aquatic insects. We also performed stable isotope analyses of nitrogen and carbon (δ15N and δ13C) to evaluate the potential association between MP abundance and isotopic values. We detected 571 suspected MPs (mostly blue fibers) in insects of different developmental stages (i.e., larvae, pupae, nymphs and adults). Polyesters and polypropylene were the most frequent polymers detected. The generalized linear mixed models indicated that MP abundance decreased with increasing distance from landfills; but it also increased in sites with birds that fed on landfills and roost in wetlands. When controlling for landfill effects, sites in the smallest basin (Guadalete) had lower MP contamination than those in Odiel-Tinto and the much larger (>15×) Guadalquivir. Moreover, we found a negative association between MPs items/g (or mean MPs) and 15N isotopes in adult corixids. Our findings showed that MP pollution is present in all the study areas, including strictly protected wetlands. The use of aquatic insects for biomonitoring of MP pollution can help identify priority areas for management actions to mitigate plastic pollution.
Collapse
Affiliation(s)
- L Gallitelli
- Department of Sciences, University of Rome Tre, Rome, Italy.
| | - A Cera
- Institute of Freshwater Biology, Nagano University, 1088 Komaki, Ueda, Nagano 386-0031, Japan
| | - M Scalici
- Department of Sciences, University of Rome Tre, Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy
| | - A Sodo
- Department of Sciences, University of Rome Tre, Rome, Italy
| | | | - B Luzi
- Department of Sciences, University of Rome Tre, Rome, Italy
| | - F Hortas
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510 Puerto Real, Cádiz, Spain
| | - A J Green
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana, EBD-CSIC, Américo Vespucio 26, 41092 Sevilla, Spain
| | - C Coccia
- Department of Sciences, University of Rome Tre, Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy; Bahia Lomas Research Centre, Universidad Santo Tomás, Santiago, Chile
| |
Collapse
|
6
|
Garcés-Ordóñez O, Córdoba-Meza T, Sáenz-Arias S, Blandón L, Espinosa-Díaz LF, Pérez-Duque A, Thiel M, Canals M. Potentially pathogenic bacteria in the plastisphere from water, sediments, and commercial fish in a tropical coastal lagoon: An assessment and management proposal. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135638. [PMID: 39217937 DOI: 10.1016/j.jhazmat.2024.135638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Microplastics in aquatic ecosystems harbor numerous microorganisms, including pathogenic species. The ingestion of these microplastics by commercial fish poses a threat to the ecosystem and human livelihood. Coastal lagoons are highly vulnerable to microplastic and microbiological pollution, yet limited understanding of the risks complicates management. Here, we present the main bacterial groups, including potentially pathogenic species, identified on microplastics in waters, sediments, and commercial fish from Ciénaga Grande de Santa Marta (CGSM), the largest coastal lagoon in Colombia. DNA metabarcoding allowed identifying 1760 bacterial genera on microplastics, with Aeromonas and Acinetobacter as the most frequent and present in all three matrices. The greatest bacterial richness and diversity were recorded on microplastics from sediments, followed by waters and fish. Biochemical analyses yielded 19 species of potentially pathogenic culturable bacteria on microplastics. Aeromonas caviae was the most frequent and, along with Pantoea sp., was found on microplastics in all three matrices. Enterobacter roggenkampii and Pseudomonas fluorescens were also found on microplastics from waters and fish. We propose management strategies for an Early Warning System against microbiological and microplastic pollution risks in coastal lagoons, illustrated by CGSM. This includes forming inter-institutional alliances for research and monitoring, accompanied by strengthening governance and health infrastructures.
Collapse
Affiliation(s)
- Ostin Garcés-Ordóñez
- Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" -INVEMAR, calle 25 No. 2-55 Rodadero, Santa Marta, Colombia; Sustainable Blue Economy Chair, GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; Grupo de Investigación Territorios Semiáridos del Caribe, Universidad de La Guajira, Colombia.
| | - Tania Córdoba-Meza
- Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" -INVEMAR, calle 25 No. 2-55 Rodadero, Santa Marta, Colombia
| | - Sol Sáenz-Arias
- Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" -INVEMAR, calle 25 No. 2-55 Rodadero, Santa Marta, Colombia
| | - Lina Blandón
- Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" -INVEMAR, calle 25 No. 2-55 Rodadero, Santa Marta, Colombia
| | - Luisa F Espinosa-Díaz
- Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andréis" -INVEMAR, calle 25 No. 2-55 Rodadero, Santa Marta, Colombia
| | - Alejandra Pérez-Duque
- Centro de Bioinformática y Biología Computacional de Colombia - BIOS, Manizales, Colombia
| | - Martin Thiel
- MarineGEO Program, Smithsonian Environmental Research Center (SERC), Edgewater, USA; Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile
| | - Miquel Canals
- Sustainable Blue Economy Chair, GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; Reial Acadèmia de Ciències i Arts de Barcelona (RACAB), La Rambla 115, 08002 Barcelona, Spain; Institut d'Estudis Catalans (IEC), Secció de Ciències i Tecnologia, Carme 47, 08001 Barcelona, Spain
| |
Collapse
|
7
|
Cheng X, Wang S, Zhang X, Iqbal MS, Yang Z, Xi Y, Xiang X. Accelerated aging behavior of degradable and non-degradable microplastics via advanced oxidation and their adsorption characteristics towards tetracycline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116864. [PMID: 39137460 DOI: 10.1016/j.ecoenv.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The increasing global utilization of biodegradable plastics due to stringent regulations on traditional plastics has caused a significant rise in microplastic (MPs) pollution in aquatic ecosystems from biodegradable products. However, the environmental behavior of biodegradable MPs remains inadequately elucidated. This study explored the aging processes of polylactic acid (PLA) and polystyrene (PS) under a heat-activated potassium persulfate (K2S2O8) system, as well as their adsorption characteristics towards tetracycline (TCs). In comparison to PS, the surface structure of PLA experienced more pronounced changes over aging, exhibiting evident pits, cracks, and fragmentation. The carbonyl index (CI) and oxygen/carbon ratio (O/C) of PS displayed exponential growth over time, whereas the values for PLA showed linear and exponential increases, respectively. The adsorption capacity of TCs by PS and PLA aged for 6 days increased from 0.312 mg‧g-1 and 0.457 mg‧g-1for original PS and PLA, respectively, to 0.372 mg‧g-1 and 0.649 mg‧g-1. Meanwhile, the adsorption rate (k2 values) for TCs decreased by 42.03 % for PS and 79.64 % for PLA compared to their initial values. The findings indicated that biodegradable PLA-MPs may exhibit higher tetracycline carrying capacities than PS, potentially increasing environmental and organismal risks, particularly in view of aging effects.
Collapse
Affiliation(s)
- Xinfeng Cheng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Shihao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xin Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | | | - Zhifu Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yilong Xi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - XianLing Xiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, China; School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
8
|
Dursun C, Karaoğlu K, Avcı A, Gül S, Özdemir N, Üzüm N, Olgun K. The presence of microplastics in Baran's newt (Neurergus barani Öz, 1994) and the spotted newt (Neurergus strauchii Steindachner, 1887). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55974-55983. [PMID: 39249613 DOI: 10.1007/s11356-024-34927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Microplastics (MPs), tiny plastic particles less than 5 mm in size, have emerged as a common and worrying pollutant in marine, freshwater, and terrestrial environments worldwide. In this study, we revealed the microplastic exposure of two endemic newt species for Türkiye. We found that polyethylene terephthalate (PET) was the predominant microplastic polymer type in both species, with the blue fiber shape in particular. We also found that there was a negative correlation between microplastic size and gastrointestinal tract (GIT) weight, but there was no significant difference between body length and GIT weight of both species. Our findings might be surprising as the studied species live in natural spring waters in remote, high-altitude areas. However, the detection of water bottles in their habitats appears to be the reason for their exposure to microplastic pollution. Therefore, reducing the use of single-use plastics is predicted to contribute to the conservation of these endemic newts.
Collapse
Affiliation(s)
- Cantekin Dursun
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye
| | - Kaan Karaoğlu
- Department of Chemical and Chemical Processing Technologies, Vocational School of Technical Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye
| | - Aziz Avcı
- Department of Biology, Faculty of Sciences, Aydın Adnan Menderes University, 09010, Kepez, Aydın, Türkiye
| | - Serkan Gül
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| | - Nurhayat Özdemir
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, 61080, Türkiye
| | - Nazan Üzüm
- Department of Biology, Faculty of Sciences, Aydın Adnan Menderes University, 09010, Kepez, Aydın, Türkiye
| | - Kurtuluş Olgun
- Department of Biology, Faculty of Sciences, Aydın Adnan Menderes University, 09010, Kepez, Aydın, Türkiye
| |
Collapse
|
9
|
Razeghi N, Hamidian AH, Abbasi S, Mirzajani A. Distribution, flux, and risk assessment of microplastics at the Anzali Wetland, Iran, and its tributaries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54815-54831. [PMID: 39214944 DOI: 10.1007/s11356-024-34847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastic pollution has raised significant concerns among scientific communities and society in recent years due to its increase and lesser-known effects on the environment. To improve the knowledge of microplastic pollution in freshwater, we investigated microplastics in Anzali Wetland, a Ramsar site in northern Iran, as well as its nine main entering rivers. The extracted microplastics were characterized via visual identification, SEM-EDX, and μ-Raman methods. Microplastics (size range: 50-5000 μm) were found in all water and sediment samples with concentration of fibrous particles as well as polypropylene and polyethylene polymers. The mean concentration of microplastics in bottom sediment and surface water samples of the wetland was 301 ± 222 particles∙kg-1 d.w. and 235 ± 115 particles∙m-3 (0.23 particles∙L-1), respectively. The microplastic concentration in the central and eastern parts of the wetland was higher than in other areas; however, the mean concentrations revealed homogeneity across the wetland area. Water properties (dissolved oxygen, pH, temperature, electrical conductivity, and salinity in water) did not affect the concentration of microplastic particles, though correlational analysis revealed a strong positive association between microplastic quantity and turbidity. There was a significant positive relationship between microplastic concentration and the percentage of clay in sediment samples. The quantity of microplastics in river water was higher than in wetland water, but the difference between the results was not significant. However, the quantity of microplastics in the river's littoral sediment was higher than in the bottom sediment of the wetland where the difference between the results was significant. Microplastic ecological risk assessment showed high potential ecological risk. The findings underscore the importance of effective management strategies and the implementation of policies to mitigate the negative impact of MP pollution on ecosystems and human health.
Collapse
Affiliation(s)
- Nastaran Razeghi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran.
| | - Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz, 71454, Iran
- Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, 714545, Iran
| | - Alireza Mirzajani
- Inland Waters Aquaculture Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute, P.O. Box 66, Bandar-E Anzali, Iran
| |
Collapse
|
10
|
Mohan P, Shahul Hamid F. Charting the microplastic menace: A bibliometric analysis of pollution in Malaysian mangroves and polypropylene bioaccumulation assessment in Anadara granosa. MARINE POLLUTION BULLETIN 2024; 205:116654. [PMID: 38959572 DOI: 10.1016/j.marpolbul.2024.116654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
According to a bibliometric analysis, studies on microplastic pollution in Malaysia are still incomprehensive. This study found microplastic contamination in sediment (97 particles/kg) and water (10,963 particles/m3) samples from Malaysian mangroves. Sediment from Matang and water from Kuala Selangor recorded the highest microplastic concentrations at 140 ± 5.13 particles/kg and 13,350 ± 37.95 particles/m3, respectively. Fragmented, blue, rayon and particles of <0.1 mm microplastic were the most abundant in sediment and water. In an experiment of polypropylene microplastic uptakes, Anadara granosa was found to uptake more 0.1 mm fiber particles. The uptake is strongly correlated to the presence of microplastics in sediment and water. The estimated dietary intake (EDI) indicates that a consumer could ingest 507 microplastic particles/year by consuming contaminated A. granosa. Therefore, mitigating measures are crucial to safeguard aquatic systems and humans from microplastic pollution.
Collapse
Affiliation(s)
- Priya Mohan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Center for Research in Waste Management, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Gao S, Zhang S, Feng Z, Lu J, Fu G, Yu W. The ecological risk and fate of microplastics in the environmental matrices of marine ranching area in coastal water. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134570. [PMID: 38772105 DOI: 10.1016/j.jhazmat.2024.134570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The debate surrounding "source" and "sink" of microplastics (MPs) in coastal water has persisted for decades. While the transportation of MPs is influenced by surface runoff and currents, the precise transport patterns remain inadequately defined. In this study, the typical coastal habitat - marine ranching in Haizhou Bay (Jiangsu Province, China) were selected as a case study to assess the ecological risk of MPs. An enhanced framework was employed to assess the entire community characteristics of MPs in various environmental compartments, including surface water (SW), middle water (MW), bottom water (BW), sea bottom sediment (SS), and intertidal sediment (IS). The results of the assessment showed a low risk in the water column and a high risk in the sediment. PERMANOVA based on size and polymer of MPs revealed significant differences between IS and other compartments (SW, MW, BW, and SS) (P < 0.001). The co-occurrence network analysis for MP size indicated that most sites occupied central positions, while the analysis for MP polymer suggested that sites near the marine ranching area held more central positions, with sites in MW, BW, and SS being somewhat related to IS. Generalized additive model (GAM) demonstrated that MP concentration in the water correlated with Chla and nutrients, whereas MPs in sediment exhibited greater susceptibility to dissolved oxygen (DO) and salinity. We believe that except for the natural sedimentation and re-suspension of MPs in the vertical direction, MPs in bottom water may migrate to the surface water due to upwelling mediated by artificial reefs. Additionally, under the combined influence of surface runoff, currents, and tides, MPs may migrate horizontally, primarily occurring between middle and bottom water and sediments. The study recommends limiting and reducing wastewater and sewage discharge, as well as regulating fishing and aquaculture activities to control the sources and sinks of MPs in coastal water. Moreover, it advocates the implementation and strengthening of marine monitoring activities to gain a better understanding of the factors driving MP pollution in marine ranching area.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jikun Lu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Guanghui Fu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China
| |
Collapse
|
12
|
Wang D, Xiong F, Wu L, Liu Z, Xu K, Huang J, Liu J, Ding Q, Zhang J, Pu Y, Sun R. A progress update on the biological effects of biodegradable microplastics on soil and ocean environment: A perfect substitute or new threat? ENVIRONMENTAL RESEARCH 2024; 252:118960. [PMID: 38636648 DOI: 10.1016/j.envres.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.
Collapse
Affiliation(s)
- Daqin Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingjie Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhihui Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Li X, Qin H, Tang N, Li X, Xing W. Microplastics enhance the invasion of exotic submerged macrophytes by mediating plant functional traits, sediment properties, and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134032. [PMID: 38492389 DOI: 10.1016/j.jhazmat.2024.134032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Plant invasions and microplastics (MPs) have significantly altered the structure and function of aquatic habitats worldwide, resulting in severe damage to aquatic ecosystem health. However, the effects of MPs on plant invasion and the underlying mechanisms remain largely unknown. In this study, we conducted mesocosm experiments over a 90-day period to assess the effects of polystyrene microplastics on the invasion of exotic submerged macrophytes, sediment physicochemical properties, and sediment bacterial communities. Our results showed that PS-MPs significantly promoted the performance of functional traits and the invasive ability of exotic submerged macrophytes, while native plants remained unaffected. Moreover, PS-MPs addition significantly decreased sediment pH while increasing sediment carbon and nitrogen content. Additionally, MPs increased the diversity of sediment bacterial community but inhibited its structural stability, thereby impacting sediment bacterial multifunctionality to varying degrees. Importantly, we identified sediment properties, bacterial composition, and bacterial multifunctionality as key mediators that greatly enhance the invasion of exotic submerged macrophytes. These findings provide compelling evidence that the increase in MPs may exacerbate the invasion risk of exotic submerged macrophytes through multiple pathways. Overall, this study enhances our understanding of the ecological impacts of MPs on aquatic plant invasion and the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongjie Qin
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Na Tang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaolu Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
14
|
Zhang S, Shen C, Zhang F, Wei K, Shan S, Zhao Y, Man YB, Wong MH, Zhang J. Microplastics removal mechanisms in constructed wetlands and their impacts on nutrient (nitrogen, phosphorus and carbon) removal: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170654. [PMID: 38331284 DOI: 10.1016/j.scitotenv.2024.170654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) are now prevalent in aquatic ecosystems, prompting the use of constructed wetlands (CWs) for remediation. However, the interaction between MPs and CWs, including removal efficiency, mechanisms, and impacts, remains a subject requiring significant investigation. This review investigates the removal of MPs in CWs and assesses their impact on the removal of carbon, nitrogen, and phosphorus. The analysis identifies crucial factors influencing the removal of MPs, with substrate particle size and CWs structure playing key roles. The review highlights substrate retention as the primary mechanism for MP removal. MPs hinder plant nitrogen uptake, microbial growth, community composition, and nitrogen-related enzymes, reducing nitrogen removal in CWs. For phosphorus and carbon removal, adverse effects of MPs on phosphorus elimination are observed, while their impact on carbon removal is minimal. Further research is needed to understand their influence fully. In summary, CWs are a promising option for treating MPs-contaminated wastewater, but the intricate relationship between MPs and CWs necessitates ongoing research to comprehend their dynamics and potential consequences.
Collapse
Affiliation(s)
- Shaochen Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| | - Fuhao Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Kejun Wei
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| |
Collapse
|
15
|
Wang S, Zhou Q, Hu X, Tao Z. Polyethylene microplastic-induced microbial shifts affected greenhouse gas emissions during litter decomposition in coastal wetland sediments. WATER RESEARCH 2024; 251:121167. [PMID: 38301404 DOI: 10.1016/j.watres.2024.121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/11/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Microplastic contamination has become increasingly aggravated in coastal environments, further affecting biogeochemical processes involved with microbial community shifts. As a key biogeochemical process mainly driven by microbiota in coastal wetland sediments, litter decomposition contributes greatly to the global greenhouse gas (GHG) budget. However, under microplastic pollution, the relationship between microbial alterations and GHG emissions during litter decomposition in coastal wetlands remains largely unknown. Here, we explored the microbial mechanism by which polyethylene microplastic (PE-MP) influenced greenhouse gas (i.e., CH4, CO2 and N2O) emissions during litter decomposition in coastal sediments through a 75-day microcosm experiment. During litter decomposition, PE-MP exposure significantly decreased cumulative CH4 and CO2 emissions by 41.07% and 25.79%, respectively. However, there was no significant change in cumulative N2O emissions under PE-MP exposure. The bacterial, archaeal, and fungal communities in sediments exhibited varied responses to PE-MP exposure over time, as reflected by the altered structure and changed functional groups of the microbiota. The altered microbial functional groups ascribed to PE-MP exposure and sediment property changes might contribute to suppressing CH4 and CO2 emissions during litter decomposition. This study yielded valuable information regarding the effects of PE-MP on GHG emissions during litter decomposition in coastal wetland sediments.
Collapse
Affiliation(s)
- Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
16
|
Nejat N, Sattari M, Mohsenpour R, Shi X, Rasta M. Microplastics abundance, distribution and composition in surface waters, sediments and fish species from Amir-Kalayeh Wetland, Northern Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22024-22037. [PMID: 38400964 DOI: 10.1007/s11356-024-32627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Microplastics (MPs) pollution is considered as a globally pervasive threat to aquatic ecosystems and many studies reported this pollution in different aquatic ecosystems. However, studies on MPs pollution in wetlands are still scarce. Therefore, the aim of present study was to investigate the presence of MPs in the surface water, sediment and different fish species of Amir-Kalayeh wetland, Northern Ian. Surface water and sediment samples were collected from six stations during June to July 2022. Moreover, the gills and gastrointestinal tract (GIT) of 54 fish specimens belonging to four species including Cyprinus carpio, Tinca tinca, Esox lucius and Silurus glanis were analysed. MPs were detected in all samples with an average of 2.15 ± 1.98 items/m3 for surface water, 51.66 ± 32.20 items/kg dry weight for sediments, 0.17 ± 0.17 items/individual for fish GIT and 0.12 ± 0.12 items/individual for fish gills. There was no significant relationship between MPs abundance in surface waters and sediments as well as between MPs abundance in environmental matrices and fish (P > 0.0.5). In terms of feeding habit, no significant differences were observed between the number of MPs found in omnivorous and carnivorous fish species (P > 0.05). Moreover, no significant relationship was detected between the MPs abundance in fish tissues and body size (P > 0.05). MPs were mainly fibers, mostly transparent, and in a range size of 70-5000 µm. The dominant MPs type was nylon in all samples. This study will help increase our knowledge about MPs pollution in inland freshwater systems and suggests that management policies take essential steps to reduce this insidious problem in freshwater ecosystems.
Collapse
Affiliation(s)
- Narges Nejat
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Masoud Sattari
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
- Department of Marine Biology, The Caspian Sea Research Center, University of Guilan, Rasht, Iran
| | - Reza Mohsenpour
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Xiaotao Shi
- College of Hydraulic and Environmental Engineering, Chine Three Gorges University, Yichang, 443002, Hubei, China
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China
| | - Majid Rasta
- College of Hydraulic and Environmental Engineering, Chine Three Gorges University, Yichang, 443002, Hubei, China.
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
17
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
18
|
Paço A, Oliveira AM, Ferreira-Filipe DA, Rodrigues ACM, Rocha RJM, Soares AMVM, Duarte AC, Patrício Silva AL, Rocha-Santos T. Facemasks: An insight into their abundance in wetlands, degradation, and potential ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166232. [PMID: 37574074 DOI: 10.1016/j.scitotenv.2023.166232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Disposable facemasks represent a new form of environmental contamination worldwide. This study aimed at addressing the abundance of facemasks in an overlooked natural environment with high ecological and economic value - the wetlands (Ria de Aveiro, Portugal, as study case), evaluating their potential biodegradation using naturally occurring fungi and assessing the potential ecotoxicity of released microfibres on local bivalves. All masks collected within 6500 m2 area of Aveiro wetland were 100 % disposable ones (PP-based, confirmed by Fourier transform infrared spectroscopy - FTIR) with an initial abundance of 0.0023 items/m2 in Sept. 2021, which was reduced by ∼40 % in Apr. 2022 and ∼87 % in Sept. 2022, as a reflection of the government policies. Analysis of the carbonyl index (0.03 to 1.79) underlined their state of degradation, primarily due to sun exposure during low tides. In laboratory conditions, 1 mm2 microplastics obtained from new disposable facemasks were prone to biodegradation by Penicillium brevicompactum and Zalerion maritimum inferred from microplastics mass loss (∼22 to -26 % and ∼40 to 50 %, respectively) and FTIR spectra (particularly in the hydroxyl and carbonyl groups). In addition, microfibres released from facemasks induced sublethal effects on the clam, Venerupis corrugata, mostly in their UV-aged form when compared to pristine ones, characterised by a decrease in cellular energy allocation (CEA) and an increase in aerobic energy metabolism (ETS). Concomitantly, clams exposed to 1250 items/L of UV-aged microplastics (similar to field-reported concentrations) expressed greater clearance capacity, indicating a need to compensate for the potential energy unbalance. This study provides the first baseline monitoring of facemasks in wetlands while bringing new evidence on their biodegradation and ecotoxicity, considering environmentally relevant conditions and keystone organisms in such environments. Such studies require scientific attention for rapid regulatory action against this emerging and persistent pollutant, also targeting remediation and mitigation strategies considering these items under pandemic scenarios.
Collapse
Affiliation(s)
- Ana Paço
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia C M Rodrigues
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Liu S, Jin R, Zhang J, Zhao Y, Shen M, Wang Y. Are algae a promising ecofriendly approach to micro/nanoplastic remediation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166779. [PMID: 37660628 DOI: 10.1016/j.scitotenv.2023.166779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
How to reduce microplastic pollution in aquatic ecosystem has become the focus of the global attention. The re-removal of microplastics of wastewater treatment plant (WWTP) effluent is gradually being put on the agenda. Recently, algae have been used as an ecofriendly remediation strategy for microplastic removal. Microplastics in sewage can be removed by algae through interception, capture, and entanglement, and can also form heterogeneous aggregates with algae, thereby reducing their free suspensions. Algae can recover nitrogen and carbon from wastewater and can be made into biochar, biofertilizers, and biofuels. However, problematically, this technology has been in the laboratory research stage, and existing research results cannot provide effective basis for its application. Microplastic removal via algae is influenced by wastewater flow rate, microplastic types, and pollutants. Microplastics are only physically fixed by algae, and ensuring that microplastics do not re-enter the environment during resource and capacity recovery is also a key factor limiting the implementation of this technology. The topic of this paper is to discuss the performance of the current tertiary wastewater treatment process - algae process to remove microplastics. Algae can remove nitrogen and phosphorus pollutants in sewage and remove microplastics at the same time, which can realize energy recovery and reduce ecological risks of the effluent. Although algae combined tertiary sewage treatment is a green technology for microplastic removal, its application still needs to be explored. The key challenges that need to be addressed, from single laboratory conditions to complex conditions, from small-scale testing to large-scale simulations, lie ahead of the application of this friendly technology.
Collapse
Affiliation(s)
- Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Ruixin Jin
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
20
|
Abd Rahim NH, Cannicci S, Ibrahim YS, Not C, Idris I, Mohd Jani J, Dahdouh-Guebas F, Satyanarayana B. Commercially important mangrove crabs are more susceptible to microplastic contamination than other brachyuran species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166271. [PMID: 37586534 DOI: 10.1016/j.scitotenv.2023.166271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Brachyuran crabs are ecologically and economically important macrofauna in mangrove habitats. However, they are exposed to various contaminants, including plastics, which bioaccumulate in relation to their feeding modes. Setiu Wetlands is a unique place on the east coast of Peninsular Malaysia where different ecosystems such as mangroves, lagoon, beaches, etc., are duly connected and influencing each other. In recent years, the shifted river mouth has threatened these wetlands, causing severe hydrodynamic changes in the lagoon, especially in the core mangrove zone. The present study tested microplastics (MPs) contamination in the mangroves through brachyuran crabs as indicators. Three sampling sites, namely Pulau Layat, Kampung Pengkalan Gelap, and Pulau Sutung were chosen. The four abundant crab species Parasesarma eumolpe, Metaplax elegans, Austruca annulipes, and Scylla olivacea, which display different feeding behaviours were collected from all sites covering the dry (Feb-Mar 2021) and the wet (Dec 2021-Jan 2022) seasonal periods. There were significant differences in the seasonal abundance of MPs among crab species. The highest accumulation of MPs in the crab stomachs in the dry season could be linked to subdued water circulation and poor material dispersion. Besides the lower MPs in the wet period due to improved water exchange conditions, its significant presence in the stomachs of S. olivacea indicates the role of its feeding behaviour as a carnivore. In addition, the micro-Fourier transform infrared spectroscopy (micro-FTIR) revealed the widespread occurrence of polymers such as rayon and polyester in all species across the sites. Given the fact that crabs like S. olivacea are commercially important and the ones contaminated with MPs can cause detrimental effects on the local community's health, further managerial actions are needed to assure sustainable management of the Setiu Wetlands.
Collapse
Affiliation(s)
- Nur Hannah Abd Rahim
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia.
| | - Stefano Cannicci
- Department of Biology, University of Florence, 50019 Florence, Italy; Swire Institute for Marine Science, The University of Hong Kong, Hong Kong; Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), c/o Zoological Society of London, London, United Kingdom
| | - Yusof Shuaib Ibrahim
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia
| | - Christelle Not
- Environmental Geochemistry & Oceanography Research Group, Department of Earth Sciences, The University of Hong Kong, Hong Kong
| | - Izwandy Idris
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; South China Sea Repository and Reference Centre, Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia
| | - Jarina Mohd Jani
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; Biodiversity Conservation and Management Program, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia
| | - Farid Dahdouh-Guebas
- Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), c/o Zoological Society of London, London, United Kingdom; Systems Ecology and Resource Management Research Unit (SERM), Université Libre de Bruxelles-ULB, 1050 Brussels, Belgium; Ecology & Biodiversity Research Unit, Department of Biology, Vrije Universiteit Brussel-VUB, 1050 Brussels, Belgium
| | - Behara Satyanarayana
- Mangrove Research Unit (MARU), Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21300, Malaysia; Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), c/o Zoological Society of London, London, United Kingdom; Systems Ecology and Resource Management Research Unit (SERM), Université Libre de Bruxelles-ULB, 1050 Brussels, Belgium.
| |
Collapse
|
21
|
Dou X, Guo H, Zhang L, Liang D, Zhu Q, Liu X, Zhou H, Lv Z, Liu Y, Gou Y, Wang Z. Dynamic landscapes and the influence of human activities in the Yellow River Delta wetland region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166239. [PMID: 37572926 DOI: 10.1016/j.scitotenv.2023.166239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The Yellow River Delta (YRD) wetland is one of the largest and youngest wetland ecosystems in the world. It plays an important role in regulating climate and maintaining ecological balance in the region. This study analyzes the spatiotemporal changes in land use, wetland migration, and landscape pattern from 2013 to 2022 using Landsat-8 and Sentinel-1 data in YRD. Then wetland landscape changes and the impact of human activities are determined by analyzing correlation between landscape and socio-economic indicators including nighttime light centroid, total light intensity, cultivated land area and centroid, building area and centroid, economic and population. The results show that the total wetland area increased 1426 km2 during this decade. However, the wetland landscape pattern tended to be fragmented from 2013 to 2022, with wetlands of different types interlacing and connectivity decreasing, and distribution becoming more concentrated. Different types of human activities had influences on different aspects of wetland landscape, with the expansion of cultivated land mainly compressing the core area of wetlands from the edge, the expansion of buildings mainly disrupting wetland connectivity, and socio-economic indicators such as total light intensity and the centroid mainly causing wetland fragmentation. The results show the changes of the YRD wetland and provide an explanation of how human activities effect the change of its landscape, which provides available data to achieve sustainable development goals 6.6 and may give an access to measure the change of wetland using human-activity data, which could help to adject behaviors to protect wetlands.
Collapse
Affiliation(s)
- Xinyu Dou
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
| | - Huadong Guo
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Lu Zhang
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Dong Liang
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhu
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Liu
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhou
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Lv
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Liu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
| | - Yiting Gou
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhoulong Wang
- Signal & Communication Research Institute, China Academy of Railway Sciences Group Co., Ltd, Beijing 100081, China
| |
Collapse
|
22
|
Nguyen TLH, Duong TL, Nguyen THT, Dang TQ, Nguyen TH, Dao NN, Nguyen KT, Duong CD, Pham NN, Nguyen BQ. Microplastics and trace metals in river sediment: Prevalence and correlation with multiple factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165145. [PMID: 37385491 DOI: 10.1016/j.scitotenv.2023.165145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Microplastics (MPs), which are ubiquitous, are no longer novel emerging pollutants, yet our knowledge of them is insufficient. This study investigates the prevalence of MPs and trace metals in sediment belonging to Ma River, Vietnam, and their interaction with various parameters, including nutrients such as total carbon (TC), total nitrogen (TN), and total phosphorus (TP), grain sizes, and MPs in surface water. The study revealed that the abundance of MPs in sediment (MPs/S) is relatively high (i.e., 1328.3 ± 1925.5 items.kg-1 dry weight), while the concentration of MPs in surface water (MPs/W) was relatively low (i.e., 57.3 ± 55.8 items.m-3) compared to other areas. Notably, the study found that arsenic and cadmium concentrations exceeded baseline levels, indicating their anthropogenic origin. To interpret the relationship between MPs/S, metals, and the aforementioned parameters, principal component analysis and Pearson correlation analyses were employed. The results demonstrated a significant correlation between metals and nutrients, as well as small grain sizes such as clay and silt. It was observed that the majority of metals displayed co-occurrence with one another but showed weak associations with the levels of MPs present in both water and sediment. Additionally, a weak correlation was observed between MPs/W and MPs/S. In conclusion, these findings suggest that the distribution and behavior of MPs and trace metals in aquatic systems are influenced by multiple factors, including nutrient levels, grain size, and other chemical and physical characteristics of the environment. While certain metals may have natural sources, others may result from human activities such as mining, industrial discharge, and wastewater treatment plants. As a result, understanding the sources and aspects of metal contamination are critical for determining their relationship with MPs and developing effective strategies for mitigating their impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Thi Lan Huong Nguyen
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Thi Lim Duong
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Thi Huong Thuy Nguyen
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Tran Quan Dang
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Thi Hue Nguyen
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Ngoc Nhiem Dao
- Graduate University of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Kien Trung Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Cong Dien Duong
- Institute of Mechanics, Vietnam Academy of Science and Technology, 264 Doi Can, Ba Dinh, Hanoi 100000, Viet Nam
| | - Ngo Nghia Pham
- Faculty of Chemistry, VNU University of Science, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Viet Nam
| | - Bac Quang Nguyen
- Graduate University of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam.
| |
Collapse
|
23
|
Ivy N, Bhattacharya S, Dey S, Gupta K, Dey A, Sharma P. Effects of microplastics and arsenic on plants: Interactions, toxicity and environmental implications. CHEMOSPHERE 2023; 338:139542. [PMID: 37474031 DOI: 10.1016/j.chemosphere.2023.139542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Microplastics are emerging pollutants that are ubiquitously present in environment. Occurrence and dispersion of microplastics in the soil can pose a considerable risk to soil health and biodiversity, including the plants grown in the soil. Uptake and bioaccumulation of microplastics can have detrimental effects on different plant species. Additionally, the co-presence of microplastics and arsenic can cause synergistic, antagonistic, or potentiating toxic impacts on plants. However, limited studies are available on the combined effects of microplastics and arsenic on plants. This paper elucidates both the individual and synergistic effects of microplastics and arsenic on plants. At the outset, the paper highlighted the presence and degradation of microplastics in soil. Subsequently, the interactions between microplastics and plants, accumulation, and influences of microplastics on plant growth and metabolism were explained with underlying mechanisms. Combined effects of microplastics and arsenic on plant growth, metabolism, and toxicity were discussed thereafter. Combined toxic effects of microplastics and arsenic on plants can have detrimental implications on environment, ecosystems and biodiversity. Further investigations on food chain and human health are needed in the context of microplastic-arsenic interactions.
Collapse
Affiliation(s)
- Nishita Ivy
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, India.
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Howrah, West Bengal, India
| | - Kaushik Gupta
- Belur High School (H.S.), Howrah, West Bengal, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | | |
Collapse
|
24
|
Wang Y, Liu G, Wang Y, Mu H, Shi X, Wang C, Wu N. The Global Trend of Microplastic Research in Freshwater Ecosystems. TOXICS 2023; 11:539. [PMID: 37368639 DOI: 10.3390/toxics11060539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
The study of microplastics and their impact on aquatic ecosystems has received increasing attention in recent years. Drawing from an analysis of 814 papers related to microplastics published between 2013 and 2022 in the Web of Science Core Repository, this paper explores trends, focal points, and national collaborations in freshwater microplastics research, providing valuable insights for future studies. The findings reveal three distinct stages of microplastics: nascent development (2013-2015), slow rise (2016-2018), and rapid development (2019-2022). Over time, the focus of research has shifted from "surface", "effect", "microplastic pollution", and "tributary" to "toxicity", "species", "organism", "threat", "risk", and "ingestion". While international cooperation has become more prevalent, the extent of collaboration remains limited, mostly concentrated among English-speaking countries or English and Spanish/Portuguese-speaking countries. Future research directions should encompass the bi-directional relationship between microplastics and watershed ecosystems, incorporating chemical and toxicological approaches. Long-term monitoring efforts are crucial to assessing the sustained impacts of microplastics.
Collapse
Affiliation(s)
- Yaochun Wang
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
| | - Guohao Liu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
| | - Yixia Wang
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
| | - Hongli Mu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
| | - Xiaoli Shi
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
| |
Collapse
|
25
|
Lei J, Zhang X, Yan W, Chen X, Li Z, Dan P, Dan Q, Jiang W, Liu Q, Li Y. Urban Microplastic Pollution Revealed by a Large-Scale Wetland Soil Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8035-8043. [PMID: 37200099 DOI: 10.1021/acs.est.2c08567] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microplastics (MPs), as a new persistent pollutant, can be emitted and accumulated in urban environments, but there is no detailed information on the driving factors of MP pollution. In this study, through a large-scale wetland soil survey, the features of MPs were characterized in each urban area. The results showed an average abundance to be 379 n/kg in wetland soil. Polypropylene, fiber or fragment, and black color were common composition, shape, and color, respectively. The spatial distribution information showed that MP abundance was significantly relevant to the distance from the urban economic center. Furthermore, the correlation and regression analysis revealed that MP abundance was related to soil heavy metal and atmospheric particle (PM10 and PM2.5) concentrations (P < 0.05), while the promotion of socioeconomic activities (urbanization level, population density, etc.) may aggravate the pollution degree. Additionally, by using structural equation modeling, it was found that the urbanization level was the dominant factor driving the MP pollution degree, with a total effect coefficient of 0.49. Overall, this work provides multi-sided environmental information regarding MP pollution in urban ecosystems, which is significant for follow-up studies of MP pollution control and restoration.
Collapse
Affiliation(s)
- Junjie Lei
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xuyuan Zhang
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wende Yan
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, Illinois 60484, United States
| | - Ziqian Li
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Peipei Dan
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qing Dan
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wenxi Jiang
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Li
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Laboratory of Urban Forest Ecology of Hunan Province, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|