1
|
He W, Ye K, Zhang M, Bai S, Xu S, Fang K. Enhanced Cr(vi) removal by Co and PPy co-modified Ca-Al-layered double hydroxides due to adsorption and reduction mechanisms. RSC Adv 2024; 14:37933-37948. [PMID: 39610813 PMCID: PMC11603411 DOI: 10.1039/d4ra06943a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Co and polypyrrole co-modified hierarchical CaAl-LDH microspheres (CCALP) were synthesized via hydrothermal and in situ polymerization methods. The synergistic effect of PPy and Co endowed CCALP with higher surface area and more reduction sites than CaAl-LDHs modified by Co or PPy alone, maintaining good recyclability for Cr(vi) removal efficiency over four cycles without any treatment. Compared to Co, PPy doping was the dominant reason for Cr(vi) reduction on CCALP. Under optimized conditions, the theoretical maximum adsorption capacity reached 845.25 mg g-1, and the removal efficiency of Cr(vi) achieved 98.83%. The Langmuir model fitted well with the Cr(vi) adsorption on CCALP, supporting the monolayer adsorption hypothesis. The adsorption process followed the Avrami fractional kinetics (AFO) model, suggesting complex and multiple kinetic stages. Thermodynamic experiments confirmed that the adsorption was a spontaneous exothermic process. The density functional theory (DFT) and electrostatic potential (ESP) calculations confirmed that the oxygen-containing parts of Cr2O7 2- and HCrO4 - were the affinity sites, and the co-doping of Co and PPy significantly improved the Cr(vi) adsorption energy on CCALP. Therefore, the Cr(vi) removal mechanism on CCALP was proposed with electrostatic interaction, ion exchange, complexation and reduction.
Collapse
Affiliation(s)
- Wenyan He
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China (+8629) 8558-3188
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology Xi'an 710054 China
| | - Kaijie Ye
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China (+8629) 8558-3188
| | - Mi Zhang
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China (+8629) 8558-3188
| | - Sheng Bai
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China (+8629) 8558-3188
| | - Siyan Xu
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China (+8629) 8558-3188
| | - Kuo Fang
- College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
2
|
Sun C, Huang C, Wang P, Yin J, Tian H, Liu Z, Xu H, Zhu J, Hu X, Liu Z. Low-cost eggshell-fly ash adsorbent for phosphate recovery: A potential slow-release phosphate fertilizer. WATER RESEARCH 2024; 255:121483. [PMID: 38508039 DOI: 10.1016/j.watres.2024.121483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Fly ash (FA) and eggshells (ES) are common solid wastes with significant potential for the recovery of phosphorus from water. This study focuses on synthesizing a low-cost and environmental-friendly phosphate adsorbent called eggshell-fly ash geopolymer composite (EFG) using eggshells instead of chemicals. The CaO obtained from the high-temperature pyrolysis of eggshells provides active sites for phosphate adsorption, and CO2 serves as a pore-forming agent. The phosphate adsorption performance of EFG varied with the eggshell-fly ash ratios and achieved a maximum of 49.92 mg P/g at an eggshell-fly ash ratio of 40 %. The adsorption process was well described by the pseudo-second-order model and the Langmuir model. EFG also exhibited a good regeneration performance through six-cycle experiments and achieved the highest phosphate desorption at pH 4.0. The results of the column experiment showed that EFG can be used as a filter media for phosphorus removal in a real-scale application with low cost. Soil burial test indicated saturated EFG has a good phosphate slow-release performance (maintained for up to 60 days). Overall, EFG has demonstrated to be a promising adsorbent for phosphorus recovery.
Collapse
Affiliation(s)
- Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Jinglin Yin
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haoran Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zili Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
3
|
Fang Y, Yang L, Rao F, Zhang K, Qin Z, Song Z, Na Z. Behaviors and Mechanisms of Adsorption of MB and Cr(VI) by Geopolymer Microspheres under Single and Binary Systems. Molecules 2024; 29:1560. [PMID: 38611839 PMCID: PMC11013745 DOI: 10.3390/molecules29071560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Geopolymers show great potential in complex wastewater treatment to improve water quality. In this work, general geopolymers, porous geopolymers and geopolymer microspheres were prepared by the suspension curing method using three solid waste products, coal gangue, fly ash and blast furnace slag. The microstructure, morphology and surface functional groups of the geopolymers were studied by SEM, XRD, XRF, MIP, FTIR and XPS. It was found that the geopolymers possess good adsorption capacities for both organic and inorganic pollutants. With methylene blue and potassium dichromate as the representative pollutants, in order to obtain the best removal rate, the effects of the adsorbent type, dosage of adsorbent, concentration of methylene blue and potassium dichromate and pH on the adsorption process were studied in detail. The results showed that the adsorption efficiency of the geopolymers for methylene blue and potassium dichromate was in the order of general geopolymers < porous geopolymers < geopolymer microspheres, and the removal rates were up to 94.56% and 79.46%, respectively. Additionally, the competitive adsorption of methylene blue and potassium dichromate in a binary system was also studied. The mechanism study showed that the adsorption of methylene blue was mainly through pore diffusion, hydrogen bond formation and electrostatic adsorption, and the adsorption of potassium dichromate was mainly through pore diffusion and redox reaction. These findings demonstrate the potential of geopolymer microspheres in adsorbing organic and inorganic pollutants, and, through five cycles of experiments, it is demonstrated that MGP exhibits excellent recyclability.
Collapse
Affiliation(s)
- Yi Fang
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; (Y.F.); (K.Z.); (Z.Q.)
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China
| | - Lang Yang
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; (Y.F.); (K.Z.); (Z.Q.)
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China
- State Key Laboratory of Mineral Processing, Beijing 102628, China
| | - Feng Rao
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; (Y.F.); (K.Z.); (Z.Q.)
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China
| | - Kaiming Zhang
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; (Y.F.); (K.Z.); (Z.Q.)
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China
| | - Zhuolin Qin
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; (Y.F.); (K.Z.); (Z.Q.)
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China
| | - Zhenguo Song
- State Key Laboratory of Mineral Processing, Beijing 102628, China
| | - Zhihui Na
- Yunnan Phosphate Haikou Co., Ltd., Kunming 650114, China
| |
Collapse
|
4
|
Pang W, Yao J, Knudsen TŠ, Cao Y, Ma B, Li H, Li M, Liu B. Degradation of typical flotation reagents using lead-zinc smelting slag as mediator for persulfate activation: Effect of gallic acid and Cr(VI) on the removal performance and fate of reactive oxygen species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123292. [PMID: 38182012 DOI: 10.1016/j.envpol.2024.123292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
To remediate the Cr(VI)-organic co-contaminants in a non-ferrous mining area, a gallic acid (GA) accelerated lead-zinc smelting slag (LZSS, a mine-sourced waste) mediated peroxodisulfate (PDS) Fenton-like system was constructed for degradation of two typical flotation reagents (benzotriazole and N-hydroxyphthalimide). LZSS acting as an in-situ Fe source in the Fenton-like process, could continuously release Fe species, while GA as a chelate with reducing properties was able to accelerate the rate-limiting step of Fe(III)/Fe(II) cycle to enhance the production of reactive oxygen species (ROS). In the LZSS/PDS/GA system, produced SO4•-, •OH and Fe(IV) jointly contributed to the contaminant removal through radical/nonradical pathways. However, when Cr(VI) coexisted with organic pollutants in the LZSS/PDS/GA system, the reduction of Cr(VI) consumed the electrons that otherwise would have been available for activation of PDS, resulting in fewer different ROS being produced. The increased concentration of GA, as an electron donor, promoted the production of SO4•-, but this promoting effect gradually diminished with increasing Cr(VI). Overall, the dominant ROS gradually transformed from Fe(IV) to SO4•-/•OH as the GA level increased or the Cr(VI) level decreased. Therefore, regulation of the relative roles of ROS by adjusting either the GA dosage or the Cr(VI) levels in the wastewater can improve availability of ROS for further specific removal of pollutants. This study offers an all-in-one solution for utilization of LZSS industrial waste and degradation of flotation reagents, and it also provides a new insight into the advanced environmental application of GA in remediation of Cr(VI)-organic co-contamination.
Collapse
Affiliation(s)
- Wancheng Pang
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000, Belgrade, Serbia
| | - Ying Cao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Miaomiao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
5
|
Chen Y, Lei C, Zhao YG, Ye ML, Yang K. Orientation Growth of N-Doped and Iron-Based Metal-Organic Framework and Its Application for Removal of Cr(VI) in Wastewater. Molecules 2024; 29:1007. [PMID: 38474519 PMCID: PMC10934015 DOI: 10.3390/molecules29051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
A series of NH2-functionalized nano-sized magnetic metal-organic frameworks (MOFs) were prepared in this study for Cr(VI) removal from wastewater. It was observed that not only the morphological, i.e., orientation growth of N-doped and iron-based metal-organic frameworks, but also the adsorption of magnetic MOFs is largely related to the used amount of ammonium hydroxide in preparation. For example, with increasing amounts of ammonium hydroxide used in preparation, the morphology of magnetic MOFs changed from spherical to cube and triangular cone. Moreover, the maximum adsorption capacity of spherical-magnetic MOFs, cubic-magnetic MOFs and triangular cone-magnetic MOFs could be up to 204.08 mg/g, 232.56 mg/g and 270.27 mg/g, respectively. Under optimal conditions, the adsorption process of magnetic MOFs for Cr(VI) was consistent with the pseudo-second-order rate equation (R2 = 1) and Langmuir isotherm model (R2 > 0.99). Therefore, magnetic MOFs developed in this work offered a viable option for the removal of Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Yan Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; (Y.C.); (K.Y.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310027, China
| | - Chao Lei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Ming-Li Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; (Y.C.); (K.Y.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Ding S, Zhu Y, Zhang H, Fu Y, Ren H, Zhai H. Polymerized PEI-modified lignin polyphenolic materials by acid hydrolysis-phase separation for removal of Cr (VI) from industrial wastewater. Int J Biol Macromol 2024; 256:128358. [PMID: 37995785 DOI: 10.1016/j.ijbiomac.2023.128358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Cr (VI) accumulates in an aqueous environment and exhibits huge harm to human health and the ecological system. Developed lignin biomass materials are complicated to prepare and have limited properties, and advances in lignin phenolic modification are lacking. Herein, an aminated poplar lignin-pyrogallol (PLP-PEI) with a simple design and adjustable phenolic hydroxyl content was developed using the acid hydrolysis-phase separation (AH-PS) method, and modified by the atom transfer radical polymerization (ATRP) strategy. Through diverse characterization analysis, the structural changes of PLP-PEI in the step-by-step synthesis process were monitored. An effective biomass capture system (Bio-Cap) was shown via systematically investigating the adsorption behaviors of Cr (VI) on PLP-PEI under various environmental conditions. Benefiting from introducing phenolic hydroxyl and amino groups, PLP-PEI demonstrated efficient adsorption capacity (598.80 mg/g for Cr (VI)). Additionally, the material also exhibited advantages, including monomeric chemisorption properties, strong reduction capability, and stable regeneration properties. Multiple driving forces were involved in the capture and removal process of Cr (VI), including complexation and electrostatic interaction. The low-cost natural biomass resources supported the industrial-scale synthesis and practical application of advanced aminated lignin polyphenol material, which showed outstanding advantages and enormous potential in the field of water environmental restoration.
Collapse
Affiliation(s)
- Shuai Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yanchen Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Haonan Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON M5S 3E5, Canada
| | - Yajun Fu
- Jiangsu Jinjia new packaging materials Co., LTD, Jiangsu, Huai'an 223000, China
| | - Hao Ren
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | - Huamin Zhai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|