1
|
Wu SF, Ga Y, Ma DY, Hou SL, Hui QY, Hao ZH. The role of ferroptosis in environmental pollution-induced male reproductive system toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125118. [PMID: 39414070 DOI: 10.1016/j.envpol.2024.125118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
This article provides a comprehensive review of the toxic effects of environmental pollution on the male reproductive system, with a particular emphasis on ferroptosis, a form of programmed cell death. Research has shown that environmental pollutants, such as heavy metals, pesticide residues, and plastic additives, can disrupt oxidative stress, increasing the production of reactive oxygen species (ROS) in germ cells. This disruption damages cellular lipids, proteins, and DNA, culminating in cell dysfunction or death. Ferroptosis, a cell death pathway closely linked to oxidative stress, is characterized by the accumulation of intracellular iron ions and elevated levels of lipid ROS. This review also explores the role of ferroptosis in male reproductive disorders, including its contributions to reduced sperm count, decreased motility, and abnormal morphology. Environmental pollutants, particularly heavy metals, can induce ferroptosis by interfering with intracellular antioxidant systems, notably the NRF2, GSH, and GPX4 pathways, accumulating toxic lipid peroxides. Furthermore, the article examines the potential interplay between ferroptosis and other forms of cell death, such as apoptosis, autophagy, pyroptosis, and necrosis, in the context of male reproductive health. The review underscores the critical need for further research into the link between environmental pollutants and male fertility, particularly focusing on ferroptosis. It advocates for targeted research efforts to mitigate the adverse effects of ferroptosis and protect reproductive health, emphasizing that a deeper understanding of these mechanisms could lead to innovative preventive strategies against environmental threats to fertility.
Collapse
Affiliation(s)
- Shao-Feng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yu Ga
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Dan-Yang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Si-Lu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Qiao-Yue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Zhi-Hui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, 572025, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing, 100193, China.
| |
Collapse
|
2
|
Wāng Y. Ambient fine particulate matter provokes multiple modalities of cell death via perturbation of subcellular structures. ENVIRONMENT INTERNATIONAL 2024; 195:109193. [PMID: 39721566 DOI: 10.1016/j.envint.2024.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
Fine particulate matter (PM2.5) is increasingly recognized for its detrimental effects on human health, with substantial evidence linking exposure to various forms of cell death and dysfunction across multiple organ systems. This review examines key cell death mechanisms triggered by PM2.5, including PANoptosis, necroptosis, autophagy, and ferroptosis, while other forms such as oncosis, paraptosis, and cuprotosis remain unreported in relation to PM2.5 exposure. Mitochondria, endoplasmic reticulum, and lysosomes emerge as pivotal organelles in the disruption of cellular homeostasis, with mitochondrial dysfunction particularly implicated in metabolic dysregulation and the activation of pro-apoptotic pathways. Although PM2.5 primarily affects the nucleus, cytoskeleton, mitochondria, endoplasmic reticulum, and lysosomes, other organelles like ribosomes, Golgi apparatus, and peroxisomes have received limited attention. Interactions between these organelles, such as endoplasmic reticulum-associated mitochondrial membranes, lysosome-associated mitophagy, and mitochondria-nuclei retro-signaling may significantly contribute to the cytotoxic effects of PM2.5. The mechanisms of PM2.5 toxicity, encompassing oxidative stress, inflammatory responses, and metabolic imbalances, are described in detail. Notably, PM2.5 activates the NLRP3 inflammasome, amplifying inflammatory responses and contributing to chronic diseases. Furthermore, PM2.5 exposure disrupts genetic and epigenetic regulation, often resulting in cell cycle arrest and exacerbating cellular damage. The composition, concentration, and seasonal variability of PM2.5 modulate these effects, underscoring the complexity of PM2.5-induced cellular dysfunction. Despite significant advances in understanding these pathways, further research is required to elucidate the long-term effects of chronic PM2.5 exposure, the role of epigenetic regulation, and potential strategies to mitigate its harmful impact on human health.
Collapse
Affiliation(s)
- Yán Wāng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
3
|
Jiang Y, He K, Shen Q, Yang C, Huang X, Fan J, Du M, Wu J, Ruan H, Yang J, Hong Y. Exploring the Biological Effects of Polystyrene Nanoplastics on Spermatogenesis: Insights From Transcriptomic Analysis in Mouse Spermatocytes. Int J Toxicol 2024:10915818241305086. [PMID: 39648428 DOI: 10.1177/10915818241305086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The presence of polystyrene plastics in the human testis has raised concerns, yet their biological activity remains poorly characterized. This study aimed to investigate the biological effects and potential regulatory genes of polystyrene nanoplastics on spermatocyte line, GC-2spd(ts). After a 24-h exposure to polystyrene nanoplastics, the results indicated cell membrane disruption, impairment of mitochondrial membrane potential, increased levels of reactive oxygen species (ROS), and induced DNA damage. Furthermore, a comprehensive transcriptomic analysis was conducted, revealing differential gene expression patterns in GC-2spd(ts) cells in response to polystyrene nanoplastics. A total of 134 differentially expressed genes (DEGs) were identified, with 48 genes upregulated and 86 genes downregulated. The Gene Ontology analysis highlighted the involvement of these genes in various spermatogenesis-related biological processes, including acrosome reaction, sperm mitochondrial organization, sperm annulus, and outer acrosomal membrane. Subsequently, the quantification of gene expression through qRT-PCR identified five key genes (NSUN7, SEPTIN4, TRIM36, EQTN, and SYT8) screened from the DEGs. In conclusion, this study provides valuable insights into the biological effects of polystyrene nanoplastics on mouse spermatocytes using comprehensive transcriptomic analysis, contributing to the establishment of a foundation for future investigations into these relevant pathways.
Collapse
Affiliation(s)
- Ying Jiang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Kexuan He
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Qianyi Shen
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Can Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Xin Huang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Junjie Fan
- The First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Miaomiao Du
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Jianrong Wu
- The First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Huajuan Ruan
- The First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jun Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yeting Hong
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Lin CH, Liu WS, Wan C, Wang HH. Induction of GPX4-regulated ferroptotic stress promotes epithelial-to-mesenchymal transition in renal tubule cells induced by PM2.5. Toxicol Appl Pharmacol 2024; 495:117184. [PMID: 39631540 DOI: 10.1016/j.taap.2024.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Increasing evidence links exposure to fine particulate matter (PM2.5) with an elevated risk of kidney disease. In this study, we investigated the effect of PM2.5 exposure on human proximal tubular epithelial (HK-2) cells and found that it elevated ferroptotic stress markers, including increased iron, reactive oxygen species (ROS), and malondialdehyde (MDA), along with reducing glutathione (GSH) levels. PM2.5 promotes the epithelial-to-mesenchymal transition (EMT) in these cells, which is associated with the loss of epithelial morphology, lowered expression of E-cadherin, and elevated expression of α-smooth muscle actin (α-SMA). Notably, a reduction in PM2.5-induced EMT characteristics was observed using either a ferroptosis-specific inhibitor (Fer-1) or a mitochondrial ROS scavenger (Mito-Tempo). Moreover, Fer-1 effectively counteracted ferroptotic stress and restored glutathione peroxidase 4 (GPX4) expression in PM2.5-exposed cells, which may explain its efficacy in inhibiting EMT induced by PM2.5. In contrast, GPX4 knockdown exacerbated EMT features in PM2.5-treated cells. Further studies showed that GPX4 overexpression alleviated EMT markers in mouse tubular cells following PM2.5 exposure, indicating the role of GPX4 in reducing ferroptotic stress and may prevent tubular injury caused by PM2.5 exposure. Our study highlights that PM2.5 may induce GPX4-regulated ferroptotic stress in tubular cells, potentially triggering the EMT process and contributing to kidney injury.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan.
| | - Wen-Sheng Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan; Division of Nephrology, Department of Medicine, Taipei City Hospital Zhongxing Branch, Taipei, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Special Education, University of Taipei, Taipei, Taiwan
| | - Chuan Wan
- Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Hui Wang
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Shi Y, Yin L, Li JY, Zhou SM, Wang N, Chen HQ, Zeng Y, Li YW, Liu WB. FTO mediates bisphenol F-induced blood-testis barrier impairment through regulating ferroptosis via YTHDF1/TfRc and YTHDF2/SLC7A11 signal axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124531. [PMID: 38996995 DOI: 10.1016/j.envpol.2024.124531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Bisphenol F (BPF) has been extensively utilized in daily life, which brings new hazards to male reproductive health. However, the specific functional mechanism is still unclear. Both cell and animal models were utilized for exploring the role of RNA methylation and ferroptosis and its underlying mechanisms in male reproductive injury induced by BPF. In animal model, BPF severely destroyed the integrity of the blood-testis barrier (BTB) and induced ferroptosis. Furthermore, BPF significantly affected the barrier function of TM4 cells and promoted ferroptosis. Importantly, ChIP assays revealed that BPF inhibited AR transcriptional regulation of FTO and FTO expression was downregulated in TM4 cells. Overexpression of FTO prevented the impairment of BTB by inhibiting ferroptosis in TM4 cells. Mechanistically, FTO could significantly down-regulate the m6A modification level of TfRc and SLC7A11 mRNA through MeRIP experiment. RIP experiments showed that YTHDF1 can bind to TfRc mRNA and promote its translation while YTHDF2 could bind to SLC7A11 mRNA and reduce its mRNA stability. Therefore, our results suggest that FTO plays a key role in BPF induced male reproductive toxicity through YTHDF1-TfRc axis and YTHDF2-SLC7A11 axis and may provide new ideas and methods for the prevention and treatment of male reproductive diseases associated with environmental pollutants.
Collapse
Affiliation(s)
- Yu Shi
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Li Yin
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jiang-Ying Li
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Meng Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Hong-Qiang Chen
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong Zeng
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya-Wen Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Wen-Bin Liu
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Chen X, Chen H, Zhang P, Ju Q, Wu Z, Xu N, Bi Q, Yang S, Ji J, Yu D, Zhao Y. Coke oven emissions exacerbate allergic asthma by promoting ferroptosis in airway epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135542. [PMID: 39154481 DOI: 10.1016/j.jhazmat.2024.135542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Epidemiological studies have shown that coke oven emissions (COEs) affect the deterioration of asthma, but has not been proven by experimental results. In this study, we found for the first time that COEs exacerbate allergen house dust mite (HDM)-induced allergic asthma in the mouse model. The findings reveal that airway inflammation, airway remodeling and allergic reaction were aggravated in the COE + HDM combined exposure group compared with the individual exposure group. Mechanism studies indicated higher levels of iron and MDA in the COE + HDM combined exposure group, along with increased expression of Ptgs2 and reduced GPX4 expression. Iron chelator deferoxamine (DFO) effectively inhibited ferroptosis induced by COE synergistically with HDM in vitro. Further studies highlighted the role of ferritinophagy in the COE + HDM-induced ferroptosis. 3-methyladenine (3-MA) could inhibit ferroptosis in the COE + HDM exposure group. Interestingly, we injected DFO intraperitoneally into mice in the combined exposure group and found DFO could significantly inhibit the COE-exacerbated ferroptosis and allergic asthma. Our findings link ferroptosis with COE-exacerbated allergic asthma, implying that ferroptosis may have important therapeutic potential for asthma in patients with occupational exposure of COE.
Collapse
Affiliation(s)
- Xian Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Hongguang Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Pimei Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Zhaoxu Wu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Nuo Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Qing Bi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Shuaishuai Yang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Yanjie Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China.
| |
Collapse
|
7
|
Contreras-Mellado P, Bravo A, Zambrano F, Sánchez R, Boguen R, Risopatrón J, Merino O, Uribe P. Oxidative Stress Induces Changes in Molecular Markers Associated with Ferroptosis in Human Spermatozoa. World J Mens Health 2024; 42:42.e83. [PMID: 39344120 DOI: 10.5534/wjmh.240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE Ferroptosis is a type of iron-dependent regulated cell death characterized by increased bioavailability of redox-active iron, loss of GPX4 antioxidant capacity, and oxidation of polyunsaturated fatty acid-containing phospholipids mediated by reactive oxygen species (ROS). The aim of this study was to evaluate the effect of oxidative stress induced by arachidonic acid (AA) on ferroptotic cell death in human spermatozoa. MATERIALS AND METHODS Spermatozoa from normozoospermic donors were exposed to AA (5, 25, and 50 µM) for 1 hour at 37 ℃, including an untreated control. Oxidative stress was confirmed by evaluation of cytosolic and mitochondrial ROS production, viability, mitochondrial membrane potential (ΔΨm) and motility. Subsequently, molecular markers of ferroptosis including iron content, levels of GPX4, SLC7A11, ACSL4, IREB2 and lipid peroxidation were evaluated. The analyses were carried out using either flow cytometry, a microplate reader or confocal laser microscopy. RESULTS AA-induced oxidative stress showed increased cytosolic and mitochondrial ROS production accompanied by impairedΔΨm, viability and motility in human spermatozoa. These results were associated with biochemical and molecular markers related to ferroptotic cell death including an increase in iron content in the form of ferrous (Fe2+) ions, SLC7A11, ACSL4, IREB2, a decrease in the level of GPX4, and an increase in the level of lipid peroxidation compared to the untreated control. CONCLUSIONS This study revealed that AA-induced oxidative stress induces cell death with biochemical characteristics of ferroptosis in human spermatozoa, demonstrating another mechanism of alteration of sperm function induced by oxidative stress and could establish new therapeutic objectives to prevent the decrease in sperm quality mediated by oxidative stress.
Collapse
Affiliation(s)
- Pablo Contreras-Mellado
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Ph.D. Program in Sciences Mention Applied Cell and Molecular Biology, Faculty of Agricultural Sciences and Environment, Universidad de La Frontera, Temuco, Chile
| | - Anita Bravo
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Rodrigo Boguen
- Department of Diagnostic Processes and Evaluation, Faculty of Health Sciences, Universidad Catolica de Temuco, Temuco, Chile
| | - Jennie Risopatrón
- Center of Excellence of Biotechnology in Reproduction (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Osvaldo Merino
- Center of Excellence of Biotechnology in Reproduction (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
8
|
Hao J, Ren J, Chang B, Xu H, Wang H, Ji L. Transcriptome and proteomic analysis reveal the protective mechanism of acupuncture on reproductive function in mice with asthenospermia. Heliyon 2024; 10:e36664. [PMID: 39286182 PMCID: PMC11403502 DOI: 10.1016/j.heliyon.2024.e36664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Acupuncture is an integral component of complementary and alternative medicine that has been reported to enhance sperm motility, improve semen quality, and consequently augment male fertility. However, the precise mechanisms of action and the underlying molecular pathways remain unclear. In the present study, we aimed to elucidate the potential mechanisms through which acupuncture improves reproductive function in a mouse model of cyclophosphamide-induced asthenozoospermia. We collected sperm from the epididymis for semen analysis, collected serum to determine gonadotropin and oxidative stress marker levels, conducted histological examination of testicular tissue using hematoxylin and eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and observed mitochondrial morphology using transmission electron microscopy (TEM). We also assessed oxidative stress levels and total iron content in testicular tissue and validated the proteomic and transcriptomic analysis results of testicular tissue using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), protein imprinting analysis, and immunohistochemistry (IHC). Our results indicate that acupuncture enhances sperm quality in asthenozoospermic mice; increases serum testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels; and attenuates oxidative damage, iron accumulation, and mitochondrial injury in mouse testicular tissues. Through protein and transcriptomic analyses, we identified 21 key genes, of which cytochrome b-245 heavy chain (CYBB), glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 1 (ACSL1), and ferritin mitochondria (FTMT) were closely associated with ferroptosis. RT-qPCR, protein imprinting, and immunofluorescence (IF) analyses collectively indicated that acupuncture reduced ACSL1 and CYBB expression, and increased GPX4 and FTMT expression. Overall, the ferroptosis pathway associated with ACSL1/CYBB/FTMT/GPX4 represents a potential strategy through which acupuncture can improve the reproductive function in asthenozoospermic mice.
Collapse
Affiliation(s)
- Jianheng Hao
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Jia Ren
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Boya Chang
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Huichao Xu
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Haijun Wang
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Laixi Ji
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- The Second Clinical College, Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| |
Collapse
|
9
|
Li J, Chen D, Suo J, Li J, Zhang Y, Wang Y, Deng Z, Zhang Q, Ma B. Triptolide induced spermatogenesis dysfunction via ferroptosis activation by promoting K63-linked GPX4 polyubiquitination in spermatocytes. Chem Biol Interact 2024; 399:111130. [PMID: 38960301 DOI: 10.1016/j.cbi.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Triptolide (TP) is a major bioactive compound derived from Tripterygium wilfordii Hook. F. (TwHF) known for its medicinal properties, but it also exhibits potential toxic effects. It has been demonstrated to induce severe male reproductive toxicity, yet the precise mechanism behind this remains unclear, which limits its broad clinical application. This study aimed to investigate the mechanisms underlying testicular damage and spermatogenesis dysfunction induced by TP in mice, using both mouse models and the spermatocyte-derived cell line GC-2spd. In the present study, it was found that TP displayed significant testicular microstructure damaged and spermatogenesis defects including lower concentration and abnormal morphology by promoting ROS formation, MDA production and restraining GSH level, glutathione peroxidase 4 (GPX4) expression in vivo. Furthermore, Ferrostatin-1 (FER-1), a ferroptosis inhibitor, was found to significantly reduce the accumulation of lipid peroxidation, alleviate testicular microstructural damage, and enhance spermatogenic function in mice. Besides, notably decreased cell viability, collapsed mitochondrial membrane potential, and elevated DNA damage were observed in vitro. The above-mentioned phenomenon could be reversed by pre-treatment of FER-1, indicating that ferroptosis participated in the TP-mediated spermatogenesis dysfunction. Mechanistically, TP could enhance GPX4 ubiquitin degradation via triggering K63-linked polyubiquitination of GPX4, thereby stimulating ferroptosis in spermatocytes. Functionally, GPX4 deletion intensified ferroptosis and exacerbated DNA damage in GC-2 cells, while GPX4 overexpression mitigated ferroptosis induced by TP. Overall, these findings for the first time indicated a vital role of ferroptosis in TP induced-testicular injury and spermatogenic dysfunction through promoting GPX4 K63-linked polyubiquitination, which hopefully offers a potential therapeutic avenue for TP-related male reproductive damage. In addition, this study also provides a theoretical foundation for the improved clinical application of TP or TwHF in the future.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Dezhi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jialiang Suo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Yimu Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Yu Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
10
|
Zhang Q, Yang Y, Liu J, Wu Y, Liu Y, Zhang J. Testicular dysfunction and "its recovery effect" after cadmium exposure. Food Chem Toxicol 2024; 188:114656. [PMID: 38615797 DOI: 10.1016/j.fct.2024.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
In recent years, with the acceleration of industrialization, the decline of male fertility caused by heavy metal pollution has attracted much attention. However, whether the inhibition of testicular function after cadmium exposure is reversible remains to be studied. In this study, we constructed rat models of cadmium exposure and dis-exposure, and collected relative samples to observe the changes of related indicators. The results showed that cadmium exposure could reduce the fertility, inhibit the hypothalamic-pituitary-testis axis and activate hypothalamic-pituitary-adrenal axis function, the testicular GR/PI3K-AKT/AMPK signal was abnormal, cell proliferation was inhibited and apoptosis was enhanced. Four weeks after the exposure was stopped, the fertility was still decreased, testicular testosterone synthesis and spermatogenesis were inhibited, cell proliferation was inhibited and apoptosis was enhanced, but all of them were reversed. After eight weeks of cadmium exposure, the above indicators were observed to return to normal. At the same time, by giving different concentrations of corticosterone to spermatogonium, we confirmed that corticosterone may regulate the proliferation and apoptosis of spermatogonium through GR/PI3K-AKT/AMPK signal. In this study, the reproductive toxicity of cadmium, a metal environmental pollutant, was analyzed in depth to provide a new theoretical and experimental basis for ensuring male reproductive health.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - YanLing Yang
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Juan Liu
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - YuJiao Wu
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Yi Liu
- WuHan University, WuHan, Hubei, 430070, China.
| | - Jing Zhang
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China.
| |
Collapse
|
11
|
Chen W, Ge P, Lu Z, Liu X, Cao M, Yan Z, Chen M. Acute exposure to seasonal PM 2.5 induces toxicological responses in A549 cells cultured at the air-liquid interface mediated by oxidative stress and endoplasmic reticulum stress. ENVIRONMENTAL RESEARCH 2024; 248:118283. [PMID: 38253190 DOI: 10.1016/j.envres.2024.118283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) enters the human body through respiration and poses a threat to human health. This is not only dependent on its mass concentration in the atmosphere, but also related to seasonal variations in its chemical components, which makes it important to study the cytotoxicity of PM2.5 in different seasons. Traditional immersion exposure cannot simulate the living environment of human epithelial cells in the human body, making this method unsuitable for evaluating the inhalation toxicity of PM2.5. In this study, a novel air-liquid interface (ALI) particulate matter exposure device (VITROCELL Cloud 12 system) was used to evaluate the toxic effects and potential mechanisms of human lung epithelial cells (A549) after exposure to seasonal PM2.5. PM2.5 samples from four seasons were collected and analyzed for chemical components. After 6 h of exposure to seasonal PM2.5, winter PM2.5 exhibited the highest cytotoxicity among most toxicity indicators, especially apoptosis rate, reactive oxygen species (ROS), inflammatory responses and DNA damage (γ-H2AX). The effect of autumn PM2.5 on apoptosis rate was significantly higher than that in spring, and there was no significant difference in other toxicity indicators between spring and autumn. The cytotoxicity of summer PM2.5 was the lowest among the four seasons. It should be noted that even exposure to low doses of summer PM2.5 leads to significant DNA damage in A459 cells. Correlation analysis results showed that water-soluble ions, metallic elements, and polycyclic aromatic hydrocarbons (PAHs) were associated with most toxicological endpoints. Inhibitors of oxidative stress and endoplasmic reticulum (ER) stress significantly inhibited cellular damage, indicating that PM2.5-induced cytotoxicity may be related to the generation of ROS and ER stress. In addition, PM2.5 can induce ER stress through oxidative stress, which ultimately leads to apoptosis.
Collapse
Affiliation(s)
- Wankang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenyu Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiaoming Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Maoyu Cao
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhansheng Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
12
|
Guo W, Kang C, Wang X, Zhang H, Yuan L, Wei X, Xiao Q, Hao W. Chlorocholine chloride exposure induced spermatogenic dysfunction via iron overload caused by AhR/PERK axis-dependent ferritinophagy activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116193. [PMID: 38460407 DOI: 10.1016/j.ecoenv.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.
Collapse
Affiliation(s)
- Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
13
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
14
|
Shi W, Zhang H, Zhang Y, Lu L, Zhou Q, Wang Y, Pu Y, Yin L. Co-exposure to Fe, Zn, and Cu induced neuronal ferroptosis with associated lipid metabolism disorder via the ERK/cPLA2/AA pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122438. [PMID: 37625769 DOI: 10.1016/j.envpol.2023.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/06/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Excessive amounts of iron (Fe), zinc (Zn), and copper (Cu) can be toxic to neuronal cells, even though these are essential trace elements for animals and humans. However, the precise mechanisms underlying the neurotoxicity of exposure to mixtures of Fe, Zn, and Cu are still mostly unclear. The research aimed to investigate the influence of co-exposure to iron, zinc and copper and the related mechanisms in HT22 murine hippocampal neuronal cells. Intracellular metal content, markers of oxidative damage, and biomarkers of ferroptosis were respectively detected. Afterward, metabolomic analyses were performed to obtain a comprehensive understanding of the metal mixtures on metabolism, and the functions of key enzymes on metabolic pathways were validated. The results showed that metal co-exposure resulted in cellular iron overload and increased lipid peroxidation, accompanied by significant pathological damage and mitochondrial abnormalities in HT22 cells. Meanwhile, it was found that GSH depletion, decreased GPX4, and increased expression of the lipid metabolism gene ACSL4 play important roles in ferroptosis induced by metal mixture. Further, metabolomic analysis revealed metal co-exposure induced significant alterations in metabolite levels, especially in the glycerophospholipid metabolism pathway and the arachidonic acid metabolism pathway. The levels of cPLA2 and its metabolite, arachidonic acid, were significantly increased after metal co-exposure. Then, inhibition of cPLA2 decreased the level of arachidonic acid and attenuated ferroptosis in neuronal cells. Collectively, our findings unveiled ferroptosis induced by metal co-exposure associated with crucial molecular changes in neuronal cells, providing a novel perspective on the comprehensive toxicity risk assessment of metal mixtures.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
15
|
Yuan W, Sun Z, Ji G, Hu H. Emerging roles of ferroptosis in male reproductive diseases. Cell Death Discov 2023; 9:358. [PMID: 37770442 PMCID: PMC10539319 DOI: 10.1038/s41420-023-01665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
Ferroptosis is a type of programmed cell death mediated by iron-dependent lipid peroxidation that leads to excessive lipid peroxidation in different cells. Ferroptosis is distinct from other forms of cell death and is associated with various diseases. Iron is essential for spermatogenesis and male reproductive function. Therefore, it is not surprising that new evidence supports the role of ferroptosis in testicular injury. Although the molecular mechanism by which ferroptosis induces disease is unknown, several genes and pathways associated with ferroptosis have been linked to testicular dysfunction. In this review, we discuss iron metabolism, ferroptosis, and related regulatory pathways. In addition, we analyze the endogenous and exogenous factors of ferroptosis in terms of iron metabolism and testicular dysfunction, as well as summarize the relationship between ferroptosis and male reproductive dysfunction. Finally, we discuss potential strategies to target ferroptosis for treating male reproductive diseases and provide new directions for preventing male reproductive diseases.
Collapse
Affiliation(s)
- Wenzheng Yuan
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Institute of Life Sciences, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Zhibin Sun
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Guojie Ji
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| | - Huanhuan Hu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|