1
|
Han Y, Liu Z, Li Y, Chen Y, Qi J, Feng P, Liu DL, Shi J, Meng L, Chen Y. Response of hydrology and nutrient losses to different extreme rainfall conditions in a coastal watershed influenced by orchards. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122137. [PMID: 39153319 DOI: 10.1016/j.jenvman.2024.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Global warming is altering the frequency of extreme rainfall events and introducing uncertainties for non-point source pollution (NPSP). This research centers on orchard-influenced planting areas (OIPA) in the Wulong River Watershed of Shandong Province, China, which are known for their heightened nitrogen (N) and phosphorus (P) pollution. Leveraging meteorological data from both historical (1989-2018) and projected future periods (2041-2100), this research identified five extreme rainfall indices (ERI): R10 (moderate rain), R20 (heavy rain), R50 (rainstorm), R95p (Daily rainfall between the 95th and 99th percentile of the rainfall), and R99p (>99th percentile). Utilizing an advanced watershed hydrological model, SWAT-CO2, this study carried out a comparison between ERI and average conditions and evaluated the effects of ERI on the hydrology and nutrient losses in this coastal watershed. The findings revealed that the growth multiples of precipitation in the OIPA for five ERI varied between 16 and 59 times for the historical period and 14 to 65 times for future climate scenarios compared to the average conditions. The most pronounced increases in surface runoff and total phosphorus (TP) loss were observed with R50, R95p, and R99p, showing growth multiples as high as 352 and 330 times, and total nitrogen (TN) growth multiples varied between 4.6 and 30.3 times. The contribution rates of R50 and R99p for surface runoff and TP loss in the OIPA during all periods exceeded 55%, however, TN exhibited the opposite trend, primarily due to the dominated NO3-N leaching in the sandy soil. This research revealed how the OIPA reacts to different ERI and pinpointed essential elements influencing water and nutrient losses.
Collapse
Affiliation(s)
- Yiwen Han
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing, 100037, China
| | - Zhong Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing, 100037, China.
| | - Yanqiao Li
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Yafei Chen
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Junyu Qi
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | - Puyu Feng
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing, 100037, China
| | - De Li Liu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia; Climate Change Research Centre, University of New South Wales, Sydney, 2052, Australia
| | - Jibo Shi
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Sichuan Institute of Land and Space Ecological Restoration and Geohazards Prevention, Chengdu, 610081, China
| | | | - Yong Chen
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing, 100037, China.
| |
Collapse
|
2
|
Xu P, Li Z, Guo S, Jones DL, Wang J, Han Z, Zou J. Lower soil nitrogen-oxide emissions associated with enhanced denitrification under replacing mineral fertilizer with manure in orchard soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171192. [PMID: 38401727 DOI: 10.1016/j.scitotenv.2024.171192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that replacing mineral fertilizers with organic livestock manure can effectively suppress reactive gaseous nitrogen (N) emissions from soils. However, the extent of this mitigation potential and the underlying microbial mechanisms in orchards remain unclear. To address this knowledge gap, we measured nitrous and nitric oxide (N2O and NO) emissions, microbial N cycling gene abundance, and N2O isotopomer ratios in pear and citrus orchards under three different fertilization regimes: no fertilization, mineral fertilizer, and manure plus mineral fertilizer. The results showed that although manure application caused large transient peaks of N2O, it reduced cumulative emissions of N2O and NO by an average of 20 % and 17 %, respectively, compared to the mineral fertilizer treatment. Partial replacement of mineral fertilizers with manure enhanced the contribution of AOA to nitrification and reduced the contribution of AOB, thus reducing N2O emissions from nitrification. Isotope analysis suggested that the pathway for N2O production in the soils of both orchards was dominated by bacterial denitrification and nitrifier denitrification. The manure treatment reduced the ratio of denitrification products. Additionally, the dual isotope mixing model results indicated that partially replacing mineral fertilizers with manure could promote soil denitrification, resulting in more N2O being reduced. N-oxide emissions were on average 67 % higher in the pear orchard than in the citrus orchard, probably due to the differences in soil physicochemical properties and growth habits between the two orchards. These findings underscore the potential of partially replacing mineral fertilizers with organic manure in orchards to reduce gaseous N emissions, contributing to the transition towards environmentally sustainable and climate-smart agricultural practices.
Collapse
Affiliation(s)
- Pinshang Xu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhutao Li
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shumin Guo
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57192UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoqiang Han
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Li L, Hong M, Zhang Y, Paustian K. Soil N 2 O emissions from specialty crop systems: A global estimation and meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17233. [PMID: 38469991 DOI: 10.1111/gcb.17233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Nitrous oxide (N2 O) exacerbates the greenhouse effect and thus global warming. Agricultural management practices, especially the use of nitrogen (N) fertilizers and irrigation, increase soil N2 O emissions. As a vital sector of global agriculture, specialty crop systems usually require intensive input and management. However, soil N2 O emissions from global specialty crop systems have not been comprehensively evaluated. Here, we synthesized 1137 observations from 114 published studies, conducted a meta-analysis to evaluate the effects of agricultural management and environmental factors on soil N2 O emissions, and estimated global soil N2 O emissions from specialty crop systems. The estimated global N2 O emission from specialty crop soils was 1.5 Tg N2 O-N year-1 , ranging from 0.5 to 4.5 Tg N2 O-N year-1 . Globally, soil N2 O emissions exponentially increased with N fertilizer rates. The effect size of N fertilizer on soil N2 O emissions generally increased with mean annual temperature, mean annual precipitation, and soil organic carbon concentration but decreased with soil pH. Global climate change will further intensify the effect of N fertilizer on soil N2 O emissions. Drip irrigation, fertigation, and reduced tillage can be used as essential strategies to reduce soil N2 O emissions and increase crop yields. Deficit irrigation and non-legume cover crop can reduce soil N2 O emissions but may also lower crop yields. Biochar may have a relatively limited effect on reducing soil N2 O emissions but be effective in increasing crop yields. Our study points toward effective management strategies that have substantial potential for reducing N2 O emissions from global agricultural soils.
Collapse
Affiliation(s)
- Lidong Li
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mu Hong
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Yao Zhang
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Keith Paustian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Luo Y, Wu X, Liu J, Xiao H, Liao B, Hu R. Mitigating runoff nitrate loss from soil organic nitrogen mineralization in citrus orchard catchments using green manure. WATER RESEARCH 2023; 243:120398. [PMID: 37506633 DOI: 10.1016/j.watres.2023.120398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Nitrate-nitrogen (NO3--N) loss is a significant contributor to water quality degradation in agricultural catchments. The amount of nitrogen (N) fertilizer input in citrus orchard is relatively large and results in significant NO3--N loss, compared to cropland. To promote sustainable N fertilizer management, it is crucial to identify the sources of runoff NO3--N loss in citrus orchards catchments. Particularly, we poorly know the sources of NO3--N and the mitigation mechanisms in these areas, which are highly polluted with NO3--N in water bodies. In this study conducted in central China, we conducted a field experiment with four treatments (CK: no N fertilizer; CF: conventional N fertilizer, 371.3kg N ha-1 yr-1 urea; OM: CF with organic manure; GM: CF with legume green manure) and a catchment-scale experiment in two citrus orchards (34.3%; 51.6%) catchments. To determine the source of runoff NO3--N loss, we used the dual isotope tracer method (δ15N and δ18O of NO3-) to identify the sources of NO3--N, and a 15-day incubation experiment to determine the potential and rate of soil N mineralization. Our findings revealed that soil organic nitrogen (SON) mineralization was the primary contributor to runoff NO3--N loss, and soil N mineralization potential (0.65⁎⁎⁎) and rate (0.54⁎⁎⁎) were the key factors impacting NO3--N loss. Interestingly, organic manure significantly increased 29.0% of NO3--N loss derived from SON in the runoff by enhancing soil N mineralization potential (+36.6%) and rate (+77.1%). But green manure mulching significantly reduced the soil N mineralization rate (-18.6%) compared to organic manure application, making it the most effective measure to reduce NO3--N loss (-12.4%). Our study highlights the critical role of regulating SON mineralization in controlling NO3--N pollution in surface waters in citrus orchard catchments.
Collapse
Affiliation(s)
- Yue Luo
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xian Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan 430079, China; Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin 12587, Germany
| | - Hengbin Xiao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Liao
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|